Pósters
Permanent URI for this collection
Browse
Browsing Pósters by Author "Coster, A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Ionospheric effects of recent stratospheric sudden warmings(Instituto Geofísico del Perú, 2011) Goncharenko, L.; Coster, A.; Chau Chong Shing, Jorge Luis; Valladares, C. E.Recent studies have shown large variations in low-latitude ionospheric parameters occurring after stratospheric sudden warming events. We use observations of vertical ion drift from Jicamarca ISR and GPS total electron content data in the Western Hemisphere for winters of 2008-2009 and 2009-2010 to illustrate main features of ionospheric changes related to stratospheric sudden warmings. The common feature in all events is the increase in the electron density during the morning hours and the decrease in the afternoon, related to amplification of 12-hour signature in low-latitude vertical ion drifts. This feature persists for several days after the peak in stratospheric temperature. The observed phenomena is related to quasistationary planetary waves, which have a high amplitude level prior to the stratospheric warmings. Non-linear interaction of planetary waves with tides leading to increase in tidal amplitudes in the low latitude lower thermosphere and modulation of E-region electric field with subsequent mapping to the F-region is thought to be the primary mechanism responsible for the observed ionospheric response. We investigate the characteristics of ionospheric oscillations with planetary wave periods between 2 and 30 days and in a wide range of latitudes in context of variations in stratospheric parameters.Item Open Access Ionospheric variations during January 2009 stratospheric sudden warming(Instituto Geofísico del Perú, 2009) Goncharenko, L.; Coster, A.; Rideout, W.; Chau Chong Shing, Jorge Luis; Liu, H. -L.; Valladares, C. E.The stratospheric sudden warming peaking in January 2009 was the strongest and most prolonged on record. We report significant ionospheric variations is association with this event, which are especially pronounced at low latitudes. Large increase in the vertical drifts is observed at Jicamarca, displaying 12-hour signature with upward drifts in the morning hours and downward drifts in the afternoon hours, with pattern persisting for several days. Analysis of GPS TEC data indicates that variations in electron density are observed in a large range of longitudes and latitudes. The entire daytime ionosphere is affected, with morning increase in low-latitude TEC exceeding 100% of the mean value, and afternoon decrease in TEC approaching ~50% of the mean value. These variations are consistent with ionospheric disturbances observed during other stratospheric warming events. We suggest the observed phenomena is related to planetary waves, which have a high amplitude level prior to the stratospheric warmings. Interaction of planetary waves with tides and modulation of tides can lead to changes in the low-latitude electric field through the wind dynamo process, which in turn is responsible for a largescale redistribution of ionospheric electron density.