Machine learning for volcano-seismic signals: challenges and perspectives

dc.contributor.authorMalfante, Marielle
dc.contributor.authorDalla Mura, Mauro
dc.contributor.authorMetaxian, Jean-Phillipe
dc.contributor.authorMars, Jerome I.
dc.contributor.authorMacedo Sánchez, Orlando Efraín
dc.contributor.authorInza Callupe, Lamberto Adolfo
dc.date.accessioned2018-08-07T17:11:23Z
dc.date.available2018-08-07T17:11:23Z
dc.date.issued2018-03-09
dc.description.abstractEnvironmental monitoring is a topic of increasing interest, especially concerning the matter of natural hazards prediction. Regarding volcanic unrest, effective methodologies along with innovative and operational tools are needed to monitor, mitigate, and prevent risks related to volcanic hazards. In general, the current approaches for volcanoes monitoring are mainly based on the manual analysis of various parameters, including gas leaps, deformations measurements, and seismic signals analysis. However, due to the large amount of data acquired by in situ sensors for long-term monitoring, manual inspection is no longer a viable option. As in many big data situations, classic machine-learning approaches are now considered to automatize the analysis of years of recorded signals, thereby enabling monitoring on a larger scale.es_ES
dc.description.peer-reviewPor pareses_ES
dc.formatapplication/pdfes_ES
dc.identifier.citationMalfante, M., Dalla, M., Metaxian, J., Mars, J., Macedo, O., & Inza, L. (2018). Machine learning for volcano-seismic signals: challenges and perspectives.==$IEEE Signal Processing Magazine, 35$==(2), 20-30. https://doi.org/10.1109/MSP.2017.2779166es_ES
dc.identifier.doihttps://doi.org/10.1109/MSP.2017.2779166es_ES
dc.identifier.govdocindex-oti2018
dc.identifier.journalIEEE Signal Processing Magazinees_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12816/2301
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers Inc. (IEEE)es_ES
dc.relation.ispartofurn:issn:1053-5888
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.subjectVolcanoeses_ES
dc.subjectSignal processing algorithmses_ES
dc.subjectSeismic measurementses_ES
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#2.02.00es_ES
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#1.05.07es_ES
dc.titleMachine learning for volcano-seismic signals: challenges and perspectiveses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES

Files

License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: