Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru

dc.contributor.authorCenteno Quico, Riky
dc.contributor.authorGómez-Salcedo, Valeria
dc.contributor.authorLazarte Zerpa, lvonne Alejandra
dc.contributor.authorVilca-Nina, Javier
dc.contributor.authorOsores, Soledad
dc.contributor.authorMayhua-Lopez, Efraín
dc.date.accessioned2025-02-11T13:33:39Z
dc.date.available2025-02-11T13:33:39Z
dc.date.issued2024-05-11
dc.description.abstractThis study presents the development of a multiparametric system that utilizes artificial intelligence techniques to identify and analyze volcanic explosions in near real-time. The study analyzed 1343 explosions recorded between 2019 and 2021, along with seismic, meteorological, and visible image data from the Sabancaya volcano. Deep learning algorithms like the U-Net convolutional neural network were used to segment and measure volcanic plumes in images, while boosting-based machine learning ensembles were used to classify seismic events related to ash plumes. The findings demonstrate that these approaches effectively handle large amounts of data generated during seismic and eruptive crises. The U-Net network achieved precise segmentation of volcanic plumes with over 98% accuracy and the ability to generalize to new data. The CatBoost classifier achieved an average accuracy of 94.5% in classifying seismic events. These approaches enable the real-time estimation of eruptive parameters without human intervention, contributing to the development of early warning systems for volcanic hazards. In conclusion, this study highlights the feasibility of using seismic signals and images to detect and characterize volcanic explosions in near real-time, making a significant contribution to the field of volcanic monitoring.
dc.description.peer-reviewPor pares
dc.description.sponsorshipEste trabajo fue financiado por PROCIENCIA - CONCYTEC en el marco del proyecto “Detección y Caracterización Automática de Explosiones Volcánicas como Herramienta de Apoyo a la Mitigación de sus Efectos sobre la Población: Estudio de caso del volcán Sabancaya” [número de contrato PE501079066-2022].
dc.formatapplication/pdf
dc.identifier.citationCenteno, R., Gómez-Salcedo, V., Lazarte, I., Vilca-Nina, J., Osores, S., & Mayhua-Lopez, E. (2024). Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru.==$Journal of Volcanology and Geothermal Research, 451$==. https://doi.org/10.1016/j.jvolgeores.2024.108097
dc.identifier.doihttps://doi.org/10.1016/j.jvolgeores.2024.108097
dc.identifier.govdocindex-oti2018
dc.identifier.journalJournal of Volcanology and Geothermal Research
dc.identifier.urihttp://hdl.handle.net/20.500.12816/5673
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofurn:issn:1872-6097
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectVisual observations
dc.subjectSeismic signals
dc.subjectExplosive activity monitoring
dc.subjectSabancaya volcano
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.05.07
dc.titleNear-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru
dc.typeinfo:eu-repo/semantics/article

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Centeno_et_al_2024_Elsevier.pdf
Size:
16.08 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: