Browsing by Author "Wei, Yong"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Restricted Interplanetary drivers of ionospheric prompt penetration electric fields(Elsevier, 2010-02-10) Guo, Jianpeng; Feng, Xueshang; Zuo, Pingbing; Zhang, Jie; Wei, Yong; Zong, QiugangIn this paper we discussed the penetration effects of common interplanetary magnetic cloud (MC) structures like sheath region, both sheath and magnetic cloud boundary layer (MCBL), MC body, and shock-running into a preceding MC on the equatorial ionosphere during intense (SYM-H ≤−100 nT) geomagnetic storms. Using solar wind data obtained from the ACE and WIND spacecraft, we have identified these four types of MC structures responsible for the electric field penetration events detected by Jicamarca incoherent scatter radar. After elimination of the propagation delay, the observations show that the equatorial electric field (EEF) was changed immediately following the arrival of solar wind disturbance. Moreover, the duration of EEF corresponded well with that of the corresponding MC structure interval. We suggest that identifying the solar wind structures associated with penetration electric field may shed light on the understanding of the penetration processes and further help exploring their effects on the ionospheric plasma.Item Restricted Response of the American equatorial and low‐latitude ionosphere to the X1.5 solar flare on 13 September 2005(American Geophysical Union, 2014-11-25) Xiong, Bo; Wan, Weixing; Zhao, Biqiang; Yu, You; Wei, Yong; Ren, Zhipeng; Liu, JingBased on the coordinated observations by the incoherent scatter radar (ISR), ionosonde, magnetometers, and GPS receivers, the electrodynamic effects on the equatorial and low‐latitude ionosphere have been investigated during the intense solar flare (X1.5/2B) on 13 September 2005. In the initial stage of the flare, the ISR and ionosonde measurements at Jicamarca show the decreases of 10.14 m/s and 20 km in the upward vertical E × B drift velocity and the F2 region peak height, respectively, while equatorial electrojet (EEJ) strength over American sector indicates a sudden increase of 53.7 nT. The decrease of the upward vertical E × B drift velocity reveals the weakening of eastward electric field during the flare, which is firstly and directly observed by instrument. It is well known that the variation of equatorial electric field is mainly attributed to the ionospheric dynamo electric field and partially affected by the penetration of interplanetary electric field. The observations during this flare suggest that the flare‐induced increase of Cowling conductivity changes the ionospheric dynamo electric field and further results in the weakening of eastward electric field and the decrease of the upward vertical E × B drift velocity. Meanwhile, the upward vertical E × B drift velocity and the EEJ strength during the flare are negatively correlated, which is contrary to the knowledge established by Anderson et al. (2002) based on 10 days of observations in the Peruvian longitude sector. The difference may be caused by the flare‐induced enhancement of Cowling conductivity. In addition, GPS total electron content (TEC) observations from six stations in the American equator and low latitudes show an enhancement of 1.47–3.09 TEC units. The measurements of GPS and ISR indicate that the contribution of the enhanced photoionization to the increase of TEC is more than that of electrodynamic effect during the initial stage of the intense flare.Item Restricted Unusually long lasting multiple penetration of interplanetary electric field to equatorial ionosphere under oscillating IMF Bz(American Geophysical Union, 2008-01-17) Wei, Yong; Hong, Minghua; Wan, Weixing; Du, Aimin; Lei, Jiuhou; Zhao, Biqiang; Wang, Wenbin; Ren, Zhipeng; Yue, XinanDuring November 11–16, 2003, the interplanetary magnetic field (IMF) Bz oscillated between northward and southward directions, which suggests discontinuous magnetic reconnection associated with the multiple pulses‐like reconnection electric field. The Jicamarca incoherent scatter radar (ISR) measurements of ionospheric zonal electric field showed similar fluctuations during this period. The high correlation coefficient of 0.71 between the reconnection electric field and equatorial zonal electric field during 125 hours suggests that the interplanetary electric field (IEF) pulsively penetrated into the equatorial ionosphere due to the discontinuous magnetic reconnection. It is implied that the short lifetime (<3 hours) dawn‐dusk IEF pulses can penetrate into ionosphere without shielding, in other words, they may exhibit the “shielding immunity”. The averaged penetration efficiency is about 0.136 and highly local time‐dependent. Furthermore, the intense AU and AL indices imply that the multiple electric field penetration is associated with a “High‐Intensity Long‐Duration Continuous AE Activity (HILDCAA).