Modeling the daytime, equatorial ionospheric ion densities associated with the observed, four‐cell longitude patterns in E × B drift velocities
dc.contributor.author | Araujo-Pradere, Eduardo A. | |
dc.contributor.author | Fang, Tzu Wei | |
dc.contributor.author | Anderson, David N. | |
dc.contributor.author | Fedrizzi, Mariangel | |
dc.contributor.author | Stoneback, Russell | |
dc.date.accessioned | 2018-11-09T11:46:40Z | |
dc.date.available | 2018-11-09T11:46:40Z | |
dc.date.issued | 2012-04-26 | |
dc.description.abstract | Previous studies have quantified the longitude gradients in E × Bdrift associated with the four‐cell tidal structures and have confirmed that these sharp gradients exist on a day‐to‐day basis. For this paper, we incorporate the Ion Velocity Meter (IVM) sensor on the Communications/Navigation Outage Forecasting System satellite to obtain the daytime, verticalE × B drift velocities at the magnetic equator as a function of longitude, local time, and season and to theoretically calculate the F region ion densities as a function of altitude, latitude, longitude, and local time using the Global Ionosphere Plasmasphere model. We compare calculated ion densities assuming no longitude gradients in E × Bdrift velocities with calculated ion densities incorporating the IVM‐observedE × Bdrift at the boundaries of the four‐cell tidal structures in the Peruvian and the Atlantic longitude sectors. Incorporating the IVM‐observedE × B drift velocities, the ion density crests rapidly converge to the magnetic equator between 285 and 300°E geographic longitude, are absent between 300° and 305°, and move away from the magnetic equator between 305° and 340°. In essence, the steeper the longitude gradient in E × B drifts, the steeper the longitude gradient in the equatorial anomaly crest location. | |
dc.description.peer-review | Por pares | |
dc.format | application/pdf | |
dc.identifier.citation | Araujo-Pradere, E. A., Fang, T. W., Anderson, D. N., Fedrizzi, M., & Stoneback, R. (2012). Modeling the daytime, equatorial ionospheric ion densities associated with the observed, four‐cell longitude patterns in E × B drift velocities.==$Radio science, 47$==(4), RS0L12. https://doi.org/10.1029/2011RS004930 | |
dc.identifier.doi | https://doi.org/10.1029/2011RS004930 | |
dc.identifier.journal | Radio science | |
dc.identifier.uri | http://hdl.handle.net/20.500.12816/3488 | |
dc.language.iso | eng | |
dc.publisher | American Geophysical Union | |
dc.relation.ispartof | urn:issn:0048-6604 | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | Equatorial E×B drifts | |
dc.subject | Four‐cell pattern | |
dc.subject | Modeling ion density | |
dc.subject | Forecasting system | |
dc.subject.ocde | http://purl.org/pe-repo/ocde/ford#1.05.01 | |
dc.title | Modeling the daytime, equatorial ionospheric ion densities associated with the observed, four‐cell longitude patterns in E × B drift velocities | |
dc.type | info:eu-repo/semantics/article |