The multi‐instrumented studies of equatorial thermosphere aeronomy scintillation system: Climatology of zonal drifts

dc.contributor.authorValladares, C. E.
dc.contributor.authorSheehan, R.
dc.contributor.authorBasu, S.
dc.contributor.authorKuenzler, H.
dc.contributor.authorEspinoza, J.
dc.date.accessioned2018-06-28T14:45:21Z
dc.date.available2018-06-28T14:45:21Z
dc.date.issued1996-12-01
dc.description.abstractA spaced-antenna scintillation system was installed at Ancon, Peru, in May 1994 to measure scintillation of 250-MHz signals from a geostationary satellite by three antennas spaced in the magnetic east-west direction. These measurements were used to establish the climatology of the zonal drift of the irregularities which cause equatorial scintillations. The major objective of this study is to compare this drift climatology to the climatology of zonal neutral wind which is the driver of the equatorial electrodynamics. A comparison of these two climatologies in conjunction with scintillation statistics may provide some clues regarding factors which help or hinder the formation of equatorial spread-F (ESF). With these objectives in mind, the first year's drift and scintillation statistics have been presented as a function of local time, season and magnetic activity and compared with the statistics of ion drift published earlier from incoherent scatter radar observations. The scintillation drift is in good agreement with the Jicamarca radar observations except for the fact that the local time dependence of our drift observations exhibit a broader maximum. The broad maximum may be attributed to lower ion drag experienced in the presence of ESF due to sustained uplifting of the ionosphere. During magnetically active periods, the scintillation drift often exhibits east to west reversals presumably because of the disturbance dynamo effects. The westward drifts during such reversals may be as large as 100 m/s. We have also modeled the zonal drifts as a seasonal basis by using Hedin's neutral wind model and Anderson's fully analytical ionospheric model. The modeled zonal drifts present good quantitative agreement with the drifts obtained with the scintillation technique.es_ES
dc.description.peer-reviewPor pareses_ES
dc.formatapplication/pdfes_ES
dc.identifier.citationValladares, C. E., Sheehan, R., Basu, S., Kuenzler, H., & Espinoza, J. (1996). The multi‐instrumented studies of equatorial thermosphere aeronomy scintillation system: Climatology of zonal drifts.==$Journal of Geophysical Research: Space Physics, 101$==(A12), 26839-26850. https://doi.org/10.1029/96JA00183es_ES
dc.identifier.doihttps://doi.org/10.1029/96JA00183es_ES
dc.identifier.journalJournal of Geophysical Research: Space Physicses_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12816/1567
dc.language.isoenges_ES
dc.publisherAmerican Geophysical Uniones_ES
dc.relation.ispartofurn:issn:2169-9380
dc.rightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.subjectScintillationes_ES
dc.subjectThermospherees_ES
dc.subjectArtificial satelliteses_ES
dc.subjectWindses_ES
dc.subjectF regiones_ES
dc.subjectIncoherent scattering radares_ES
dc.subjectIonospherees_ES
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#1.05.01es_ES
dc.titleThe multi‐instrumented studies of equatorial thermosphere aeronomy scintillation system: Climatology of zonal driftses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ValladaresJGR101(A12)96.pdf
Size:
1.94 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: