Ionospheric echo detection in digital ionograms using convolutional neural networks

dc.contributor.authorDe la Jara, César
dc.contributor.authorOlivares, C.
dc.date.accessioned2022-02-25T10:52:39Z
dc.date.available2022-02-25T10:52:39Z
dc.date.issued2021-08
dc.description.abstractAn ionogram is a graph of the time that a vertically transmitted wave takes to return to the earth as a function of frequency. Time is typically represented as virtual height, which is the time divided by the speed of light. The ionogram is shaped by making a trace of this height against the frequency of the transmitted wave. Along with the echoes of the ionosphere, ionograms usually contain a large amount of noise and interference of different nature that must be removed in order to extract useful information. In the present work, we propose a method based on convolutional neural networks to extract ionospheric echoes from digital ionograms. Extraction using the CNN model is compared with extraction using machine learning techniques. From the extracted traces, ionospheric parameters can be determined and electron density profile can be derived.
dc.description.peer-reviewPor pares
dc.formatapplication/pdf
dc.identifier.citationDe La Jara, C., & Olivares, C. (2021). Ionospheric echo detection in digital ionograms using convolutional neural networks.==$Radio Science, 56$==(8), e2020RS007258. https://doi.org/10.1029/2020RS007258
dc.identifier.doihttps://doi.org/10.1029/2020RS007258
dc.identifier.govdocindex-oti2018
dc.identifier.journalRadio Science
dc.identifier.urihttp://hdl.handle.net/20.500.12816/5122
dc.language.isoeng
dc.publisherAmerican Geophysical Union
dc.relation.ispartofurn:issn:0048-6604
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectIonograms
dc.subjectAutomatic scaling
dc.subjectIonosphere profiles
dc.subjectDeep learning
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.05.01
dc.titleIonospheric echo detection in digital ionograms using convolutional neural networks
dc.typeinfo:eu-repo/semantics/article

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
De_la_Jara_&_Olivares_2021_Radio-Science.pdf
Size:
5.96 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: