Modeling ionograms with deep neural networks: applications to foF2 forecasting

dc.contributor.authorAricoché, J.
dc.contributor.authorRojas, E.
dc.contributor.authorMilla, Marco
dc.date.accessioned2021-07-09T14:29:01Z
dc.date.available2021-07-09T14:29:01Z
dc.date.issued2021-06
dc.descriptionPoster presented at the 2021 CEDAR Virtual Workshop, June 20-25.
dc.description.abstractThe ionosphere state parameters are of fundamental importance not only for radio communication but also for space weather. As most of the space phenomena, the dynamics are governed by nonlinear processes that make forecasts a challenging endeavor. We now have available enormous datasets and ubiquitous experimental sources that can help us finding the intricate regularities in these phenomena. In this work, we will focus on the forecasting of some parameters of the steady-state low latitude ionosphere. We used ionograms from Jicamarca Radio Observatory digisonde to train two neural networks. We produced forecasts of ionospheric parameters such as virtual heights and foF2 taking into consideration ionogram characteristics. These estimations were compared to the corresponding values obtained from the digisonde, the persistence model, and foF2 values obtained from the International reference ionosphere.es_ES
dc.formatapplication/pdfes_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12816/4965
dc.language.isoenges_ES
dc.publisherInstituto Geofísico del Perúes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/es_ES
dc.subjectIonogramses_ES
dc.subjectNeural networkses_ES
dc.subjectfoF2es_ES
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.05.01es_ES
dc.titleModeling ionograms with deep neural networks: applications to foF2 forecastinges_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Poster_Aricoche_et_al_2021.pdf
Size:
1.25 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections