Exploration of machine learning tools developed for the study of space weather and its impact on position approximation in GNSS systems

dc.contributor.authorFajardo, G.
dc.contributor.authorPacheco, Edgardo E.
dc.date.accessioned2021-07-09T13:11:50Z
dc.date.available2021-07-09T13:11:50Z
dc.date.issued2021-06
dc.descriptionPoster presented at the 2021 CEDAR Virtual Workshop, June 20-25.
dc.description.abstractThe equatorial ionosphere has been extensively studied using purely physical models, however in recent years, with a large amount of data, it has been possible to improve these models using machine learning techniques. In this paper, we share the research results aimed to evaluate the influence of space weather parameters on GPS position approximation. We evaluated data from the Huancayo GPS station between 2016 and 2020 and we have taken into account the space weather data from the OMNI website, scintillation index (S4) and position data obtained from the GPS of the LISN network to perform our model. In addition, we use tropospheric conditions provided by the Geophysical Institute of Peru (IGP). The final result is a reliability matrix obtained with an XG Boost algorithm that will allow us to evaluate if a GPS signal given the conditions is indeed reliable or not.es_ES
dc.formatapplication/pdfes_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12816/4963
dc.language.isoenges_ES
dc.publisherInstituto Geofísico del Perúes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/es_ES
dc.subjectGNSSes_ES
dc.subjectMachine learninges_ES
dc.subjectSpace weatheres_ES
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.05.01es_ES
dc.titleExploration of machine learning tools developed for the study of space weather and its impact on position approximation in GNSS systemses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Poster_Fajardo_&_Pacheco_2021.pdf
Size:
618.6 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections