Arbitrados
Permanent URI for this collection
Browse
Browsing Arbitrados by Subject "Amazon River"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Rainfall control on Amazon sediment flux: synthesis from 20 years of monitoring(IOP Publishing, 2020-05-14) Armijos Cardenas, Elisa Natalia; Crave, A.; Espinoza, Jhan Carlo; Filizola, N.; Espinoza-Villar, R.; Ayes, I.; Fonseca, P.; Fraizy, P.; Gutierrez, O.; Vauchel, P.; Camenen, B.; Martiınez, J. M.; Dos Santos, A.; Santini, W.; Cochonneau, G.; Guyot, J. L.The biodiversity and productivity of the Amazon floodplain depend on nutrients and organic matter transported with suspended sediments. Nevertheless, there are still fundamental unknowns about how hydrological and rainfall variability influence sediment flux in the Amazon River. To address this gap, we analyzed 3069 sediment samples collected every 10 days during 1995–2014 at five gauging stations located in the main rivers. We have two distinct fractions of suspended sediments, fine (clay and silt) and coarse (sand), which followed contrasting seasonal and long-term patterns. By taking these dynamics into account, it was estimated, for first time, in the Amazon plain, that the suspended sediment flux separately measured approximately 60% fine and 40% coarse sediment. We find that the fine suspended sediments flux is linked to rainfall and higher coarse suspended sediment flux is related with discharge. Additionally this work presents the time lag between rainfall and discharge, which is related to the upstream area of the gauging. This result is an important contribution to knowledge of biological and geomorphological issues in Amazon basin.Item Restricted River mixing in the Amazon as a driver of concentration‐discharge relationships(American Geophysical Union (AGU), 2017-11) Bouchez, Julien; Moquet, Jean Sébastien; Espinoza, Jhan Carlo; Martinez, Jean‐Michel; Guyot, Jean‐Loup; Lagane, Christelle; Filizola, Naziano; Noriega, Luis; Hidalgo Sánchez, Liz; Pombosa, RodrigoLarge hydrological systems aggregate compositionally different waters derived from a variety of pathways. In the case of continental‐scale rivers, such aggregation occurs noticeably at confluences between tributaries. Here we explore how such aggregation can affect solute concentration‐discharge (C‐Q) relationships and thus obscure the message carried by these relationships in terms of weathering properties of the Critical Zone. We build up a simple model for tributary mixing to predict the behavior of C‐Q relationships during aggregation. We test a set of predictions made in the context of the largest world's river, the Amazon. In particular, we predict that the C‐Q relationships of the rivers draining heterogeneous catchments should be the most “dilutional” and should display the widest hysteresis loops. To check these predictions, we compute 10 day‐periodicity time series of Q and major solute (Si, Ca²⁺, Mg²⁺, K⁺, Na⁺, Cl‐, urn:x-wiley:00431397:media:wrcr22891:wrcr22891-math-0001) C and fluxes (F) for 13 gauging stations located throughout the Amazon basin. In agreement with the model predictions, C‐Q relationships of most solutes shift from a fairly “chemostatic” behavior (nearly constant C) at the Andean mountain front and in pure lowland areas, to more “dilutional” patterns (negative C‐Q relationship) toward the system mouth. More prominent C‐Q hysteresis loops are also observed at the most downstream stations. Altogether, this study suggests that mixing of water and solutes between different flowpaths exerts a strong control on C‐Q relationships of large‐scale hydrological systems.Item Open Access Suspended sediment variability at the Solimões and Negro confluence between May 2013 and February 2014(MDPI, 2018-07) Marinho, Thiago; Filizola, Naziano; Martinez, Jean-Michel; Armijos Cardenas, Elisa Natalia; Nascimento, AndréThis study focuses on the confluence of two major rivers of the world, the Solimões River (white waters) and Negro River (black waters). Surface suspended sediment samples (SSC) and spectroradiometer taken along transverse profiles at 500 m intervals over a distance of 10 km, as well as satellite images (MODIS) during the hydrological year, were used to follow suspended sediment variability. In January and February, the confluence is dominated by white waters from the Solimões River in the two banks, and in June and July in the right bank by black waters from the Negro River and in the left bank by clear waters from the Solimões River. We found that indirect tools, such as reflectance obtained by spectrometer or MODIS images, can be used to determine surface suspended sediments in a contrasting zone.