Browsing by Author "Martinez, Jean-Michel"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Restricted Climate control on silicate weathering and physical erosion rates in young orogenic belts: Case study along a runoff gradient in Pacific and Amazonian Andean basins based on SNO-HYBAM Monitoring Program data(EGU General Assembly, 2017-04) Moquet, Jean Sébastien; Guyot, Jean-Loup; Viers, Jérôme; Crave, Alain; Morera Julca, Sergio Byron; Rau, Pedro; Armijos Cardenas, Elisa Natalia; Lagane, Christelle; Lavado Casimiro, Waldo Sven; Pombosa, Rodrigo; Fraizy, Pascal; Santini, William; Timouk, Franck; Vauchel, Philippe; Martinez, Jean-MichelAt the global scale and on geological time scales, mechanical erosion and chemical weathering budgets are linked. Together, these processes contribute to the formation and the degradation of the Earth's critical zone and to the biogeochemical cycles of elements. In young orogenic belts, climate and tectonic subsidence control together the rate of these matter balance budget and their relationships. The climate gradient observed along the Andean basin in both the Pacific and the Atlantic slopes offers the opportunity to explore the role of the climate variability on the erosion and weathering budgets and on their reciprocal relationships. Based on the SNO-HYBAM Monitoring Program database (Geodynamical, hydrological and Biogeochemical control of erosion/weathering and material transport in the Amazon, Orinoco and Congo basins), we explore the relationship between climate, the lithology, silicate weathering rates and physical erosion rates along a runoff gradient in Andean basins of the Amazon River (13 gauging stations) and Pacific drainage rivers (5 gauging stations). No homogenous relationship between erosion rates (E) and chemical weathering rate (W) is observed over the monitored basins. Only the volcanic basins respond to a global relationship defined in the literature while the other basins budget may depend on anthropogenic interferences on erosion/sedimentation budget, a lithology dependence of the W-E relationship parameters or/and on the existence of a threshold in this relationship. The results presented here contribute to better understanding the role of mountains belt formation in the biogeochemical cycles and in particular in the long-term carbon cycle.Your presentation type preference.Item Open Access Decline of fine suspended sediments in the Madeira River Basin (2003–2017)(MDPI, 2019-03-12) Ayes Rivera, Irma; Armijos Cardenas, Elisa Natalia; Espinoza Villar, Raúl Arnaldo; Espinoza, Jhan Carlo; Molina-Carpio, Jorge; Max Ayala, José; Gutierrez Cori, Omar; Martinez, Jean-Michel; Filizola, NazianoThe Madeira River is the second largest Amazon tributary, contributing up to 50% of the Amazon River’s sediment load. The Madeira has significant hydropower potential, which has started to be used by the Madeira Hydroelectric Complex (MHC), with two large dams along the middle stretch of the river. In this study, fine suspended sediment concentration (FSC) data were assessed downstream of the MHC at the Porto Velho gauging station and at the outlet of each tributary (Beni and Mamoré Rivers, upstream from the MHC), from 2003 to 2017. When comparing the pre-MHC (2003–2008) and post-MHC (2015–2017) periods, a 36% decrease in FSC was observed in the Beni River during the peak months of sediment load (December–March). At Porto Velho, a reduction of 30% was found, which responds to the Upper Madeira Basin and hydroelectric regulation. Concerning water discharge, no significant change occurred, indicating that a lower peak FSC cannot be explained by changes in the peak discharge months. However, lower FSCs are associated with a downward break in the overall time series registered at the outlet of the major sediment supplier—the Beni River—during 2010.Item Open Access Discharge simulation in the sub-basins of the Amazon using ORCHIDEE forced by new datasets(European Geosciences Union (EGU), 2012-03-22) Guimberteau, Matthieu; Drapeau, Guillaume; Ronchail, Josyane; Sultan, Benjamin; Polcher, Jan; Martinez, Jean-Michel; Prigent, Catherine; Guyot, Jean-Loup; Cochonneau, Gérard; Espinoza, Jhan Carlo; Filizola, N.; Fraizy, P.; Lavado, W.; De Oliveira, E.; Pombosa, R.; Noriega, L.; Vauchel, P.The aim of this study is to evaluate the ability of the ORCHIDEE land surface model to simulate streamflows over each sub-basin of the Amazon River basin. For this purpose, simulations are performed with a routing module including the influence of floodplains and swamps on river discharge and validated against on-site hydrological measurements collected within the HYBAM observatory over the 1980–2000 period. When forced by the NCC global meteorological dataset, the initial version of ORCHIDEE shows discrepancies with ORE HYBAM measurements with underestimation by 15 % of the annual mean streamflow at Obidos hydrological station. Consequently, several improvements are incrementally added to the initial simulation in order to reduce those discrepancies. First, values of NCC precipitation are substituted by ORE HYBAM daily in-situ rainfall observations from the meteorological services of Amazonian countries, interpolated over the basin. It highly improves the simulated streamflow over the northern and western parts of the basin, whereas streamflow over southern regions becomes overestimated, probably due to the extension of rainy spots that may be exaggerated by our interpolation method, or to an underestimation of simulated evapotranspiration when compared to flux tower measurements. Second, the initial map of maximal fractions of floodplains and swamps which largely underestimates floodplains areas over the main stem of the Amazon River and over the region of Llanos de Moxos in Bolivia, is substituted by a new one with a better agreement with different estimates over the basin. Simulated monthly water height is consequently better represented in ORCHIDEE when compared to Topex/Poseidon measurements over the main stem of the Amazon. Finally, a calibration of the time constant of the floodplain reservoir is performed to adjust the mean simulated seasonal peak flow at Obidos in agreement with the observations.Item Open Access Hydrologie et production agricole dans le nord-ouest de l'Amazonie(Bulletin de l’association de géographes français, 2016-09) Ronchail, Josyane; Schor, Tatiana; Espinoza, Jhan Carlo; Sabot, Manon; Pinheiro, Heitor; Filizola, Naziano; Gomez, Percy; Drapeau, Guillaume; Michot, Véronique; Guyot, Jean-Loups; Martinez, Jean-Michel; Sultan, BenjamínEn « Amazonie des rivières », la période de basses eaux permet la mise en culture de vastes zones exondées et fertiles sur les berges des rivières et dans les plaines d'inondation. La variabilité des extrêmes hydrologiques et celle de la structure du cycle de décrue, facteurs réputés importants pour la qualité des récoltes sont explorés à la station fluviométrique de Tamshiyacu sur le fleuve Amazonas. Le riz, culture rentable dans cette région, est notre référence. Les résultats ne présentent pas les liens supposés entre résultats agricoles et durée de la saison de basses eaux ou vitesse de remontée des eaux. Néanmoins, ils montrent la baisse des étiages, l'allongement de la durée de décrue en relation avec un retard de la montée des eaux et une accélération de la remontée des faux pendant la période 1985-2015.Item Restricted Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images(Remote Sensing, 2019-02-05) Condé, Rita de Cássia; Martinez, Jean-Michel; Pessotto, Marco Aurélio; Espinoza Villar, Raúl Arnaldo; Cochonneau, Gérard; Henry, Raoul; Lopes, Walszon; Nogueira, MarcosIn this study, we used moderate resolution imaging spectroradiometer (MODIS) satellite images to quantify the sedimentation processes in a cascade of six hydropower dams along a 700-km transect in the Paranapanema River in Brazil. Turbidity field measurement acquired over 10 years were used to calibrate a turbidity retrieval algorithm based on MODIS surface reflectance products. An independent field dataset was used to validate the remote sensing estimates showing fine accuracy (RMSE of 9.5 NTU, r = 0.75, N = 138). By processing 13 years of MODIS images since 2000, we showed that satellite data can provide robust turbidity monitoring over the entire transect and can identify extreme sediment discharge events occurring on daily to annual scales. We retrieved the decrease in the water turbidity as a function of distance within each reservoir that is related to sedimentation processes. The remote sensing-retrieved turbidity decrease within the reservoirs ranged from 2 to 62% making possible to infer the reservoir type and operation (storage versus run-of-river reservoirs). The reduction in turbidity assessed from space presented a good relationship with conventional sediment trapping efficiency calculations, demonstrating the potential use of this technology for monitoring the intensity of sedimentation processes within reservoirs and at large scale.Item Open Access Suspended sediment variability at the Solimões and Negro confluence between May 2013 and February 2014(MDPI, 2018-07) Marinho, Thiago; Filizola, Naziano; Martinez, Jean-Michel; Armijos Cardenas, Elisa Natalia; Nascimento, AndréThis study focuses on the confluence of two major rivers of the world, the Solimões River (white waters) and Negro River (black waters). Surface suspended sediment samples (SSC) and spectroradiometer taken along transverse profiles at 500 m intervals over a distance of 10 km, as well as satellite images (MODIS) during the hydrological year, were used to follow suspended sediment variability. In January and February, the confluence is dominated by white waters from the Solimões River in the two banks, and in June and July in the right bank by black waters from the Negro River and in the left bank by clear waters from the Solimões River. We found that indirect tools, such as reflectance obtained by spectrometer or MODIS images, can be used to determine surface suspended sediments in a contrasting zone.Item Restricted Temporal variability and annual budget of inorganic dissolved matter in Andean Pacific Rivers located along a climate gradient from northern Ecuador to southern Peru(Elsevier, 2018) Moquet, Jean Sébastien; Guyot, Jean-Loup; Morera Julca, Sergio Byron; Crave, Alain; Rau, Pedro; Vauchel, Philippe; Lagane, Christelle; Sondag, Francis; Lavado, Casimiro Waldo; Pombosa, Rodrigo; Martinez, Jean-MichelIn Ecuador and Peru, geochemical information from Pacific coastal rivers is limited and scarce. Here, we present an unedited database of major element concentrations from five HYBAM observatory stations monitored monthly between 4 and 10 years, and the discrete sampling of 23 Andean rivers distributed along the climate gradient of the Ecuadorian and Peruvian Pacific coasts. Concentration (C) vs. discharge (Q) relationships of the five monitored basins exhibit a clear dilution behavior for evaporites and/or pyrite solutes, while the solute concentrations delivered by other endmembers are less variable. Spatially, the annual specific fluxes for total dissolved solids (TDS), Ca²⁺, HCO₃, K+, Mg²⁺, and SiO₂ are controlled on the first order by runoff variability, while Cl, Na⁺ and SO₄² are controlled by the occurrence of evaporites and/or pyrite. The entire Pacific basin in Ecuador and Peru exported 30 Mt TDS·yr ¹, according to a specific flux of ∼70 t·km ²·yr ¹. This show that, even under low rainfall conditions, this orogenic context is more active, in terms of solute production, than the global average.