Browsing by Author "Liu, J. Y."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Restricted Digisonde spread F and GPS phase fluctuations in the equatorial ionosphere during solar maximum(American Geophysical Union, 2006-12-06) Chen, W. S.; Lee, C. C.; Liu, J. Y.; Chu, F. D.; Reinisch, B. W.The Jicamarca (11.95°S, 76.87°W) digisonde and the Arequipa (16.47°S, 71.49°W) GPS receiver observed the equatorial F region irregularities on the western South America from April 1999 to March 2000. The spread F measured by the digisonde were classified into four types, and the GPS phase fluctuations derived from the temporal variation of total electron content were divided into three levels to represent the irregularity strength. The observation shows that the occurrences of all four types of spread F are higher in the D months (January, February, November, and December) than in the E months (March, April, September, and October). For the GPS phase fluctuations, both seasonal and nighttime variations show that the occurrences of strong level irregularities are higher than moderate level irregularities in the E months, but the situation is reversed in the D months. Moreover, the occurrence sequences of four types of spread F and three levels of GPS phase fluctuations all can be explained by the E × B drift variations and the generalized Rayleigh‐Taylor instability. For the comparisons between the GPS phase fluctuations and the digisonde spread F/plasma bubbles, results show that the GPS phase fluctuations can represent the appearances of the digisonde spread F, and the strong level of GPS phase fluctuations are associated with the occurrence of topside plasma bubbles. These results imply that the greater GPS phase fluctuation is related to the larger altitudinal range distribution of irregularities.Item Restricted Electron density profiles in the equatorial ionosphere observed by the FORMOSAT-3/COSMIC and a digisonde at Jicamarca(Springer, 2009-11-26) Liu, J. Y.; Lee, C. C.; Yang, J. Y.; Chen, C. Y.; Reinisch, B. W.We examine for the first time the ionospheric electron density profiles concurrently observed by the GPS occultation experiment (GOX) onboard the FORMOSAT-3/COSMIC (F3/C) and the ground-based digisonde portable sounder DPS-4 at Jicamarca (12°S, 283°W, 1°N geomagnetic) in 2007. Our results show that the F3/C generally underestimates the F2-peak electron density NmF2 and the F2-peak height hmF2. On the other hand, when the equatorial ionization anomaly (EIA) pronouncedly appears during daytime, the total electron content (TEC) derived from the radio occultation of the GPS signal recorded by the F3/C GOX is significantly enhanced. This results in the NmF2 at Jicamarca being overestimated by the Abel inversion on the enhanced TEC during the afternoon period.Item Restricted The effects of the pre-reversal drift, the EIA asymmetry, and magnetic activity on the equatorial spread F during solar maximum(European Geosciences Union, 2005-03-30) Lee, C. C.; Liu, J. Y.; Reinisch, B. W.; Chen, W. S.; Chu, F. D.We use a digisonde at Jicamarca and a chain of GPS receivers on the west side of South America to investigate the effects of the pre-reversal enhancement (PRE) in ExB drift, the asymmetry (Ia) of equatorial ionization anomaly (EIA), and the magnetic activity (Kp) on the generation of equatorial spread F (ESF). Results show that the ESF appears frequently in summer (November, December, January, and February) and equinoctial (March, April, September, and October) months, but rarely in winter (May, June, July, and August) months. The seasonal variation in the ESF is associated with those in the PRE ExB drift and Ia. The larger ExB drift (>20m/s) and smaller |Ia| (<0.3) in summer and equinoctial months provide a preferable condition to development the ESF. Conversely, the smaller ExB drift and larger |Ia| are responsible for the lower ESF occurrence in winter months. Regarding the effects of magnetic activity, the ESF occurrence decreases with increasing Kp in the equinoctial and winter months, but not in the summer months. Furthermore, the larger and smaller ExB drifts are presented under the quiet (Kp<3) and disturbed (Kp≥3) conditions, respectively. These results indicate that the suppression in ESF and the decrease in ExB drifts are mainly caused by the decrease in the eastward electric field.