Browsing by Author "Lavado, Waldo"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Restricted Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands?(Springer Link, 2019) Laqui, Wilber; Zubieta Barragán, Ricardo; Rau, Pedro; Mejía, Abel; Lavado, Waldo; Ingol, EusebioEvapotranspiration (ETo) is one of the most important variables of the water cycle when water requirements for irrigation, water resource planning or hydrological applications are analyzed. In this context, models based on artificial neural networks (ANN) of the retro-propagation type can be an alternative method to estimate ETo in highland regions using a number of input variables limited. The objective of this study is to develop ANN models to estimate ETo for the Peruvian highlands using input variables such as maximum air temperature (Tmax), minimum air temperature (Tmin), hours of sunshine (Sh), relative humidity (Rh) and wind speed (Wv), as an alternative method to FAO Penman–Monteith method (FAO-PM56) and Hargreaves–Samani (HS). Daily climatic datasets recorded at 12 meteorological stations between 1963 and 2015 were selected in this study. For evaluation reason, the ETo calculated using the FAO-PM56 was also considered. The main input variable to ANN modeling is Tmax, followed by Sh and Wv or combinations between them. Hargreaves–Samani (HS) showed a poor performance in the estimation of the ETo in the Peruvian highlands compared to the 13 ANN models. Additionally, it was determined that in stations with lower thermal amplitude (< 14.2 °C) the lowest performance levels are presented in the estimation of the ETo with HS equation, which does not occur markedly with the ANN models that they estimate adequately ETo. Therefore, ANN models represent a great option to replace the FAO-PM56 and HS method, when ETo data series are scarce.Item Restricted Climate variability and extreme drought in the upper Solimões River (western Amazon Basin): understanding the exceptional 2010 drought(American Geophysical Union (AGU), 2011-07) Espinoza, Jhan Carlo; Ronchail, Josyane; Guyot, Jean Loup; Junquas, Clémentine; Vauchel, Philippe; Lavado, Waldo; Drapeau, Guillaume; Pombosa, RodrigoThis work provides an initial overview of climate features and their related hydrological impacts during the recent extreme droughts (1995, 1998, 2005 and 2010) in the upper Solimões River (western Amazon), using comprehensive in situ discharge and rainfall datasets. The droughts are generally associated with positive SST anomalies in the tropical North Atlantic and weak trade winds and water vapor transport toward the upper Solimões, which, in association with increased subsidence over central and southern Amazon, explain the lack of rainfall and very low discharge values. But in 1998, toward the end of the 1997–98 El Niño event, the drought is more likely related to an anomalous divergence of water vapor in the western Amazon that is characteristic of a warm event in the Pacific. During the austral spring and winter of 2010, the most severe drought since the seventies has been registered in the upper Solimões. Its intensity and its length, when compared to the 2005 drought, can be explained by the addition of an El Niño in austral summer and a very warm episode in the Atlantic in boreal spring and summer. As in 2005, the lack of water in 2010 was more important in the southern tropical tributaries of the upper Solimões than in the northern ones.Item Open Access From drought to flooding: understanding the abrupt 2010-11 hydrological annual cycle in the Amazonas River and tributaries(IOP Publishing, 2012-04-19) Espinoza, Jhan Carlo; Ronchail, Josyane; Guyot, Jean-Loup; Junquas, Clémentine; Drapeau, Guillaume; Martínez, Jean-Michel; Santini, William; Vauchel, Philippe; Lavado, Waldo; Ordoñez, Julio; Espinoza Villar, Raúl ArnaldoIn this work we document and analyze the hydrological annual cycles characterized by a rapid transition between low and high flows in the Amazonas River (Peruvian Amazon) and we show how these events, which may impact vulnerable riverside residents, are related to regional climate variability. Our analysis is based on comprehensive discharge, rainfall and average suspended sediment data sets. Particular attention is paid to the 2010–11 hydrological year, when an unprecedented abrupt transition from the extreme September 2010 drought (8300 m³ s⁻¹) to one of the four highest discharges in April 2011 (49 500 m³ s⁻¹) was recorded at Tamshiyacu (Amazonas River). This unusual transition is also observed in average suspended sediments. Years with a rapid increase in discharge are characterized by negative sea surface temperature anomalies in the central equatorial Pacific during austral summer, corresponding to a La Niña-like mode. It originates a geopotential height wave train over the subtropical South Pacific and southeastern South America, with a negative anomaly along the southern Amazon and the southeastern South Atlantic convergence zone region. As a consequence, the monsoon flux is retained over the Amazon and a strong convergence of humidity occurs in the Peruvian Amazon basin, favoring high rainfall and discharge. These features are also reported during the 2010–11 austral summer, when an intense La Niña event characterized the equatorial Pacific.Item Restricted Impacts of satellite-based precipitation datasets on rainfall-runoff modeling of the Western Amazon basin of Peru and Ecuador(Elsevier, 2015-09) Zubieta Barragán, Ricardo; Getirana, Augusto; Espinoza, Jhan Carlo; Lavado, WaldoSatellites are an alternative source of rainfall data used as input to hydrological models in poorly gauged or ungauged regions. They are also useful in regions with highly heterogeneous precipitation, such as the tropical Andes. This paper evaluates three satellite precipitation datasets (TMPA, CMORPH, PERSIANN), as well as a dataset based only on rain gauge data (HYBAM), and their impacts on the water balance of the Western Amazon basin, a region where hydrological modeling and hydrological forecasting are poorly developed. These datasets were used as inputs in the MGB-IPH hydrological model to simulate streamflows for the 2003–2009 period. The impacts of precipitation on model parameterization and outputs were evaluated in two calibration experiments. In Experiment 1, parameter sets were separately defined for each catchment; in Experiment 2, a single parameter set was defined for the entire basin. TMPA shows overestimated precipitation over the northern region, while CMORPH and PERSIANN significantly underestimate rainfall in the same that region and along the Andes. TMPA and CMORPH lead to similar estimates of mean evapotranspiration (∼2 mm/day) for different regions along the entire basin, while PERSIANN is the least accurate (∼0.5 mm/day). Overall, better scores for streamflow simulations are obtained with Experiment 1 forced by HYBAM and TMPA. Nevertheless, results using the three satellite datasets indicate inter-basin differences, low performance in the northern and high in the southern regions. Low model performances are mainly related to scale issues and forcing errors in small basins over regions that present very low rainfall seasonality.Item Open Access Modelación hidrológica de la cuenca del río Ilave a partir de datos de precipitación observada y de satélite, periodo 2011-2015, Puno, Perú(Instituto Mexicano de Tecnología del Agua, 2018-12-11) Zubieta Barragán, Ricardo; Laqui, Wilber; Lavado, WaldoLos datos obtenidos mediante satélites acerca de la precipitación pueden ser útiles en regiones donde ésta es muy heterogénea, como, por ejemplo, en los Andes, pues por lo general son escasamente monitoreadas. El objetivo de este estudio es precisar las características de las principales variables hidrológicas, y comprender el potencial de datos de precipitación estimados a partir del satélite en modelación hidrológica. Este artículo evalúa datos de precipitación obtenidos a partir de pluviómetros y satélites (productos TMPA V7, TMPA RT del satélite TRMM), como entrada al modelo hidrológico agregado GR2M, para simulación de caudales mensuales, en el periodo 2011-2015, en la cuenca del río Ilave, en el Altiplano peruano. Los resultados mostraron un claro déficit hídrico de caudales debido a la disminución de las precipitaciones en el periodo de avenidas (~ 50%); además de un aumento de la evapotranspiración en el periodo de estiaje (~ 24%). Los resultados del análisis de datos de precipitación también indicaron que los TMPA V7 presentan mayor similitud que TMPA RT, con respecto a la precipitación observada en el periodo de avenidas. Del mismo modo, los resultados de modelación hidrológica con GR2M indicaron un mayor rendimiento a partir de la lluvia observada (pluviómetros) y TMPA V7, los cuales presentan una mayor similitud con caudales observados; a diferencia de los TMPA RT, es posible que los inconvenientes en el rendimiento se debieran a una inadecuada lluvia en el balance hídrico.Item Open Access Rainfall hotspots over the southern tropical Andes: spatial distribution, rainfall intensity, and relations with large‐scale atmospheric circulation(American Geophysical Union (AGU), 2015-05) Espinoza, Jhan Carlo; Chávez Jara, Steven Paul; Ronchail, Josyane; Junquas, Clémentine; Takahashi, Ken; Lavado, WaldoThe Andes/Amazon transition is among the rainiest regions of the world and the interactions between large‐scale circulation and the topography that determine its complex rainfall distribution remain poorly known. This work provides an in‐depth analysis of the spatial distribution, variability, and intensity of rainfall in the southern Andes/Amazon transition, at seasonal and intraseasonal time scales. The analysis is based on comprehensive daily rainfall data sets from meteorological stations in Peru and Bolivia. We compare our results with high‐resolution rainfall TRMM‐PR 2A25 estimations. Hotspot regions are identified at low elevations in the Andean foothills (400–700 masl) and in windward conditions at Quincemil and Chipiriri, where more than 4000 mm rainfall per year are recorded. Orographic effects and exposure to easterly winds produce a strong annual rainfall gradient between the lowlands and the Andes that can reach 190 mm/km. Although TRMM‐PR reproduces the spatial distribution satisfactorily, it underestimates rainfall by 35% in the hotspot regions. In the Peruvian hotspot, exceptional rainfall occurs during the austral dry season (around 1000 mm in June–July–August; JJA), but not in the Bolivian hotspot. The direction of the low‐level winds over the Andean foothills partly explains this difference in the seasonal rainfall cycle. At intraseasonal scales in JJA, we found that, during northerly wind regimes, positive rainfall anomalies predominate over the lowland and the eastern flank of the Andes, whereas less rain falls at higher altitudes. On the other hand, during southerly regimes, rainfall anomalies are negative in the hotspot regions. The influence of cross‐equatorial winds is particularly clear below 2000 masl.Item Open Access Sediment budget in the Ucayali river basin, an Andean tributary of the Amazon river(Copernicus Publications, 2015-03-03) Santini, William; Martínez, Jean-Michel; Espinoza Villar, Raúl Arnaldo; Cochonneau, Gerard; Vauchel, Philippe; Moquet, Jean Sébastien; Baby, Patrice; Espinoza, Jhan Carlo; Lavado, Waldo; Carranza, Jorge; Guyot, Jean-LoupFormation of mountain ranges results from complex coupling between lithospheric deformation, mechanisms linked to subduction and surface processes: weathering, erosion, and climate. Today, erosion of the eastern Andean cordillera and sub-Andean foothills supplies over 99% of the sediment load passing through the Amazon Basin. Denudation rates in the upper Ucayali basin are rapid, favoured by a marked seasonality in this region and extreme precipitation cells above sedimentary strata, uplifted during Neogene times by a still active sub-Andean tectonic thrust. Around 40% of those sediments are trapped in the Ucayali retro-foreland basin system. Recent advances in remote sensing for Amazonian large rivers now allow us to complete the ground hydrological data. In this work, we propose a first estimation of the erosion and sedimentation budget of the Ucayali River catchment, based on spatial and conventional HYBAM Observatory network.Item Restricted Spatio‐temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador)(Royal Meteorological Society, 2008-09) Espinoza, Jhan Carlo; Ronchail, Josyane; Guyot, Jean Loup; Cochonneau, Gerard; Naziano, Filizola; Lavado, Waldo; De Oliveira, Eurides; Pombosa, Rodrigo; Vauchel, PhilippeRainfall variability in the Amazon basin (AB) is analysed for the 1964–2003 period. It is based on 756 pluviometric stations distributed throughout the AB countries. For the first time it includes data from Bolivia, Peru, Ecuador, and Colombia. In particular, the recent availability of rainfall data from the Andean countries makes it possible to complete previous studies. The impact of mountain ranges on rainfall is pointed out. The highest rainfall in the AB is observed in low windward regions, and low rainfall is measured in leeward and elevated stations. Additionally, rainfall regimes are more diversified in the Andean regions than in the lowlands. Rainfall spatio‐temporal variability is studied based on a varimax‐rotated principal component analysis (PCA). Long‐term variability with a decreasing rainfall since the 1980s prevails in June–July–August (JJA) and September October–November (SON). During the rainiest seasons, i.e. December–January–February (DJF) and March–April–May (MAM), the main variability is at decadal and interannual time scales. Interdecadal variability is related to long‐term changes in the Pacific Ocean, whereas decadal variability, opposing the northwest and the south of the AB, is associated with changes in the strength of the low‐level jet (LLJ) along the Andes. Interannual variability characterizes more specifically the northeast of the basin and the southern tropical Andes. It is related to El Niño‐Southern Oscillation (ENSO) and to the sea surface temperature (SST) gradient over the tropical Atlantic. Mean rainfall in the basin decreases during the 1975–2003 period at an annual rate estimated to be − 0.32%. Break tests show that this decrease has been particularly important since 1982. Further insights into this phenomenon will permit to identify the impact of climate on the hydrology of the AB. Copyright © 2008 Royal Meteorological Society.Item Restricted The major floods in the Amazonas River and tributaries (Western Amazon Basin) during the 1970-2012 period: a focus on the 2012 flood(American Meteorological Society, 2013-06) Espinoza, Jhan Carlo; Ronchail, Josyane; Frappart, Frédéric; Lavado, Waldo; Santini, William; Guyot, Jean LoupIn this work, the authors analyze the origin of the extreme floods in the Peruvian Amazonas River during the 1970-2012 period, focusing on the recent April 2012 flooding (55 400 m(³) s(⁻¹)). Several hydrological variables, such as rainfall, terrestrial water storage, and discharge, point out that the unprecedented 2012 flood is mainly related to an early and abundant wet season over the north of the basin. Thus, the peak of the Maranon River, the northern contributor of the Amazonas, occurred sooner than usual (in April instead of May), coinciding with the peak of the Ucayali River, the southern contributor. This concomitance caused a dramatic flood downstream in the Peruvian Amazonas. These results are compared to the amplitude and timing of the three most severe extreme floods (1970-2011). The analysis of the climatic features related to the most important floods (1986, 1993, 1999, and 2012) suggests that they are characterized by a La Nina event, which originates a geopotential height wave train near the ground, with positive anomalies over the subtropical South and North Pacific and Atlantic and over southeastern South America. These patterns contribute to 1) the origin of an abundant humidity transport flux from the tropical North Atlantic and the Caribbean Sea toward the northwestern Amazon and 2) the maintenance of the monsoon flux over this region. They both favor a strong convergence of humidity in the northern Amazonas basin. Finally, the authors suggest that the intensity of floods is more likely related to an early La Nina event (as observed during the 2011/12 season), early rainfall, and simultaneous peaks of both tributaries of the Amazonas River.