Browsing by Author "Kuenzler, H."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Equatorial scintillation and systems support(American Geophysical Union, 1997-09) Groves, K. M.; Basu, S.; Weber, E. J.; Smitham, M.; Kuenzler, H.; Valladares, C. E.; Sheehan, R.; MacKenzie, E.; Secan, J. A.; Ning, P.; McNeill, W. J.; Moonan, D. W.; Kendra, M. J.The need to nowcast and forecast scintillation for the support of operational systems has been recently identified by the interagency National Space Weather Program. This issue is addressed in the present paper in the context of nighttime irregularities in the equatorial ionosphere that cause intense amplitude and phase scintillations of satellite signals in the VHF/UHF range of frequencies and impact satellite communication, Global Positioning System navigation, and radar systems. Multistation and multifrequency satellite scintillation observations have been used to show that even though equatorial scintillations vary in accordance with the solar cycle, the extreme day-to-day variability of unknown origin modulates the scintillation occurrence during all phases of the solar cycle. It is shown that although equatorial scintillation events often show correlation with magnetic activity, the major component of scintillation is observed during magnetically quiet periods. In view of the day-to-day variability of the occurrence and intensity of scintillating regions, their latitude extent, and their zonal motion, a regional specification and short-term forecast system based on real-time measurements has been developed. This system, named the Scintillation Network Decision Aid, consists of two latitudinally dispersed stations, each of which uses spaced antenna scintillation receiving systems to monitor 250-MHz transmissions from two longitudinally separated geostationary satellites. The scintillation index and zonal irregularity drift are processed on-line and are retrieved by a remote operator on the Internet. At the operator terminal the data are combined with an empirical plasma bubble model to generate three-dimensional maps of irregularity structures and two-dimensional outage maps for the region.Item Restricted The multi‐instrumented studies of equatorial thermosphere aeronomy scintillation system: Climatology of zonal drifts(American Geophysical Union, 1996-12-01) Valladares, C. E.; Sheehan, R.; Basu, S.; Kuenzler, H.; Espinoza, J.A spaced-antenna scintillation system was installed at Ancon, Peru, in May 1994 to measure scintillation of 250-MHz signals from a geostationary satellite by three antennas spaced in the magnetic east-west direction. These measurements were used to establish the climatology of the zonal drift of the irregularities which cause equatorial scintillations. The major objective of this study is to compare this drift climatology to the climatology of zonal neutral wind which is the driver of the equatorial electrodynamics. A comparison of these two climatologies in conjunction with scintillation statistics may provide some clues regarding factors which help or hinder the formation of equatorial spread-F (ESF). With these objectives in mind, the first year's drift and scintillation statistics have been presented as a function of local time, season and magnetic activity and compared with the statistics of ion drift published earlier from incoherent scatter radar observations. The scintillation drift is in good agreement with the Jicamarca radar observations except for the fact that the local time dependence of our drift observations exhibit a broader maximum. The broad maximum may be attributed to lower ion drag experienced in the presence of ESF due to sustained uplifting of the ionosphere. During magnetically active periods, the scintillation drift often exhibits east to west reversals presumably because of the disturbance dynamo effects. The westward drifts during such reversals may be as large as 100 m/s. We have also modeled the zonal drifts as a seasonal basis by using Hedin's neutral wind model and Anderson's fully analytical ionospheric model. The modeled zonal drifts present good quantitative agreement with the drifts obtained with the scintillation technique.