Browsing by Author "Hui, Debrup"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Contribution of storm time substorms to the prompt electric field disturbances in the equatorial ionosphere(American Geophysical Union, 2017-04-18) Hui, Debrup; Chakrabarty, D.; Sekar, R.; Reeves, G. D.; Yoshikawa, A.; Shiokawa, K.This study tries to bring out the fact that storm time substorms can compete and at times significantly contribute to the geomagnetically disturbed time prompt penetration electric field effects on low and equatorial latitudes. Observations of unusual equatorial plasma drift data from Jicamarca Unattended Long‐term Investigations of the Ionosphere and Atmosphere during two space weather events show that substorms can induce both eastward and westward penetration electric fields under steady southward interplanetary magnetic field (IMF Bz) conditions. During the first event on 2 January 2005, the enhancement of the daytime eastward electric field over Jicamarca due to substorm is found to be comparable with the Sq and interplanetary electric field (IEFy) generated electric fields combined. During the second event on 19 August 2006, the substorm is seen to weaken the daytime eastward field thereby inducing a westward field in spite of the absence of northward turning of IMF Bz (overshielding). The westward electric field perturbation in the absence of any overshielding events is observationally sparse and contrary to the earlier results. Further, the substorm‐induced field is found to be strong enough to compete or almost nullify the effects of storm time IEFy fields. This study also shows quantitatively that at times substorm contribution to the disturbed time prompt electric fields can be significant and thus should be taken into consideration in evaluating penetration events over low latitudes.Item Restricted Daytime plasma drifts in the equatorial lower ionosphere(American Geophysical Union, 2015-10-19) Hui, Debrup; Fejer, Bela G.We have used extensive radar measurements from the Jicamarca Observatory during low solar flux periods to study the quiet time variability and altitudinal dependence of equatorial daytime vertical and zonal plasma drifts. The daytime vertical drifts are upward and have largest values during September–October. The day‐to‐day variability of these drifts does not change with height between 150 and 600 km, but the bimonthly variability is much larger in the F region than below about 200 km. These drifts vary linearly with height generally increasing in the morning and decreasing in the afternoon. The zonal drifts are westward during the day and have largest values during July–October. The 150 km region zonal drifts have much larger day‐to‐day, but much smaller bimonthly variability than the F region drifts. The daytime zonal drifts strongly increase with height up to about 300 km from March through October, and more weakly at higher altitudes. The December solstice zonal drifts have generally weaker altitudinal dependence, except perhaps below 200 km. Current theoretical and general circulation models do not reproduce the observed altitudinal variation of the daytime equatorial zonal drifts.Item Restricted Role of IMF By in the prompt electric field disturbances over equatorial ionosphere during a space weather event(American Geophysical Union, 2017-02-04) Chakrabarty, D.; Hui, Debrup; Rout, Diptiranjan; Sekar, R.; Bhattacharyya, Archana; Reeves, G. D.; Ruohoniemi, J. M.On 7 January 2005 (Ap=40) prompt penetration electric field perturbations of opposite polarities were observed over Thumba and Jicamarca on a few occasions during 13:45–16:30 UT. However, the electric field was found to be eastward during 14:45–15:30 UT over both Thumba and Jicamarca contrary to the general expectation wherein opposite polarities are expected at nearly antipodal points. On closer scrutiny, three important observational features are noticed during 14:10–15:15 UT. First, during 14:10–14:45 UT, despite increasing southward interplanetary magnetic field (IMF) Bz condition, the already westward electric field over Thumba weakened (less westward) while the eastward electric field over Jicamarca intensified (more eastward). Second, the electric field not only became anomalously eastward over Thumba but also got intensified further during 14:45–15:00 UT similar to Jicamarca. Third, during 15:00–15:15 UT, despite IMF Bz remaining steadily southward, the eastward electric field continued to intensify over Thumba but weakened over Jicamarca. It is suggested that the changes in IMF By component under southward IMF Bz condition are responsible for skewing the ionospheric equipotential patterns over the dip equator in such a way that Thumba came into the same DP2 cell as that of Jicamarca leading to anomalous electric field variations. Magnetic field measurements along the Indian and Jicamarca longitude sectors and changes in high‐latitude ionospheric convection patterns provide credence to this proposition. Thus, the present investigation shows that the variations in IMF By are fundamentally important to understand the prompt penetration effects over low latitudes.