Browsing by Author "Caudron, Corentin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Restricted Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures(American Association for the Advancement of Science, 2020-09-11) Lecocq, Thomas; Hicks, Stephen P.; Van Noten, Koen; Van Wijk, Kasper; Koelemeijer, Paula; De Plaen, Raphael S. M.; Massin, Frédérick; Hillers, Gregor; Anthony, Robert E.; Apoloner, Maria-Theresia; Arroyo-Solórzano, Mario; Assink, Jelle D.; Büyükakpınar, Pinar; Cannata, Andrea; Cannavo, Flavio; Carrasco, Sebastian; Caudron, Corentin; Chaves, Esteban J.; Cornwell, David G.; Craig, David; Den Ouden, Olivier F. C.; Diaz, Jordi; Donner, Stefanie; Evangelidis, Christos P.; Evers, Läslo; Fauville, Benoit; Fernandez, Gonzalo A.; Giannopoulos, Dimitrios; Gibbons, Steven J.; Girona, Társilo; Grecu, Bogdan; Grunberg, Marc; Hetényi, György; Horleston, Anna; Inza Callupe, Lamberto Adolfo; Irving, Jessica C. E.; Jamalreyhani, Mohammadreza; Kafka, Alan; Koymans, Mathijs R.; Labedz, Celeste R.; Larose, Eric; Lindsey, Nathaniel J.; McKinnon, Mika; Megies, Tobias; Miller, Meghan S.; Minarik, William; Moresi, Louis; Márquez-Ramírez, Víctor H.; Möllhoff, Martin; Nesbitt, Ian M.; Niyogi, Shankho; Ojeda, Javier; Oth, Adrien; Proud, Simon; Pulli, Jay; Retailleau, Lise; Rintamäki, Annukka E.; Satriano, Claudio; Savage, Martha K.; Shani-Kadmiel, Shahar; Sleeman, Reinoud; Sokos, Efthimios; Stammler, Klaus; Stott, Alexander E.; Subedi, Shiba; Sørensen, Mathilde B.; Taira, Taka'aki; Tapia, Mar; Turhan, Fatih; Van der Pluijm, Ben; Vanstone, Mark; Vergne, Jerome; Vuorinen, Tommi A. T.; Warren, Tristram; Wassermann, Joachim; Xiao, HanHuman activity causes vibrations that propagate into the ground as high-frequency seismic waves. Measures to mitigate the coronavirus disease 2019 (COVID-19) pandemic caused widespread changes in human activity, leading to a months-long reduction in seismic noise of up to 50%. The 2020 seismic noise quiet period is the longest and most prominent global anthropogenic seismic noise reduction on record. Although the reduction is strongest at surface seismometers in populated areas, this seismic quiescence extends for many kilometers radially and hundreds of meters in depth. This quiet period provides an opportunity to detect subtle signals from subsurface seismic sources that would have been concealed in noisier times and to benchmark sources of anthropogenic noise. A strong correlation between seismic noise and independent measurements of human mobility suggests that seismology provides an absolute, real-time estimate of human activities.Item Open Access The 2013–2020 seismic activity at Sabancaya Volcano (Peru): Long lasting unrest and eruption(Elsevier, 2023-03) Machacca, Roger; Lesage, Philippe; Tavera, Hernando; Pesicek, Jeremy D.; Caudron, Corentin; Torres Aguilar, José Luis; Puma, Nino; Vargas, Katherine; Lazarte, Ivonne; Rivera, Marco; Burgisser, AlainSabancaya volcano is the youngest and second most active volcano in Peru. It is part of the Ampato-Sabancaya volcanic complex which sits to the south of the ancient Hualca Hualca volcano and several frequently active faults, thus resulting in complex volcano-tectonic interactions. After 15 years of repose, in 2013, a series of 4 earthquakes with magnitude >4.5 occurred within 24 h, marking the beginning of a new episode of unrest. Several additional swarms of earthquakes occurred in the following years until magmatic eruptive activity started on 6 November 2016. This activity is ongoing as of this writing, with an average of 50 explosions per day. In this study, we present results of multiparametric monitoring of Sabancaya's activity observed during 2013–2020. Seismic data are used to create a one-dimensional seismic velocity model, to catalog, locate, and characterize earthquakes, to detect repeating earthquake families, and to monitor seismic velocity variations by ambient noise cross-correlation. These analyses are complemented by visual and remote sensing observations and ground deformation measurements. All monitored parameters showed significant changes on 6 November 2016, the day of eruption onset, thus dividing the eruptive activity into pre-eruptive and eruptive stages...