Browsing by Author "Avouac, J. P."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Restricted Postseismic relocking of the subduction megathrust following the 2007 Pisco, Peru, earthquake(American Geophysical Union, 2016-05-03) Remy, D.; Perfettini, Hugo; Cotte, N.; Avouac, J. P.; Chlieh, Mohamed; Bondoux, Francis; Sladen, A.; Tavera, Hernando; Socquet, A.Characterizing the time evolution of slip over different phases of the seismic cycle is crucial to a better understanding of the factors controlling the occurrence of large earthquakes. In this study, we take advantage of interferometric synthetic aperture radar data and 3.5 years of continuous Global Positioning System (GPS) measurements to determine interseismic, coseismic, and postseismic slip distributions in the region of the 2007, Mw 8.0 Pisco, earthquake, Peru, using the same fault geometry and inversion method. Our interseismic model, based on pre‐2007 campaign GPS data, suggests that the 2007 Pisco seismic slip occurred in a region strongly coupled before the earthquake while afterslip occurred in low coupled regions. Large afterslip occurred in the peripheral area of coseismic rupture in agreement with the notion that afterslip is mainly induced by coseismic stress changes. The temporal evolution of the region of maximum afterslip, characterized by a relaxation time of about 2.3 years, is located in the region where the Nazca ridge is subducting, consistent with rate‐strengthening friction promoting aseismic slip. We estimate a return period for the Pisco earthquake of about 230 years with an estimated aseismic slip that might account for about 50% of the slip budget in this region over the 0–50 km seismogenic depth range. A major result of this study is that the main asperity that ruptured during the 2007 Pisco earthquake relocked soon after this event.Item Restricted Source model of the 2007 Mw 8.0 Pisco, Peru earthquake: implications for seismogenic behavior of subduction megathrusts(American Geophysical Union, 2010-02-09) Sladen, A; Tavera, Hernando; Simons, M; Avouac, J. P.; Konca, A. O.; Perfettini, Hugo; Audin, Laurence; Fielding, E. J.; Ortega, F.; Cavagnoud, R.We use Interferometric Synthetic Aperture Radar, teleseismic body waves, tsunami waveforms recorded by tsunameters, field observations of coastal uplift, subsidence, and runup to develop and test a refined model of the spatiotemporal history of slip during the Mw 8.0 Pisco earthquake of 15 August 2007. Our preferred solution shows two distinct patches of high slip. One patch is located near the epicenter while another larger patch ruptured 60 km further south, at the latitude of the Paracas peninsula. Slip on the second patch started 60 s after slip initiated on the first patch. We observed a remarkable anticorrelation between the coseismic slip distribution and the aftershock distribution determined from the Peruvian seismic network. The proposed source model is compatible with regional runup measurements and open ocean tsunami records. From the latter data set, we identified the 12 min timing error of the tsunami forecast system as being due to a mislocation of the source, caused by the use of only one tsunameter located in a nonoptimal azimuth. The comparison of our source model with the tsunami observations validate that the rupture did not extend to the trench and confirms that the Pisco event is not a tsunami earthquake despite its low apparent rupture velocity (<1.5 km/s). We favor the interpretation that the earthquake consists of two subevents, each with a conventional rupture velocity (2–4 km/s). The delay between the two subevents might reflect the time for the second shock to nucleate or, alternatively, the time it took for afterslip to increase the stress level on the second asperity to a level necessary for static triggering. The source model predicts uplift offshore and subsidence on land with the pivot line following closely the coastline. This pattern is consistent with our observation of very small vertical displacement along the shoreline when we visited the epicentral area in the days following the event. This earthquake represents, to our knowledge, one of the best examples of a link between the geomorphology of the coastline and the pattern of surface deformation induced by large interplate ruptures.