Browsing by Author "Anderson, D."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Restricted CEDAR Electrodynamics Thermosphere Ionosphere (ETI) Challenge for systematic assessment of ionosphere/thermosphere models: NmF2, hmF2, and vertical drift using ground‐based observations(American Geophysical Union, 2011-12-31) Shim, J. S.; Kuznetsova, M.; Rastätter, L.; Hesse, M.; Bilitza, D.; Butala, M.; Codrescu, M.; Emery, B.; Foster, B.; Fuller-Rowell, T.; Huba, J.; Mannucci, A. J.; Pi, X.; Ridley, A.; Scherliess, L.; Schunk, R. W.; Stephens, P.; Thompson, D. C.; Zhu, L.; Anderson, D.; Chau Chong Shing, Jorge Luis; Sojka, J. J.; Rideout, B.Objective quantification of model performance based on metrics helps us evaluate the current state of space physics modeling capability, address differences among various modeling approaches, and track model improvements over time. The Coupling, Energetics, and Dynamics of Atmospheric Regions (CEDAR) Electrodynamics Thermosphere Ionosphere (ETI) Challenge was initiated in 2009 to assess accuracy of various ionosphere/thermosphere models in reproducing ionosphere and thermosphere parameters. A total of nine events and five physical parameters were selected to compare between model outputs and observations. The nine events included two strong and one moderate geomagnetic storm events from GEM Challenge events and three moderate storms and three quiet periods from the first half of the International Polar Year (IPY) campaign, which lasted for 2 years, from March 2007 to March 2009. The five physical parameters selected were NmF2 and hmF2 from ISRs and LEO satellites such as CHAMP and COSMIC, vertical drifts at Jicamarca, and electron and neutral densities along the track of the CHAMP satellite. For this study, four different metrics and up to 10 models were used. In this paper, we focus on preliminary results of the study using ground‐based measurements, which include NmF2 and hmF2 from Incoherent Scatter Radars (ISRs), and vertical drifts at Jicamarca. The results show that the model performance strongly depends on the type of metrics used, and thus no model is ranked top for all used metrics. The analysis further indicates that performance of the model also varies with latitude and geomagnetic activity level.Item Restricted Multi-longitude case studies comparing the interplanetary and equatorial ionospheric electric fields using an empirical model(Elsevier, 2007-03) Kelley, M. C.; Nicolls, M. J.; Anderson, D.; Anghel, A.; Chau Chong Shing, Jorge Luis; Sekar, R.; Subbarao, K. S. V.; Bhattacharyya, A.Electric fields have been determined at three longitudes corresponding to Peru, India, and the Philippines. We compare these fields to applying a frequency-dependent linear transfer function (TF) to the dawn-to-dusk component of the interplanetary electric field (IEF). The TF is based on four years of simultaneous observations of the IEF and equatorial data. The model gives good results for the prompt penetrating electric field (PPE) in the case of an oscillatory IEF with a period in the 1–2 h range, when the interplanetary magnetic field remains southward for a long period and, to a lesser extent, when the IEF can be described as a square wave. There is evidence that a disturbance dynamo (DD) effect contributes on the dayside, where it leads to suppression of the normal quiet time pattern. A very strong counter-electrojet was seen at two locations during a time of persistent Bz south and was not predicted by the model or a linear scaling of the IEF. This suggests that suppression (and even reversal) of the E-region dynamo can occur in a large storm. Both the data and the model yielded a long-lived response to a sustained southward interplanetary magnetic field. Previously suggested By effects on equatorial electric fields are confirmed by a sequence of three distinct spikes in the By component of the IMF, one of which had no associated Bz change and yet was reproduced by two independent ground magnetometer-based electric field determinations. The sometimes remarkable agreement of a linear relationship between the equatorial and interplanetary electric fields shown here and elsewhere remains somewhat mysterious for such an apparently complex system.Item Restricted Superposed epoch analysis of the dayside ionospheric response to four intense geomagnetic storms(American Geophysical Union, 2008-07-09) Mannucci, A. J.; Tsurutani, B. T.; Abdu, M. A.; Gonzalez, W. D.; Komjathy, A.; Echer, E.; Iijima, B. A.; Crowley, G.; Anderson, D.Prompt daytime ionospheric responses are presented for the following four intense geomagnetic storms: 29 October 2003, 30 October 2003, 20 November 2003, and 7 November 2004. We perform a superposed epoch analysis of the storms by defining the start time of the epoch when the Kan‐Lee interplanetary electric field (proportional to the reconnection electric field) first reaches 10 mV/m during a period of continuously southward Bz. Measurements from the GPS receiver onboard the CHAMP satellite at 400 km altitude indicate significant low‐ to middle‐latitude daytime total electron content (TEC) increases above the satellite within 1–2 h of the defined start time for three of the storms (∼1400 local solar time). The 20 November 2003 data follow a different pattern: the largest TEC increases appear several hours (∼5–7) following the interplanetary magnetic field Bz event onset. TEC data obtained from ground‐based GPS receivers for the November 2003 storm tend to confirm a “late” TEC increase for this storm at ∼1400 LT. Estimates of vertical plasma uplift near the equator at Jicamarca longitudes (∼281 E) using the dual‐magnetometer technique suggest that variability of the timing of the TEC response is associated with variability in the prompt penetration of electric fields to low latitudes. It is also found that for the November 2003 magnetic storm the cross‐correlation function between the SYM‐H index and the interplanetary electric field reached maximum correlation with a lag time of 4 h. Such a large lag time has never been noted before. The long delays of both the ionosphere and magnetosphere responses need to be better understood.Item Restricted Systematic evaluation of ionosphere/thermosphere (UT) models: CEDAR Electrodynamics Thermosphere Ionosphere (ETI) Challenge (2009–2010)(American Geophysical Union, 2014-03) Shim, J. S.; Kuznetsova, M.; Rastätter, L.; Bilitza, D.; Butala, M.; Codrescu, M.; Emery, B. A.; Foster, B.; Fuller‐Rowell, T. J.; Huba, J.; Mannucci, A. J.; Pi, X.; Ridley, A.; Scherliess, L.; Schunk, R. W; Sojka, J. J.; Stephens, P.; Thompson, D. C.; Weimer, D.; Zhu, L.; Anderson, D.; Chau Chong Shing, Jorge Luis; Sutton, E.In order to model and predict the weather of the near‐Earth space environment, it is necessary to understand the important coupling mechanisms from the surface of the Sun to the Earth's ionosphere, including its coupling with the atmosphere below. This chapter reports the simulations of the mid‐latitude to low‐latitude ionosphere. Multiday simulations during the Whole Heliosphere Interval (WHI) 2008 are performed using two versions of SAMI3 model: (1) SAMI3 with externally specified E X B drifts and (2) SAMI3 with a potential solver to self‐consistently specify electric fields. The results are compared with GPS‐derived global total electron content (TEC) maps. The chapter details the E X B drifts calculated by the self‐consistent SAMI3 and compares these results with an empirical model. It provides initial results for a multi‐year run of the descending phase of Solar Cycle 23 to illustrate the broader range of Integrated Sun‐Earth System (ISES) activity underway