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Abstract
In this work, we are conducting a comparison of different methods to solve a one-dimensional aperture-synthesis radar imaging problem based on simulations. For this purpose, we are going to consider the geometry of the Jicamarca
ionospheric radar. These methods are going to be applied to the generation of images of field-aligned plasma irregularities in the equatorial ionosphere, particularly, to the case of Spread-F phenomena. The methods used in the
comparison goes from a direct Fourier inversion and a simple numerical integration, to more elaborated algorithms, such as, Capon’s method and Maximum entropy method. We are also going to include in the comparison, the
compressed sensing technique using the Haar and dab4 basis, in this case, we are assuming that the brightness function of the spread-F echoes has a sparse representation. In the simulations of the radar measurements, we are
considering Gaussian shape brightness functions. The different methods will be compared based on some metrics of the reconstructed images.

Comparison

Conclusion

Future work

References

Inverse problem

Radar imaging algorithms

2021 CEDAR Virtual Meeting, June 22-26 email: diego.yupanqui@jro.igp.gob.pe

Data underlying radar imaging are cross correlation
measurements obtained from ground-position
receivers. For acquire images of field-aligned
irregularities at the magnetic equator, we just need a
one-dimensional array of receivers throw equatorial
axis [Hysell & Chau,2006]. A schematic picture of these
receivers is displayed in fig. 1.

Each receiver pair can sample visibility function V(·) in
kd, where k is the radar wave number (module of
vector k in fig 1) and d the relative distance between
receivers ( in fig 1). We are interested in
calculate effective brightness function B(·), which

(1)

Fig. 1

Fourier inverse method:
This method was introduced in [Kudeki & Sürücü,1991] and consists in approximate B by , using sinθ
≈ θ in (1). Fourier transform is calculated throw the discrete formula:

Simple numerical integration method:
This method consists in applying trapezoid rule for calculating (θ) using the samples .

Capon’s method:
Capon’s method [Palmer et.al.,1998] can be considered as the first elaborated method we work with. This
method proposes to take as brightness function the solution of:

Maximum entropy method:
This method has a statistic nature, it is introduced in [Hysell,1996] considering the first principle of data
reduction (FPDR) established in [Ables,1974]. For this method, we first establish a resolution N for the answer
vector, this number is fixed as the number of pixels such that no new details appear if we add more. Consider M
is the number of independent receivers pairs (that is with a relative distance different from the others) and
consider the matrix defined by discretization of (1) and separation of real and imaginary
components. Maximum entropy method takes as brightness function the solution of:

is its noise term, is the standard deviation of , Σ is a bound for error and .

Compressed sensing method:
Compressed sensing (CS) is a method for solving undetermined linear systems which has the advantage of
being robust under noise; it was first use on radar imaging in [Harding & Milla,2013]. The central idea in
compressed sensing is sparsity; a vector x is called s-sparse if , where is the number of non zero
components of x. Consider a noisy linear system Ax=y+e where y is known, e is a noise term with and
. with p < P. Define recuperation function as:

Now consider matrix H defined in maxent method, including the column . Define and
y=V, the discrete version of (1) is written as . Following [Brunton,2019] and empirical arguments, we
will suppose that exists a basis in which x has a sparse representation; define as the basis changing matrix
and now we have the problem . Under assumption of low mutual coherence between A and (see
[Harding & Milla,2013]) we can say that is a good approximation of brightness function.

The choice of is an important part of CS, it determines the performance of the inversion. Some tools in
harmonic analysis allow as to construct basis with desirable properties. In [Daubechies,1988], orthogonal
compact support wavelets were introduced, which are a basis of with the desirable property of produce
sparse representation vectors.

Now we compare the performance of each method by using the following metrics on recovery images: 
normalized correlation, total variation, linear error and squared error. These are defined by:

,                                                ,                          ,    

Results on comparison section show that it is not clear which method is the best one because the performance
changes with the comparison metric and the noise level. Nevertheless, we can say that CS and MaxEnt work
better than the other methods under almost any metric and noise level. This can be seen specifically in metrics
e1 and e2, where Fourier, SNI and Capon converge to a performance that is not as good as the one where CS
and MaxEnt converge. Our results also show that CS with dab4 wavelet produce a smoother result than the
others, at the same time that has one of the better recovery performances.
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Remains pending apply wavelets packet for Dab4 basis, and develop an optimization algorithm for optimal basis
selection. Furthermore, the are some mathematical tools that allow as to construct orthonormal compact
wavelets from MRA constructions, for specific cases; it would be interesting to generalize this tools and
construct wavelets and wavelets packets for our specific objective.

Discussion

represents the angular distribution of received
signals. The equation that relates B(·) and V(·) is given
in [Thompson,1986]:

Where θ is the zenith angle in fig. 1. We want to
solve the problem for B(·). The main problem for
solving (1) is that we can only get, at most, one
sample of V for each pair of ground-position
receivers, so, because of the reduced number of
receivers in Jicamarca, the usual results on
reconstruction from sampling are not useful.

in [Mallat,1989], multiresolution analysis (MRA) was developed, which is a framework where wavelets can be
naturally constructed. The work of Mallat opened the door for constructing personalized basis for our interest,
nevertheless, it has the disadvantage of produce non compact support wavelets, which can not be put in a
matrix .

Despite the disadvantage of MRA, we can go further of wavelets basis by using wavelets packets, a
generalization of wavelets, introduced in [Coifmanet.al.,1990]. This construction produce a family of basis of
. and we can choose the best one for our objectives.

The procedure is as follows: we start with a scaling function φ, then produce a wavelet ψ (by using for example
MRA) and define the wavelet packet by: , , and inductively:

where are constants depending on φ. Using the notation we define the
spaces , which have the properties: 1) and 2) there exists such that
. . is a good approximation of f. We can decompose using 1) in many different ways, each one
corresponding with a basis and a basis changing matrix Ψ.

where

Simulation & results
As mentioned in abstract, we are going to simulate brightness function B by where
μ:=−3π/180 and σ:= 2π/180; replacing f in (1) we calculate for each such that there exist a pair or
receivers in Jicamarca geometry with a relative distance of ; finally, we add noise using a Gaussian
distribution with mean 0 and variance 1. The resulting simulated samplings are storage on matrix R, in which the
element is the noised value of . Note from fig. 1 that we have 8 receivers so .

Now we display the solution of (1) using the methods described before, with a noise level of 15 dB.
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