Ciencias de la Tierra Sólida
Permanent URI for this community
Esta comunidad incluye estudios en geofísica, geología, geotecnica, sismología, geodinámica y vulcanología.
Browse
Browsing Ciencias de la Tierra Sólida by Title
Now showing 1 - 20 of 554
Results Per Page
Sort Options
Item Restricted A mixed seismic–aseismic stress release episode in the Andean subduction zone(Nature Research, 2016) Villegas Lanza, Juan Carlos; Nocquet, J. M.; Rolandone, F.; Vallée, M.; Tavera, Hernando; Bondoux, Francis; Tran, T.; Martin, X.; Chlieh, MohamedIn subduction zones, stress is released by earthquakes and transient aseismic slip. The latter falls into two categories: slow slip and afterslip. Slow-slip events emerge spontaneously during the interseismic phase, and show a progressive acceleration of slip with a negligible contribution of synchronous tremors or microseismicity to the energy, or moment release. In contrast, afterslip occurs immediately after large and moderate earthquakes, decelerates over time, and releases between 20 and 400% of the moment released by the preceding earthquake. Here we use seismic and GPS data to identify transient aseismic slip that does not fit into either of these categories. We document a seismic–aseismic slip sequence which occurred at shallow depths along a weakly coupled part of the Andean subduction zone19 in northern Peru and lasted seven months. The sequence generated several moderate earthquakes that together account for about 25% of the total moment released during the full sequence, equivalent to magnitude 6.7. Transient slip immediately followed two of the earthquakes, with slip slowing at a logarithmic rate. Considered separately, the moment released by transient slip following the second earthquake was more than 1,000% of the moment released during the earthquake itself, a value incompatible with classical models of afterslip. Synchronous seismic swarms and aseismic slip may therefore define a stress-release process that is distinct from slow-slip events and afterslip.Item Restricted A new South American network to study the atmospheric electric field and its variations related to geophysical phenomena(Elsevier, 2014-12) Tacza, J.; Raulin, J. P.; Macotela, E.; Norabuena Ortiz, Edmundo; Fernández, G.; Correia, E.; Rycroft, M. J.; Harrison, R. G.In this paper we present the capability of a new network of field mill sensors to monitor the atmospheric electric field at various locations in South America; we also show some early results. The main objective of the new network is to obtain the characteristic Universal Time diurnal curve of the atmospheric electric field in fair weather, known as the Carnegie curve. The Carnegie curve is closely related to the current sources flowing in the Global Atmospheric Electric Circuit so that another goal is the study of this relationship on various time scales (transient/monthly/seasonal/annual). Also, by operating this new network, we may also study departures of the Carnegie curve from its long term average value related to various solar, geophysical and atmospheric phenomena such as the solar cycle, solar flares and energetic charged particles, galactic cosmic rays, seismic activity and specific meteorological events. We then expect to have a better understanding of the influence of these phenomena on the Global Atmospheric Electric Circuit and its time-varying behavior.Item Restricted A recent deep earthquake doublet in light of long-term evolution of Nazca subduction(Nature Research, 2017-03-31) Zahradnik, Jindrich; Čížková, Hana; Bina, Craig R.; Sokos, Efthimios N.; Jánský, Jirí; Tavera, Hernando; Carvalho, JoãoEarthquake faulting at ~600 km depth remains puzzling. Here we present a new kinematic interpretation of two Mw7.6 earthquakes of November 24, 2015. In contrast to teleseismic analysis of this doublet, we use regional seismic data providing robust two-point source models, further validated by regional back-projection and rupture-stop analysis. The doublet represents segmented rupture of a ∼30-year gap in a narrow, deep fault zone, fully consistent with the stress field derived from neighbouring 1976-2015 earthquakes. Seismic observations are interpreted using a geodynamic model of regional subduction, incorporating realistic rheology and major phase transitions, yielding a model slab that is nearly vertical in the deep-earthquake zone but stagnant below 660 km, consistent with tomographic imaging. Geodynamically modelled stresses match the seismically inferred stress field, where the steeply down-dip orientation of compressive stress axes at ∼600 km arises from combined viscous and buoyant forces resisting slab penetration into the lower mantle and deformation associated with slab buckling and stagnation. Observed fault-rupture geometry, demonstrated likelihood of seismic triggering, and high model temperatures in young subducted lithosphere, together favour nanometric crystallisation (and associated grain-boundary sliding) attending high-pressure dehydration as a likely seismogenic mechanism, unless a segment of much older lithosphere is present at depth.Item Restricted A report on the 24 August 2011 Mw 7.0 Contamana, Peru, intermediate-depth earthquake(Seismological Society of America, 2012-11-01) Tavera, HernandoThe seismic activity in Peru has its origin in the convergence process between the Nazca and the South American plates. Such convergence takes place at an average velocity on the order of 7–8 cm/yr (DeMets et al., 1980; Norabuena et al., 1999). This process is responsible for the largest damaging shallow interplate underthrusting earthquakes, the intraplate plate events in the downgoing Nazca slab, and the shallow intraplate crustal events in the overriding South American plate. The interplate events, representing slip between the plates, are the largest earthquakes and can cause considerable damage along the coast.Item Restricted A strong-motion database from the Peru–Chile subduction zone(Springer, 2011) Arango, Maria C.; Strasser, Fleur O.; Bommer, Julian J.; Boroschek, Ruben; Comte, Diana; Tavera, HernandoEarthquake hazard along the Peru – Chile subduction zone is amongst the highest in the world. The development of a database of subduction-zone strong-motion recordings is, therefore, of great importance for ground-motion prediction in this region. Accelerograms recorded by the different networks operators in Peru and Chile have been compiled and processed in a uniform manner, and information on the source parameters of the causative earthquakes, fault-plane geometries and local site conditions at the recording stations has been collected and reviewed to obtain high-quality metadata. The compiled database consists of 98 triaxial ground-motion recordings from 15 subduction-type events with moment magnitudes ranging from 6.3 to 8.4, recorded at 59 different sites in Peru and Chile, between 1966 and 2007. While the database presented in this study is not sufficient for the derivation of a new predictive equation for ground motions from subduction events in the Peru–Chile region, it significantly expands the global database of strongmotion data and associated metadata that can be used in the derivation of predictive equations for subduction environments. Additionally, the compiled database will allow the assessment of existing predictive models for subduction-type events in terms of their suitability for the Peru– Chile region, which directly influences seismic hazard assessment in this region.Item Restricted Active tectonics of Peru: heterogeneous interseismic coupling along the Nazca megathrust, rigid motion of the Peruvian Sliver, and Subandean shortening accommodation(American Geophysical Union, 2016-10) Villegas Lanza, Juan Carlos; Chlieh, Mohamed; Cavalié, O.; Tavera, Hernando; Baby, P.; Chire Chira, J.; Nocquet, J.‐M.Over 100 GPS sites measured in 2008–2013 in Peru provide new insights into the present‐day crustal deformation of the 2200 km long Peruvian margin. This margin is squeezed between the eastward subduction of the oceanic Nazca Plate at the South America trench axis and the westward continental subduction of the South American Plate beneath the Eastern Cordillera and Subandean orogenic wedge. Continental active faults and GPS data reveal the rigid motion of a Peruvian Forearc Sliver that extends from the oceanic trench axis to the Western‐Eastern Cordilleras boundary and moves southeastward at 4–5 mm/yr relative to a stable South America reference frame. GPS data indicate that the Subandean shortening increases southward by 2 to 4 mm/yr. In a Peruvian Sliver reference frame, the residual GPS data indicate that the interseismic coupling along the Nazca megathrust is highly heterogeneous. Coupling in northern Peru is shallow and coincides with the site of previous moderate‐sized and shallow tsunami‐earthquakes. Deep coupling occurs in central and southern Peru, where repeated large and great megathrust earthquakes have occurred. The strong correlation between highly coupled areas and large ruptures suggests that seismic asperities are persistent features of the megathrust. Creeping segments appear at the extremities of great ruptures and where oceanic fracture zones and ridges enter the subduction zone, suggesting that these subducting structures play a major role in the seismic segmentation of the Peruvian margin. In central Peru, we estimate a recurrence time of 305 ± 40 years to reproduce the great 1746 Mw~8.8 Lima‐Callao earthquake.Item Open Access Actividad sísmica en el entorno de la falla Pacollo y volcanes Purupuruni – Casiri (2020 – 2021)(Instituto Geofísico del Perú, 2021-05) Antayhua Vera, Yanet Teresa; Velarde Quispe, Lizbeth; Vargas Alva, Katherine Andrea; Tavera, Hernando; Villegas Lanza, Juan CarlosEste estudio analiza las características sismotectónicas de la actividad sísmica ocurrida en el entorno de la falla Pacollo y volcanes Purupuruni Casiri (distrito de Tarata – región Tacna), durante el periodo julio de 2020 a mayo de 2021. Desde mayo de 2020 hasta mayo de 2021, en el área de estudio se ha producido dos periodos de crisis sísmica separados por otro en donde la ocurrencia de sismos era constante, pero con menor frecuencia. El primer periodo de crisis sísmica ocurrió en el periodo del 15 al 30 de julio del 2020 con la ocurrencia de 3 eventos sísmicos que alcanzaron magnitud de M4.2. El segundo periodo considera los meses de abril y mayo de 2021 con la ocurrencia continua de sismos de magnitudes moderadas, siendo de magnitud M5.0 el mayor ocurrido hasta la fecha. La distribución espacial de la sismicidad ocurrida en el área de estudio, así como la información de deformación cortical sugieren que la falla Pacollo y otras paralelas de menor extensión, todas circundantes a los volcanes Casiri y Purupuruni, habrían sido reactivadas y serían las causantes de originar toda la actividad sísmica ocurrida a la fecha. La actividad sísmica de magnitudes moderadas podría continuar ocurriendo durante los próximos días y/o meses; sin embargo, de acuerdo a sus características, observadas a la fecha, no está asociada a posibles reactivaciones de los volcanes Purupuruni y Casiri.Item Open Access Actividad sísmica en la región del volcán Ticsani (Moquegua) para el periodo julio-setiembre del 2015(Instituto Geofísico del Perú, 2015-09) Cruz Igme, John EdwardEl volcán Ticsani (16°45'3"S, 70°36'1''O 5133msnm) presenta una importante actividad sísmica relacionada a fractura de rocas. En el periodo de análisis que comprende los meses de julio, agosto y setiembre de 2015 se ha observado un incremento de sismicidad importante desde el día 06 de setiembre, llegando a registrarse hasta 733 sismos el día 15 de setiembre. Durante estos meses se registraron un total de 9871 eventos sísmicos de los cuales el 98% corresponden a sismos relacionados a Fractura de Rocas, 1% relacionado a sismos de Baja Frecuencia y 1% a eventos tipo Tremor. También fueron localizados un total de 16 eventos energéticos registrados por las redes telemétricas del OVS, La ubicación de estos eventos se sitúa a 3km al lado Oeste del volcán Ticsani y a proximidades del domo D1, con profundidades entre 1km y 5km y magnitudes que varían de 2.8ML y 3.8ML. Por otro lado el OVS-IGP ya cuenta con el funcionamiento de una estación telemétrica que viene transmitiendo datos en tiempo real desde el 07 de agosto de 2015 y continúan los trabajos en campo para completar esta red. El OVS realiza visitas periódicas al volcán Ticsani, en este periodo se realizó un salida a campo para la extración de datos de la estación HCO y la toma de temperaturas de los centros fumarólicos. La máxima temperatura registrada fue de 82○ C.Item Open Access Actividad sísmica en la región del volcán Ticsani (Moquegua) para el periodo mayo-setiembre de 2014(Universidad Nacional de San Agustín de Arequipa, 2016) Cruz Igme, John EdwardEl volcán Ticsani (16°45'3"S, 70°36'13"O, 5133 msnm) es un estrato volcán ubicado segmento norte de la Zona Volcánica Central de los Andes, constituido por un complejo de domos de lavas andesíticas a dacíticas y caracterizado por presentar extensos depósitos de avalanchas. Este volcán se encuentra ubicado a 60 km al NE de la ciudad de Moquegua cuyo centro poblado más cercano, Soquezane, se encuentra a 7.3 km del domo más reciente. En las inmediaciones de este volcán se observan depósitos dispersos que indican una probable e importante erupción freatomagmática ocurrida hace menos de 400 años. La región del volcán Ticsani ha presentado una actividad sísmica notoria en los últimos quince años (Aguilar et al., 2001; Tavera, 2006). A fin de estudiar y analizar esta actividad el Observatorio Vulcanológico del Sur (OVS) del Instituto Geofísico del Perú (IGP) instaló una red sísmica temporal sobre esta región desde 01 de mayo al 30 setiembre 2014 (153 días). Esta red estuvo conformada por de 5 estaciones sísmicas: TCN, SOQ, PAL, CHT, HTR de periodo corto y tres componentes. El estudio hace un análisis de los datos sísmicos respecto a la forma de onda, su contenido espectral y tiempos de arribo de fases, a fin de caracterizar los tipos de señales sísmicas registradas, obtener parámetros hipocentrales y efectuar el cálculo de mecanismos focales. Los resultados obtenidos han permitido, finalmente, esbozar un modelo que explique la sismicidad en la zona de estudio. Se realizó también un análisis similar con los datos de las campañas sísmicas realizadas los años 1999, 2005 y 2006, donde los resultados fueron útiles para observar la evolución de la sismicidad del volcán Ticsani, así como efectuar una comparación con los resultados del análisis en la campaña del 2014.Item Open Access Actividad sísmica en la región del volcán Ticsani (Moquegua) para el periodo mayo-setiembre del 2014(Instituto Geofísico del Perú, 2015-07-15) Cruz Igme, John EdwardEl volcán Ticsani es un estrato volcán perteneciente a la zona volcánica de los andes centrales, constituido por un complejo de domos de lavas andesiticas a daciticas y caracterizado por presentar extensos depósitos de avalanchas. Este volcán se encuentra ubicado a 60 km al NE de la ciudad de Moquegua cuyo centro poblado más cercano Soquezane se encuentra a 7.3 km del domo más reciente. En las inmediaciones de este volcán se observan depósitos dispersos que indican una probable e importante erupción freatomagmática ocurrida hace menos de 400 años. Teniendo como objetivo el estudio del comportamiento de la sismicidad y la caracterización de las señales registradas en la región del volcán Ticsani, el OVS-IGP en convenio con la universidad de Liverpool estableció una red sísmica temporal de 5 estaciones sísmicas (TCN, SOQ, PAL, CHT, HTR) de periodo corto con tres componentes, el estudio comprende 153 días de adquisición de datos sísmicos desde 01 de mayo al 30 setiembre. El procesamiento de la información sísmica consistió en el tratamiento de datos, el análisis del contenido espectral, la forma de onda y obtención de parámetros hipocentrales para la su localización. El volcán Ticsani presenta una importante actividad sísmica, registrando gran número de sismos asociados a la acumulación de esfuerzos y ruptura presentando un total de 2112 eventos (95% del total), resultado que indica a esta actividad como principal. Los días 24 de junio y 26 de setiembre se registraron dos enjambres constituidos por sismos de fractura, el primero se localizó sobre el domo reciente y el segundo a 4.5 km del volcán. También se encontraron sismos asociados a movimiento de fluidos pero en menor número, registrándose 118 eventos (5% del total). Gracias a la configuración de la red sísmica temporal se lograron localizar un total de 334 sismos de fractura. Los resultados de esta localización muestran que la actividad sísmica es superficial con sismos entre los 2.5 y -14km de profundidad, presentando magnitudes entre 0.6ML y 3.3ML; además los sismos en su mayoría se encuentran debajo del domo reciente y a 3 km hacia el sur del mencionado domo.Item Open Access Actividad sísmica en la región del volcán Ticsani (Moquegua) para el periodo octubre-diciembre de 2014(Instituto Geofísico del Perú, 2015-02) Cruz Igme, John EdwardEl volcán Ticsani (16°45'3"S, 70°36'13''O 5133msnm) considerado volcán activo registra como principal actividad a eventos relacionados a fractura de rocas, durante los meses de octubre, noviembre y diciembre de 2014 el monitoreo sísmico se realizó mediante los datos adquiridos por la estación temporal TCN1, estación de periodo corto y tres componentes instalada sobre el domo reciente del Ticsani. Gracias al análisis del contenido espectral y forma de onda de los datos adquiridos fue posible la caracterización y clasificación de eventos sísmicos, teniendo así un total de 1359 eventos clasificados entre sismos de fractura, de baja frecuencia y eventos tipo tremor, sin embargo el 96% de estos eventos corresponden a eventos asociados a fractura de rocas, siendo los eventos predominantes en la región del volcán Ticsani. La localización de eventos se realizó empelando el programa Hypoellypse (Lahr, J. 1999) logrando localizarse un total de 23 sismos relacionados a fractura de rocas con calidades A y B, los sismos se encuentran distribuidos de manera dispersa a 4km al SE del volcán con algunos sismos muy próximos al volcán Ticsani, los perfiles E-O y N-S muestran que los eventos se encuentran a una profundidad entre 2.5km y 20km con respecto al domo reciente y de magnitudes entre 2.8 y 3.8ML.Item Open Access Actividad sísmica en la región del volcán Ticsani (Moquegua): periodo 2016(Instituto Geofísico del Perú, 2016-12) Cruz Igme, John EdwardEl Volcán Ticsani cuenta con una moderna red telemétrica completamente implementada a fines de 2015, el análisis de datos sísmicos corresponde al año 2016 y los datos procesados provienen en su integridad de esta nueva red. En el volcán Ticsani (16°45'3"S, 70°36'1''O 5133msnm) se observa sismos de tipo VT, LP, híbridos y tremor, pero sobresale largamente una intensa actividad sísmica de tipo VT o actividad relacionada a fracturas de rocas, tanto proximales como distales (98 % del total). Una característica es que los VT ocurren en forma de enjambres sísmicos habiéndose identificado hasta 31enjambres con duraciones que alcanzan a 24 horas. Por otra parte, un aspecto importante y característico de los sismos Híbridos que se han registrado en el Ticsani es su notoria baja frecuencia (<1 Hz) y energía suficiente para ser captados por redes más allá de la red Ticsani. Así por ejemplo, un sismo Hibrido que ha destacado en este periodo fue aquel ocurrido el 10 de febrero 22:14 UTC con 22 MJ de energía y que fue registrado hasta por la red del volcán Sabancaya distante a 170 km. Durante el año 2016 se determinaron parámetros hipocentrales para 5482 sismos VT, con rangos de error menores a 1.5 km. En la distribución espacial se puede distinguir tres agrupaciones, donde una de ellas se ubica próxima al volcán Ticsani. El sismo VT más energético alcanzó una magnitud de 4.4 ML y fue percibido por poblaciones aledañas en esta región.Item Open Access Actividad sismovolcánica asociada a la intranquilidad del volcán Sabancaya observada entre febrero y julio de 2013(Sociedad Geológica del Perú, 2014) Puma Sacsi, Nino; Torres Aguilar, José Luis; Jay, Jennifer; Delgado, Francisco; Pritchard, Matthew; Macedo Sánchez, Orlando EfraínEl volcán Sabancaya está ubicado a 80 km al NNO de la ciudad de Arequipa (15°47’ S; 71°72’W; 5976 msnm), en el sur del Perú. Es un estrato-‐volcán andesítico de edad holocénica reciente y forma parte del complejo volcánico conformado por los volcanes Ampato, Sabancaya y Hualca–Hualca. Según los registros históricos, el Sabancaya erupcionó en 1750 y 1784-‐1785; entre 1990 y 1998 presentó una última erupción que alcanzó un VEI 2. Luego de 15 años de tranquilidad, este volcán está mostrando nuevos signos de actividad desde el 22/02/2013, con alta sismicidad y emisiones fumarólicas de colores blanquecinos y azulinos al nivel del cráter, muchas veces intensas y densas, que se elevan a alturas de hasta 3 km. Atendiendo a esta situación, el OVA-IGP inmediatamente instaló una red de 6 estaciones portátiles (5 de GURALP-‐6TD, banda ancha, y 1 Lennartz 3DLite, periodo corto con digitalizador CMG-‐DM24). Adicionalmente, a partir del 24 de marzo de 2013, entró en operación la red telemétrica Sabancaya (RESSAB), la cual consta de 3 estaciones: SABA, CAJA, y PATA, equipadas con sensores de banda ancha GURALP 40T y digitalizadores Reftek130.Item Open Access Actualización del escenario por sismo, tsunami y exposición en la región central del Perú(Instituto Geofísico del Perú, 2017-01) Tavera, HernandoEl presente informe es elaborado a solicitud de CENEPRED y tiene por objetivo analizar los aportes técnicos-científicos realizados a la fecha, sobre el pronóstico y características del posible sismo que podría afectar al borde occidental de la región central del Perú. En general, el análisis espacial de la sismicidad muestra una notable disminución en la frecuencia de ocurrencia de sismos frente a la costa de los departamentos de Lima, Moquegua y Tacna, lo cual sugiere que en dichas áreas de viene acumulando energía a liberarse en algún momento en el tiempo. Por otro lado, los estudios recientes realizados usando datos de GPS, muestran la presencia de áreas de acoplamiento sísmico máximo o aspereza sobre la superficie de fricción entre las placas de Nazca y Sudamericana, coincidiendo su ubicación con las áreas con ausencia de sismicidad. Frente al departamento de Lima, la aspereza tiene un área de 400x150 km2. El desplazamiento a producirse y la energía a liberarse podría dar origen a un sismo con magnitud igual o mayor a 8.8 Mw, similar en tamaño al ocurrido frente a la zona costera de la ciudad de Concepción (Chile) en el año 2010. Considerando las características de este sismo probable, se ha obtenido los registros de aceleración teóricos para las áreas urbanas de Lima Metropolitana y El Callao, y los resultados sugieren que ambas podrían ser afectadas con aceleraciones superiores a 500 cm/s2 (sacudimiento del suelo). Asimismo, las simulaciones numéricas realizadas para proponer escenarios de tsunami indican que los distritos y/o zonas de alta vulnerabilidad son Ventanilla, El Callao, La Punta, Chorrillos y Lurín.Item Restricted Advances in scientific understanding of the Central Volcanic Zone of the Andes: a review of contributing factors(Springer, 2022-02-12) Aguilera, Felipe; Apaza, Fredy; Del Carpio Calienes, José Alberto; Grosse, Pablo; Jiménez, Néstor; Ureta, Gabriel; Inostroza, Manuel; Báez, Walter; Layana, Susana; Gonzalez, Cristóbal; Rivera, Marco; Ortega, Mayra; Gonzalez, Rodrigo; Iriarte, RodrigoThe Central Volcanic Zone of the Andes (CVZA) has been the focus of volcanological research for decades, becoming a very important site to understand a number of volcanic processes. Despite most of the research in the CVZA being carried out by foreign scientists, the last two decades have seen a significant increase in contributions by regional researchers. This surge has been facilitated by the creation of new volcanic observatories, improvement of the monitoring networks, creation of postgraduate programs where new local volcanologists are trained, creation of specialized research nuclei or groups, and increasing investment in research. This article presents a review of the evolution of the contributions of the regional volcanological community to the knowledge of the CVZA in the last 20 years (2000–2019), both from research and monitoring institutions in Peru, Bolivia, Argentina, and Chile. Based on updates made by the regional groups, a new list of active/potentially active volcanoes of the CVZA is presented, as is a complete database for article published on the CVZA. We find that a significant motivator has been regional volcanic unrest that has triggered new investment. Perú is the country with the highest investment in monitoring and research and is the best instrumented, Argentina is the country with the highest number of local participation in published papers in the domain of volcanology and magmatic systems, and Chilean volcanoes are the focus of the highest number of articles published. The current situation and general projections for the next decade (2020–2030) are also presented for each country, where we believe that the over the next 10 years, will be increased the monitoring and research capabilities, improved the scientific knowledge with more participation of regional institutions, and strengthen the collaboration and integrated work between CVZA countries, especially in border volcanoes.Item Open Access Ambient noise tomography across the Central Andes(Oxford University Press, 2013-09) Ward, Kevin M.; Porter, Ryan C.; Zandt, George; Beck, Susan L.; Wagner, Lara S.; Minaya, Estela; Tavera, HernandoThe Central Andes of southern Peru, Bolivia, Argentina and Chile (between 12°S and 42°S) comprise the largest orogenic plateau in the world associated with abundant arc volcanism, the Central Andean Plateau, as well as multiple segments of flat-slab subduction making this part of the Earth a unique place to study various aspects of active plate tectonics. The goal of this continental-scale ambient noise tomography study is to incorporate broad-band seismic data from 20 seismic networks deployed incrementally in the Central Andes from 1994 May to 2012 August, to image the vertically polarized shear wave velocity (Vsv) structure of the South American Cordillera. Using dispersion measurements calculated from the cross-correlation of 330 broad-band seismic stations, we construct Rayleigh wave phase velocity maps in the period range of 8–40 s and invert these for the shear wave velocity (Vsv) structure of the Andean crust. We provide a dispersion misfit map as well as uncertainty envelopes for our Vsv model and observe striking first-order correlations with our shallow results (∼5 km) and the morphotectonic provinces as well as subtler geological features indicating our results are robust. Our results reveal for the first time the full extent of the mid-crustal Andean low-velocity zone that we tentatively interpret as the signature of a very large volume Neogene batholith. This study demonstrates the efficacy of integrating seismic data from numerous regional broad-band seismic networks to approximate the high-resolution coverage previously only available though larger networks such as the EarthScope USArray Transportable Array in the United States.Item Restricted Ambient noise tomography of Misti volcano, Peru(Elsevier, 2022) Cabrera-Pérez, Iván; Centeno Quico, Riky; Soubestre, Jean; D'Auria, Luca; Rivera, Marco; Machacca, RogerTo better understand the recent internal structure of Misti volcano, we determined a 3D S-wave velocity model applying Ambient Noise Tomography (ANT). We used data from 23 broadband and short-period seismic stations temporarily installed at Misti volcano between March and December 2011. This dataset allowed us to obtain empirical Green's functions by cross-correlating seismic ambient noise signals. Then, we retrieved 104 dispersion curves using the frequency-time analysis (FTAN) and, through a non-linear multiscale inversion, we obtained nine 2-D Rayleigh waves group velocity maps for periods in the range 0.7 s - 2 s. Finally, we carried out the depth inversion through a Bayesian transdimensional inversion to obtain a 3-D S-wave velocity model down to 3 km depth. Our study highlights five relevant seismic velocity anomalies. We observed the presence of three high-velocity zones located in the west-northwest, southwest and southeast parts of the crater, that could be related to intrusive bodies possibly associated with the formation of Misti volcano. We also observed two low-velocity anomalies in the volcano's western and central parts, which coincide with previous studies' findings and are related to fractured and weakened materials associated with the external caldera collapse and recent eruption episodes.Item Open Access An 8 month slow slip event triggers progressive nucleation of the 2014 Chile megathrust(American Geophysical Union, 2017-05-16) Socquet, Anne; Piña Valdes, Jesús; Jara, Jorge; Cotton, Fabrice; Walpersdorf, Andrea; Cotte, Nathalie; Specht, Sebastian; Ortega‐Culaciati, Francisco; Carrizo, Daniel; Norabuena Ortiz, EdmundoThe mechanisms leading to large earthquakes are poorly understood and documented. Here we characterize the long‐term precursory phase of the 1 April 2014 Mw8.1 North Chile megathrust. We show that a group of coastal GPS stations accelerated westward 8 months before the main shock, corresponding to a Mw6.5 slow slip event on the subduction interface, 80% of which was aseismic. Concurrent interface foreshocks underwent a diminution of their radiation at high frequency, as shown by the temporal evolution of Fourier spectra and residuals with respect to ground motions predicted by recent subduction models. Such ground motions change suggests that in response to the slow sliding of the subduction interface, seismic ruptures are progressively becoming smoother and/or slower. The gradual propagation of seismic ruptures beyond seismic asperities into surrounding metastable areas could explain these observations and might be the precursory mechanism eventually leading to the main shock.Item Restricted An evaluation of the applicability of current ground-motion models to the South and Central American subduction zones(Seismological Society of America, 2012-02) Arango, M. C.; Strasser, F. O.; Bommer, J. J.; Cepeda, J. M.; Boroschek, R.; Hernández, D. A.; Tavera, HernandoThe applicability of existing ground‐motion prediction equations (GMPEs) for subduction‐zone earthquakes is an important issue to address in the assessment of the seismic hazard affecting the Peru–Chile and Central American regions. Few predictive equations exist that are derived from local data, and these do not generally meet the quality criteria required for use in modern seismic hazard analyses. This paper investigates the applicability of a set of global and regional subduction ground‐motion models to the Peru–Chile and Central American subduction zones, distinguishing between interface and intraslab events, in light of recently compiled ground‐motion data from these regions. Strong‐motion recordings and associated metadata compiled by Arango, Strasser, Bommer, Boroschek, et al. (2011) and Arango, Strasser, Bommer, Hernandez, et al. (2011) have been used to assess the performance of the candidate equations following the maximum‐likelihood approach of Scherbaum et al. (2004) and its extension to normalized intraevent and interevent residual distributions developed by Stafford et al. (2008). The results of this study are discussed in terms of the transportability of GMPEs for subduction‐zone environments from one region to another, with a view to providing guidance for developing ground‐motion logic trees for seismic hazard analysis in these regions.Item Open Access Análisis de la actividad sísmica del volcán Misti entre octubre 2005 a diciembre 2008 y su dinámica interna actual(Universidad Nacional de San Agustín de Arequipa, 2012-04) Centeno Quico, Riky; Macedo, OrlandoEl presente trabajo de investigación, tiene como escenario al volcán Misti (16°18’, 71°24’, 5822 msnm), uno de los catorce volcanes más activos y potencialmente peligrosos de la zona volcánica de los andes centrales (ZVC) y la zona sur del Perú, a cuyas faldas se encuentra la ciudad de Arequipa, considerada la segunda urbe socioeconómica más importante del Perú. Aunque históricamente solo se han reportado pequeñas crisis eruptivas con emisiones de ceniza y fumarolas, los estudios geológicos evidencian severos procesos eruptivos que han ocurrido durante construcción de su cono casi perfecto. El propósito del presente trabajo geofísico es de poner en evidencia las principales características de la sismicidad asociada a la actual dinámica interna del volcán. Para llevar a cabo este estudio, se ha dispuesto de data sísmica de la Red Sísmica Telemétrica del volcán Misti del Instituto Geofísico del Perú, compuesta por 5 estaciones y una adicional que funciono parcialmente. La data analizada corresponde a 39 meses (desde octubre del 2005 a diciembre del 2008) en que se registraron 12896 eventos sísmicos y donde se observa que la actividad del volcán estuvo compuesta principalmente por 4 tipos de eventos: 8445 eventos VT (65.5% del total), relacionados a procesos elásticos puros, como la ruptura y agrietamientos de roca; 4341 eventos LP (33.7%), Tremores y Tornillos (92 y 18 eventos respectivamente, representando en conjunto 0.8 %), relacionados a emisiones de gas y vapor de agua. Se observa también que la actividad sísmica general ha ido en aumento muy moderado desde el inicio hasta el final del estudio; no obstante, dicho aumento no se correlaciona con variaciones en los datos disponibles sobre la temperatura de fumarolas o de la fuente termal Charcani V. La distribución espacial de los sismos muestra que la mayoría de eventos VT y LP están debajo del cráter, entre los 1000 y 5000 m de altitud; su origen está asociado a la circulación de fluidos en el sistema hidrotermal del Misti. El resto de eventos, que son todos de tipo VT, se encuentran localizados más bien hacia el flanco NW del volcán siguiendo un relativo alineamiento, lo que apoya la idea de la presencia de una falla activa N120° en la zona.