Browsing by Author "Yarleque, Christian"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Future changes of precipitation types in the Peruvian Andes(Nature Research, 2024-09-30) Llactayo, Valeria; Valdivia Prado, Jairo Michael; Yarleque, Christian; Callañaupa, Stephany; Villalobos‑Puma, Elver; Guizado, David; Alvarado‑Lugo, RobertIn high-altitude regions, such as the Peruvian Andes, understanding the transformation of precipitation types under climate change is critical to the sustainability of water resources and the survival of glaciers. In this study, we investigate the distribution and types of precipitation on a tropical glacier in the Peruvian Central Andes. We utilized data from an optical-laser disdrometer and compact weather station installed at 4709 m ASL, combined with future climate scenarios from the CMIP6 project, to model potential future changes in precipitation types. Our findings highlight that increasing temperatures could lead to significant reductions in solid-phase precipitation, including snow, graupel and hail, with implications for the mass balance of Andean glaciers. For instance, a 2 °C rise might result in less than 10% of precipitation as solid, in regard to the present day, transforming the hydrological processes of the region. The two future climate scenarios from the CMIP6 project, SSP2-4.5 and SSP5-8.5, offer a broad perspective on potential climate outcomes that could impact precipitation patterns in the Andes. Our study underscores the need to revisit and expand our understanding of high-altitude precipitation in the face of climate change, paving the way for improved water resource management strategies and sustainable glacier preservation efforts in these fragile ecosystems.Item Open Access Groundwater buffers decreasing glacier melt in an Andean watershed—but not forever(American Geophysical Union (AGU), 2019-11-28) Somers, Lauren D.; McKenzie, Jeffrey M.; Mark, Bryan G.; Lagos, Pablo; Ng, Gene‐Hua Crystal; Wickert, Andrew D.; Yarleque, Christian; Baraër, Michel; Silva Vidal, YaminaAccelerating mountain glacier recession in a warming climate threatens the sustainability of mountain water resources. The extent to which groundwater will provide resilience to these water resources is unknown, in part due to a lack of data and poorly understood interactions between groundwater and surface water. Here we address this knowledge gap by linking climate, glaciers, surface water, and groundwater into an integrated model of the Shullcas Watershed, Peru, in the tropical Andes, the region experiencing the most rapid mountain‐glacier retreat on Earth. For a range of climate scenarios, our model projects that glaciers will disappear by 2100. The loss of glacial meltwater will be buffered by relatively consistent groundwater discharge, which only receives minor recharge (~2%) from glacier melt. However, increasing temperature and associated evapotranspiration, alongside potential decreases in precipitation, will decrease groundwater recharge and streamflow, particularly for the RCP 8.5 emission scenario.