Browsing by Author "Maute, A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Restricted Causes of the longitudinal differences in the equatorial vertical E × B drift during the 2013 SSW period as simulated by the TIME‐GCM(American Geophysical Union, 2015-05-22) Maute, A.; Hagan, M. E.; Yudin, V.; Liu, H. L.; Yizengaw, E.During stratospheric sudden warming (SSW) periods large changes in the low‐latitude vertical drift have been observed at Jicamarca as well as in other longitudinal sectors. In general, a strengthening of the daytime maximum vertical drift with a shift from prenoon to the afternoon is observed. During the January 2013 stratospheric warming significant longitudinal differences in the equatorial vertical drift were observed. At Jicamarca the previously reported SSW behavior prevails; however, no shift of the daytime maximum drift was exhibited in the African sector. Using the National Center for Atmospheric Research thermosphere‐ionosphere‐mesosphere electrodynamics general circulation model (TIME‐GCM) the possible causes for the longitudinal difference are examined. The timing of the strong SSW effect in the vertical drift (15–20 January) coincides with moderate geomagnetic activity. The simulation indicates that approximately half of the daytime vertical drift increase in the American sector may be related to the moderate geophysical conditions (Kp = 4) with the effect being negligible in the African sector. The simulation suggests that the wind dynamo accounts for approximately 50% of the daytime vertical drift in the American sector and almost 100% in the African sector. The simulation agrees with previous findings that the migrating solar tides and the semidiurnal westward propagating tide with zonal wave number 1 (SW1) mainly contribute to the daytime wind dynamo and vertical drift. Numerical experiments suggest that the neutral wind and the geomagnetic main field contribute to the presence (absence) of a local time shift in the daytime maximum drift in the American (African) sector.Item Restricted Ionospheric and thermospheric variations associated with prompt penetration electric fields(American Geophysical Union, 2012-08-10) Lu, G.; Goncharenko, L.; Nicolls, M. J.; Maute, A.; Coster, A.; Paxton, L. J.This paper presents a comprehensive modeling investigation of ionospheric and thermospheric variations during a prompt penetration electric field (PPEF) event that took place on 9 November 2004, using the Thermosphere‐Ionosphere‐Mesosphere Electrodynamic General Circulation Model (TIMEGCM). The simulation results reveal complex latitudinal and longitudinal/local‐time variations in vertical ion drift in the middle‐ and low‐latitude regions owing to the competing influences of electric fields and neutral winds. It is found that electric fields are the dominant driver of vertical ion drift at the magnetic equator; at midlatitudes, however, vertical ion drift driven by disturbance meridional winds exceeds that driven by electric fields. The temporal evolution of the UT‐latitude electron density profile from the simulation depicts clearly a super‐fountain effect caused by the PPEF, including the initial slow‐rise of the equatorial F‐layer peak height, the split of the F‐layer peak density, and the subsequent downward diffusion of the density peaks along magnetic field lines. Correspondingly, low‐latitude total electron content (TEC) becomes bifurcated around the magnetic equator. The O/N2column density ratio, on the other hand, shows very little variations during this PPEF event, excluding composition change as a potential mechanism for the TEC variations. By using realistic, time‐dependent, high‐latitude electric potential and auroral precipitation patterns to drive the TIMEGCM, the model is able to successfully reproduce the large vertical ion drift of ∼120 m/s over the Jicamarca incoherent radar (IS) in Peru, which is the largest daytime ion drift ever recorded by the radar. The simulation results are validated with several key observations from IS radars, ground GPS‐TEC network, and the TIMED‐GUVI O/N2column density ratio. The model‐data intercomparison also reveals some deficiencies in the TIMEGCM, particularly the limitations imposed by its upper boundary height as well as the prescribed O+ flux.