Browsing by Author "Chapagain, Narayan P."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Climatology of postsunset equatorial spread F over Jicamarca(American Geophysical Union, 2009-07) Chapagain, Narayan P.; Fejer, Bela G.; Chau Chong Shing, Jorge LuisWe use radar observations from 1996 to 2006 to study the climatology of postsunset equatorial 3-m spread F irregularities over Jicamarca during all seasons. We show that the spread F onset times do not change with solar flux and that their onset heights, which occur near the altitude of the evening F region velocity vortex, increase linearly from about 260 to 400 km from solar minimum to solar maximum. Higher onset heights generally lead to stronger radar echoes. During the equinox, spread F onset occurs near vertical drift evening reversal times, while during the December solstice, they occur near the drift reversal times close to solar minimum and near the time of the prereversal velocity peak for high solar flux conditions. On average, radar plume onset occurs earlier with increasing solar flux in all seasons. Plume onset and peak altitudes increase with solar activity, and the peak heights are generally highest during the equinox. The F region upward drift velocities that precede spread F onset increase from solar minimum to solar maximum and are approximately proportional to the maximum prereversal drift peak velocities.Item Restricted Comparison of zonal neutral winds with equatorial plasma bubble and plasma drift velocities(American Geophysical Union, 2013-03-20) Chapagain, Narayan P.; Fisher, Daniel J.; Meriwether, John W.; Chau Chong Shing, Jorge Luis; Makela, Jonathan J.A one-year dataset spanning March 2011-March 2012 of coincident observations of night time thermospheric zonal neutral winds, equatorial plasma bubble (EPB) velocities, and zonal plasma drifts are used to examine the relationship between the thermosphere and ionosphere near the geomagnetic equator over Peru. Thermospheric neutral winds are determined by using a bistatic Fabry–Perot interferometer (FPI) experiment located at Merihill and Nazca in Peru. The ambient plasma drift velocities were obtained using the incoherent scatter radar at the Jicamarca Radio Observatory in Peru. The EPB zonal velocities were estimated utilizing images of the OI 630.0-nm emission recorded by a narrow-field optical imaging system at the Cerro Tololo InterAmerican Observatory in Chile. The joint analysis of these datasets illustrates that the night time and night-to-night variations in the zonal neutral winds, EPB velocities, and plasma drifts are well correlated. This consistent result of the local time variations of the neutral winds with that of EPB and plasma drifts illustrates that the F-region dynamo is, in general, fully activated. However, at times, the magnitude of the EPB velocities and the plasma drifts are different from the neutral winds. It is plausible that such a difference is due either to the effect of polarization electric fields developed inside the EPB or due to the latitudinal gradient of the neutral winds and EPB velocity measurements since the EPB velocities are estimated at a higher latitude, corresponding to an apex altitude of ~400 km, than the wind estimates, which derive from an apex altitude of ~250 km.Item Open Access Dynamics of Equatorial Spread F Using Ground-Based Optical and Radar Measurements(Utah State University, 2011) Chapagain, Narayan P.; Michael, TaylorThe Earth’s equatorial ionosphere most often shows the occurrence of large plasma density and velocity fluctuations with a broad range of scale sizes and amplitudes. These night time ionospheric irregularities in the F-region are commonly referred to as equatorial spread F (ESF) or plasma bubbles (EPBs). This dissertation focuses on analysis of ground-based optical and radar measurements to investigate the development and dynamics of ESF, which can significantly disrupt radio communication and GPS navigation systems. OI (630.0 nm) airglow image data were obtained by the Utah State University all-sky CCD camera, primarily during the equinox period, from three different longitudinal sectors under similar solar flux conditions: Christmas Island in the Central Pacific Ocean, Ascension Island in South Atlantic, and Brasilia and Cariri in Brazil. Well-defined magnetic field-aligned depletions were observed from each of these sites enabling detailed measurements of their morphology and dynamics. These data have also been used to investigate day-to-day and longitudinal variations in the evolution and distribution of the plasma bubbles, and their nocturnal zonal drift velocities. In particular, comparative optical measurements at different longitudinal sectors illustrated interesting findings. During the post midnight period, the data from Christmas Island consistently showed nearly constant eastward bubble velocity at a much higher value (~80 m/s) than expected, while data from Ascension Island exhibited a most unusual shear motion of the bubble structure, up to 55 m/s, on one occasion with westward drift at low latitude and eastward at higher latitudes, evident within the field of view of the camera. In addition, long-term radar observations during 1996-2006 from Jicamarca, Peru have been used to study the climatology of post-sunset ESF irregularities. Results showed that the spread F onset times did not change much with solar flux and that their onset heights increased linearly from solar minimum to solar maximum. On average, radar plume onset occurred earlier with increasing solar flux, and plume onset and peak altitudes increased with solar activity. The F-region upward drift velocities that precede spread F onset increased from solar minimum to solar maximum, and were approximately proportional to the maximum prereversal drift peak velocities.