LISN network: Tools for GPS data processing and managing

Juan C. Espinoza¹, Cesar Valladares²

¹Radio Observatorio de Jicamarca, Instituto Geofísico del Perú, Lima – Perú

²Institute for Scientific Research, Boston College, Boston - USA.

INTRODUCTION

The LISN network includes several GPS receivers installed around South-America as a distributed observatory with the purpose of study the ionospheric phenomena. All of these receivers send data every 15 minutes to a central server located at Lima – Peru.

Fig. 1: GPS data flow

DEVELOPMENT

The GPS data that arrive to the server is processed to get daily files of: binary, scintillations, position, standard observables RINEX and Total Content of Electrons (TEC). We developed a Python package "lisnUtils" (based on P. Doherty & C. Valladares algorithms) that allows to process the data easily and quickly.

Fig. 2: New scripts used to process GPS data

Package "lisnUtils" features

- ☐ Support for Novatel, Leica binary files & observables files generated for GPS-Scinda program.
- ☐ Support for scintillation and position files generated by GPS-Scinda program.
- ☐ Conversion from all binary data supported to RINEX 2.0.
- RINEX files parser.
- ☐ TEC calculation, bias estimation with automatic download "satellite bias files" and "almanacs files" (YUMA format) for satellite orbital prediction.
- Plotting tools.

TEC calculation procedure

- $\hfill \Box$ Calculate the satellite's orbit (lat, lon, ele, az) using YUMA almanacs files.
- ☐ Calculate absolute TEC (from codes) and relative TEC (from carrier phases).
- Correct bad points and jumps.
- Cycle slips detection and correction.
- Read satellite bias from DCB files.
- \square Estimate receiver bias assuming min($\Sigma[var(vTEC)]$) between 3:00 and 6:00 LT.
- □ Correct receiver bias to avoid negative or high values of vertical TEC.

RESULTS

Realtime plots at the web page

Fig. 3: Realtime plots

TEC maps

As example we present TEC Maps over south-america during mid-level solar flare (M6) on Nov. 12, 2012. The maps are produced with data from ${\sim}100$ GPS receivers.

Fig. 4: TEC Map over south-america