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Outline 

•  The Equatorial ionosphere  
•  The Jicamarca Radio 

Observatory 
–  Incoherent Scatter Radar Modes 
–  Coherent scatter studies 

•  Selected Research Topics 
–  Sudden Stratospheric Warming 

events. 
–  Mesospheric Echoes (PEME) 
–  Tropospheric KHI 



Equatorial Ionosphere 

[from Fejer et al, 1999] 

•  B field is nearly horizontal 
•  Daytime:  

–  E-region E is eastward 
–  Off-equatorial E maps to F above mag. 

Equator -> Upward ExB 
–  Formation of Appleton Anomaly 

•  Around sunset, F region dynamo develops 
and competes with E, generates PRE and 
ExB goes downward (E westward) 

•  At night upward density gradient is opposite 
in direction to g, Rayleigh-Taylor unstable, 
allowing plasma density irregularities to 
form.  



•  24 GPS satellites 
•  Orbits at 20,000 kms altitude and 6 orbital 

planes  
•  Each satellite completes an orbit every 12 

hours 

GPS System 

Applications 
•  Civil, military 
•  Scientific: Geodesy, Meteorology, 

Aeronomy 



The Jicamarca Radio Observatory 

•  Built in 1961 by the US NBS 
and then donated to IGP in 
1969. 

•  Operating frequency: 50 MHz 
•  Antenna type: array of 18,432 

dipoles, organized in 8x8 
cross-polarized modules. 

•  Pointing directions: within 3 
degrees from on-axis. Phase 
changes are currently done 
manually. 

•  Transmitters: 3 x 1.5 MW 
peak-power with 5% duty 
cycle. 

•  Located “under” the magnetic 
equator (dip 1o). 
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EEJ: Equatorial Electrojet 

ESF: Spread F 

150-km echoes 

PEME 

Neutral turbulence 

¿What do we study at Jicamarca? 

• Density, 
temperature, 
composition, 
electric fields 
• Modeling, 
space 
weather 

• Neutral 
atmosphere 
dynamics 
(winds, 
turbulence, 
vertical 
velocities) 
• Meteorology, 
aviation. 

• Ionospheric 
Irregularities 
(EEJ, 150-
km, ESF). 
• SAR, GPS 

Meteors 



Jicamarca Themes (Stable Ionosphere) 

•  Understanding the stable ionosphere 
–  Topside:  What controls the light ion distribution?  Why are the equatorial 

profiles so different from those at Arecibo?  What is the storm time 
response of the topside? 

–  F region:  Do current theories fully explain electron and ion thermal 
balance?   Do we understand the electron collision effects on ISR theory 
now?  What is the effect of F-region dynamics near sunset on the 
generation of ESF plumes?  What are the effects of N-S winds on inter-
hemispheric transport? 

–  E region:  What are the basic background parameters in the equatorial E 
region?  What is the morphology of the density profiles in this difficult to 
probe region?  How does this morphology affect the E-region dynamo? 

–  D region:  What effects do meteor ablation and mesospheric mixing have 
on the composition in this region?   



Oblique ISR Examples 

• This modes combines the 
Faraday Double Pulse mode 
with a long pulse mode, 
allowing the use of  the 
available duty cycle. 
• It provides: 
-Absolute electron density 
(from Faraday rotation) and 
temperatures below 500 km. 
-Density, temperatures and 
composition above 500 km. 
• Preliminary results [Hysell et 
al. 2008]. 
- Good for Topside work and 
sunrise observations. 



Perpendicular ISR Examples 

• Simultaneous measurements of  
vertical and zonal drifts, with 15 km 
and 5 min resolutions. 
• JRO provides the most precise 
electric field measurements in the 
ionosphere. 

[from Kudeki and Batthacharyya, 1999] 



Plasma irregularities: What do we know 
from traditional radar studies? 

•  Coherent echoes are typically 2-6 orders of magnitude stronger 
than ISR echoes. 

•  Range-time distributions (Intensity=RTI, Velocities) 
–  Day-to-day  and seasonal variability 
–  Time periodicities (Gravity waves, tides) 

•  Spectral characteristics 
–  Spectral shape (Gaussian, Lorentzian, more than one Gaussian) 
–  Mean Doppler and Spectral width 

•  Multi-beam observations 
–  Spatial Characteristics 
–  3D velocity vector 

•  Interferometry 
–  Zonal velocity 
–  Aspect Sensitivity (scale lengths) 

•  Imaging 
–  Resolve space-time ambiguities 
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Coherent echoes over Jicamarca (1) 
RTIs above 100 km 

ESF: Equatorial Spread F (nighttime) 150-km echoes: Daytime 
EEJ: Equatorial Electrojet (all day) 



Coherent echoes over Jicamarca (2) 
RTI below 200 km 

150-km echoes 
Daytime 

Mesospheric  
echoes 
Daytime 

Meteor echoes 
All Day 
(head, non-specular 
and specular trails) 

Stratospheric and 
Tropospheric 
echoes 
All Day 

EEJ echoes 
All Day 
(Daytime stronger) 



ESF: RTI maps 



ESF: Type of echoes 

•  Nighttime 
•  Main type (interchange or 

generalized Rayleigh-Taylor 
instabilities) 
–  Bottomtype layers 

•  Composed of kilometer scale waves 
•  Drift westward 

–  Bottomside 
•  Drift eastward 
•  Greater vertical displacement 

–  Topside (Plumes) 
•  Drift eastward and upward 
•  A variety of spectra shapes 

–  Valley-type 

[from Hysell and Burcham, 1998 and Hysell 2000] 



ESF spectra: Do we understand all of them? 

[from Woodman and La Hoz, 1976] 

•  Bottomtype: Very 
narrow single-peak 
spectra. 

•  Bottomside and 
Topside: Narrow, 
wide, multi-peak 
spectra. 



Horizontal Distance (km) 

Assuming spatial structures are 
frozen, drifting across the radar, the 
RTI maps could represent 
“Images” (altitude vs. zonal) of  
such structures. 

RTI maps as “images”: Slit camera 
interpretation 



Slit-camera analogy and problems  

•  In some 
applications like 
races it is useful 

•  In many other 
applications it 
provides 
misleading results: 
–  Slow structures 

are stretch out 
–  Fast-moving 

structures are 
compressed. 

–  In general, it is 
difficult to 
discriminate 
space-time 
features. 

used with permission ©Tom Dahlin 



Radar “Slit” Camera vs. Optical “Airglow” 
Camera 

[Courtesy of  J. Makela] 



JRO as Video RF Camera 



ESF RTDI: Slit camera interpretation 

•  Typical RTI maps are shown with “false” colors (colors from a pre-defined color 
table are associated to the signal intensity). 

•  Here we use Doppler for color. True 24-bit color range time intensity (RTI) plot 
using Doppler information (RTDI). RTI map is obtained for three Doppler 
regions centered around: -ve (Red), zero (Green), and +ve (Blue) Doppler 
velocities. 

•  It allows, for example, identification of regions and times where there is a 
depletion channel pinching off, Doppler aliasing, Doppler widening, etc.  

East                          (km)                       West                         



ESF RTDI + Imaging (1) 
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•  Space and time 
ambiguities are 
avoided. 

•  New structures 
are identified and 
characterized, 
e.g., 
–  Bifurcations 
–  Pinch-off  of  

bottom 
irregularities 

–  Vortices in the 
narrow 
bottomtype 
layers 



ESF Imaging experiment with IPP=600: 
Frequency aliased spectra 



ESF Imaging experiment with IPP=300: 
Range aliased, but without frequency aliasing 



Sudden Stratospheric Warming and the 
Equatorial Ionosphere 



SSW Jan 2008: SSW Main parameters 

•  Minor SSW event. Westerly winds 
slowed down 

•  One of the largest temperature 
increases in the last 30 years. 

•  Low solar flux (close to 70) 
•  Magnetically quiet conditions 
•  Many ground-based instruments 

operated 8-10 days in December 
2007 and 10-14 days in January 
2008. 

[from Chau et al. 2009] 



SSW Jan 2008: ExB Daytime Drifts 

Average + variability 
from 35 years of  ISR 

data 

[from Chau et al. 2009] 



SSW Jan 2008: ∆SSW vs ∆ExB 

•  ∆ExB: average morning ExB 
difference with respect to expected 
averages, after fitting a semidiurnal 
wave. 

•  ∆SSW: differences with respect to 
30-year median values. 

•  High correlation/anticorrelation: 
∆ExB vs. ∆T/∆U during SSW. 

•  Note the “persistence” of the ExB 
drift pattern during SSW period. 

[from Chau et al. 2009] 



Perennial Equatorial Mesospheric Echoes 
(PEME) 



PEME: Main Characteristics 

•  Daytime occurrence, between 60-85 km, with preferred 
occurrence around 70-75 km. 

•  Mesospheric dynamics and turbulence are obtained from 
these echoes. 

•  RCS much weaker than PMSE and PMWE 
•  Rich temporal and altitudinal structure obtained from 3-

m irregularities. 
•  Dependence on solar flux and X flares, indicate that high 

electron densities and strong density gradients enhance 
the strength of the echoes. 



PEME: Fine structure 

[from Sheth et al. 2006] 



SNR (dB) vs. 
altitude(km), 
time (min) 

Spectral 
Width, 
Variance 
(m2/s2) 

Meridional 
wind (m/s) 

High resolution mesospheric echoes show evidence for KHI, braided structures with 
enhanced edges (top); turbulent fluctuations are intermittent (middle); layers are 
often strongly sheared (bottom).  Observations: 8x3 days in 2005 and 2006.   

PEME: KHI (1) 

[from Lehmacher et al. 2007] 



PEME: KHI (2) 



PEME: Turbulence 

•  εfrom spectral widths. A small 
beam broadening effect has been 
removed from the observed spectral 
widths. 

•  The daily median energy dissipation 
rates ε increase from 5 to 30 mW/
kg between 67 and 80 km, and the 
eddy diffusivities increase from 3 to 
20 m2/s result at Japan and India.  

•  The energy dissipation rates are 
about the same magnitude as the ε 
estimates for low-latitudes from a 
global model and are larger than the 
averages from rocket observations 
at high-latitudes. 

[from Guo et al. 2007] 



PEME: RCS (1) 

[from Akgiray 2007] 



PEME: RCS (2) 

[from Lehmacher et al. 2009] 



PEME: RCS (3) 

[from Lehmacher et al. 2009] 



PEME: RCS (4) 

•  PEME RCS range from 10-18 to 10-16 m-1, 3 orders of magnitudes 
smaller than RCS reported for PMWE during solar proton events 
and 6 orders of magnitude smaller than PMSE. 

•  For typical conditions, volume scattering coefficients for 
stationary, homogeneous, isotropic turbulence at 3 m are also in 
the range 10-18 to 10-16 m-1. 

•  Theoretical values are still a matter of order-of-magnitude 
estimation, since the Bragg scale of 3 meters is near or inside the 
viscous subrange (turbulence spectrum is not well known). 

•  Steep electron density gradients can increase RCS significantly. 
•  For thin layers with large RCS and narrow spectra, isotropic 

turbulence theory fails and scattering or reflection from 
anisotropic irregularities maybe the cause, as suggested by 
numerical simulations. 

[from Lehmacher et al. 2009] 



PEME: Some open questions 

•  What are the scattering mechanisms in aspect-sensitive 
layers and near the edges of layers?   
–  As far as we know only one rocket experiment has reported 

sharp gradients density gradients in the 70-75 km region [Smith 
and Klaus, 1975]. 

•  Is there “enhanced” electron diffusion in this region?  
–  A heater experiment may be helpful with that.  There is 

certainly a lot of water in the equatorial mesosphere and 
therefore also large water cluster ions.  

•  Are there mesospheric aerosol layers? 
–  Rocket experiments with sensitive particle detectors 



Lower Atmospheric Kelvin Helmholtz 
Instabilities 



KHI Billows and turbulence 



SOUSY: High resolution ST measurements 

[Woodman et al., 2007] 





Solar flare 07-Sep-2005 



Other SSW events: Jan 2003 (ExB 
from 150-km echoes) 

•  Minor (?) SSW, westerly 
wind decreased 

•  Moderate to high solar 
conditions 

•  Magnetically quiet and 
active conditions. 

•  Semidiurnal pattern 
between Jan 2-6, showing 
“persistence”. 



PEME Variability 

[from Lehmacher and Kudeki. 2003] 


