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•  The Equatorial ionosphere  
•  The Jicamarca Radio 

Observatory 
•  Equatorial ionospheric plasma 

irregularities: What we know 
from radar studies? 
–  Equatorial spread F (ESF) 

echoes 
–  150-km echoes 
–  Equatorial electrojet (EEJ) 

echoes 
–  Meteor head and trail echoes 
–  Perennial Equatorial 

Mesospheric Echoes (PEME). 
•  150-km recent findings 



Equatorial Ionosphere 

[from Fejer et al, 1999] 

•  B field is nearly horizontal 
•  Daytime:  

–  E-region E is eastward 
–  Off-equatorial E maps to F above mag. 

Equator -> Upward ExB 
–  Formation of Appleton Anomaly 

•  Around sunset, F region dynamo develops 
and competes with E, generates PRE and 
ExB goes downward (E westward) 

•  At night upward density gradient is opposite 
in direction to g, Rayleigh-Taylor unstable, 
allowing plasma density irregularities to 
form.  



Ionosphere Total Electron Content: Quiet 
Vs. Disturbed Conditions 



•  24 GPS satellites 
•  Orbits at 20,000 kms altitude and 6 orbital 

planes  
•  Each satellite completes an orbit every 12 

hours 

GPS System 

Applications 
•  Civil, military 
•  Scientific: Geodesy, Meteorology, 

Aeronomy 



Equatorial Ionosphere: Ionospheric 
irregularities and GPS signals 

[Courtesy of   
J. Makela] 



The Jicamarca Radio Observatory 

•  Built in 1961 by the US NBS 
and then donated to IGP in 
1969. 

•  Operating frequency: 50 MHz 
•  Antenna type: array of 18,432 

dipoles, organized in 8x8 
cross-polarized modules. 

•  Pointing directions: within 3 
degrees from on-axis. Phase 
changes are currently done 
manually. 

•  Transmitters: 3 x 1.5 MW 
peak-power with 5% duty 
cycle. 

•  Located “under” the magnetic 
equator (dip 1o). 
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EEJ: Equatorial Electrojet 

ESF: Spread F 

150-km echoes 

PEME 

Neutral turbulence 

¿What do we study at Jicamarca? 

• Density,
 temperature,

composition,
 electric
 fields 
• Modeling,
 space
 weather 

• Neutral
 atmosphere
 dynamics
 (winds,
 turbulence,
 vertical
 velocities) 
• Meteorology,
 aviation. 

• Ionospheric
 Irregularities
 (EEJ, 150
-km, ESF). 
• SAR, GPS 

Meteors 



Jicamarca Themes (Stable Ionosphere) 

•  Understanding the stable ionosphere 
–  Topside:  What controls the light ion distribution?  Why are the equatorial 

profiles so different from those at Arecibo?  What is the storm time 
response of the topside? 

–  F region:  Do current theories fully explain electron and ion thermal 
balance?   Do we understand the electron collision effects on ISR theory 
now?  What is the effect of F-region dynamics near sunset on the 
generation of ESF plumes?  What are the effects of N-S winds on inter-
hemispheric transport? 

–  E region:  What are the basic background parameters in the equatorial E 
region?  What is the morphology of the density profiles in this difficult to 
probe region?  How does this morphology affect the E-region dynamo? 

–  D region:  What effects do meteor ablation and mesospheric mixing have 
on the composition in this region?   



Oblique ISR Examples 

• This modes combines the 
Faraday Double Pulse mode 
with a long pulse mode, 
allowing the use of  the 
available duty cycle. 
• It provides: 
-Absolute electron density 
(from Faraday rotation) and 
temperatures below 500 km. 
-Density, temperatures and 
composition above 500 km. 
• Preliminary results [Hysell et 
al. 2008]. 
- Good for Topside work and 
sunrise observations. 



Perpendicular ISR Examples 

• Simultaneous measurements of  
vertical and zonal drifts, with 15 km 
and 5 min resolutions. 
• JRO provides the most precise 
electric field measurements in the 
ionosphere. 

[from Kudeki and Batthacharyya, 1999] 



Plasma irregularities: What do we know 
from traditional radar studies? 

•  Coherent echoes are typically 2-6 orders of magnitude stronger 
than ISR echoes. 

•  Range-time distributions (Intensity=RTI, Velocities) 
–  Day-to-day  and seasonal variability 
–  Time periodicities (Gravity waves, tides) 

•  Spectral characteristics 
–  Spectral shape (Gaussian, Lorentzian, more than one Gaussian) 
–  Mean Doppler and Spectral width 

•  Multi-beam observations 
–  Spatial Characteristics 
–  3D velocity vector 

•  Interferometry 
–  Zonal velocity 
–  Aspect Sensitivity (scale lengths) 

•  Imaging 
–  Resolve space-time ambiguities 
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Coherent echoes over Jicamarca (1) 
RTIs above 100 km 

ESF: Equatorial Spread F (nighttime) 150-km echoes: Daytime 
EEJ: Equatorial Electrojet (all day) 



Coherent echoes over Jicamarca (2) 
RTI below 200 km 

150-km echoes 
Daytime 

Mesospheric  
echoes 
Daytime 

Meteor echoes 
All Day 
(head, non-specular 
and specular trails) 

Stratospheric and 
Tropospheric 
echoes 
All Day 

EEJ echoes 
All Day 
(Daytime stronger) 



ESF: RTI maps 



ESF: Instability at work 

[from Woodman and La Hoz, 1976] [from Zalensak et al., 1982] 



ESF: Type of echoes 

•  Nighttime 
•  Main type (interchange or 

generalized Rayleigh-Taylor 
instabilities) 
–  Bottomtype layers 

•  Composed of kilometer scale waves 
•  Drift westward 

–  Bottomside 
•  Drift eastward 
•  Greater vertical displacement 

–  Topside (Plumes) 
•  Drift eastward and upward 
•  A variety of spectra shapes 

–  Valley-type 

[from Hysell and Burcham, 1998 and Hysell 2000] 



ESF spectra: Do we understand all of them? 

[from Woodman and La Hoz, 1976] 

•  Bottomtype: Very 
narrow single-peak 
spectra. 

•  Bottomside and 
Topside: Narrow, 
wide, multi-peak 
spectra. 



Horizontal Distance (km) 

Assuming spatial structures are 
frozen, drifting across the radar, the 
RTI maps could represent 
“Images” (altitude vs. zonal) of  
such structures. 

RTI maps as “images”: Slit camera 
interpretation 



Slit-camera analogy and problems  

•  In some 
applications like 
races it is useful 

•  In many other 
applications it 
provides 
misleading results: 
–  Slow structures 

are stretch out 
–  Fast-moving 

structures are 
compressed. 

–  In general, it is 
difficult to 
discriminate 
space-time 
features. 

used with permission ©Tom Dahlin 



Radar “Slit” Camera vs. Optical “Airglow” 
Camera 

[Courtesy of  J. Makela] 



JRO as Video RF Camera 



ESF RTDI: Slit camera interpretation 

•  Typical RTI maps are shown with “false” colors (colors from a pre-defined color 
table are associated to the signal intensity). 

•  Here we use Doppler for color. True 24-bit color range time intensity (RTI) plot 
using Doppler information (RTDI). RTI map is obtained for three Doppler 
regions centered around: -ve (Red), zero (Green), and +ve (Blue) Doppler 
velocities. 

•  It allows, for example, identification of regions and times where there is a 
depletion channel pinching off, Doppler aliasing, Doppler widening, etc.  

East                          (km)                       West                         



ESF RTDI + Imaging (1) 

200 
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•  Space and time 
ambiguities are 
avoided. 

•  New structures 
are identified and 
characterized, 
e.g., 
–  Bifurcations 
–  Pinch-off  of  

bottom 
irregularities 

–  Vortices in the 
narrow 
bottomtype 
layers 



ESF Imaging experiment with IPP=600: 
Frequency aliased spectra 



ESF Imaging experiment with IPP=300: 
Range aliased, but without frequency aliasing 



ESF Imaging + Wide spectra: 
Irregularity spectrum  

•  In Hysell and Chau 
[2004] we postulated 
that the wide spectra in 
the topside is produced 
by strong turbulence. 

•  The Doppler spectrum 
is predicted to be 
essentially Gaussian 
with a width equal to 
the RMS velocity of  the 
plasma in the 
illuminated volume. 

•  We might be able to 
measure the irregularity 
spectrum by measuring 
the radar Doppler 
spectrum with different 
averaging volumes. 



Jicamarca Themes (Unstable 
Ionosphere) 

•   Understanding equatorial instabilities 
–  F region:  What are the fundamental plasma processes, including nonlinear 

processes, that govern the generation of plasma plumes?  What are the 
precursor phenomena in the late afternoon F region that control whether 
or not an F-region plume will be generated after sunset? 

–  Daytime Valley echoes (or so-called 150-km echoes). What are the physical 
mechanisms causing them? (still a puzzle after more than 40 years!). 

–  E region:  What are the nonlinear plasma physics processes that control 
the final state of the electrojet instabilities?  To what extent do these 
instabilities affect the conductivity of the E region, and by extension, the 
conductivity of the auroral zone E region, where similar, but stronger and 
more complicated, instabilities exist? 



150-km echoes: First detection 

•  Jicamarca Observations 
–  Balsley [1964] 

•  Rocket Observations 
–  Thumba, India [Prakash et al., 

1969] 
–  Punta Lobos, Peru [Smith and 

Royrvik, 1985] 



Main features  

• Daytime phenomena 

• Occur between 130-180 km 

• Necklace shape  

• Come from field-aligned 
irregularities (?) 

• Observed at different 
longitudes and within few 
degrees away Mag. Equator 
(?) 

• Vz ~ vertical F-region ExB. 

[from Kudeki and Fawcett., 1993 and Fawcett, 1999] 

150-km echoes Perpendicular to B 

Proposed Mechanisms 
• Gravity wave wind driven interchange instability [Kudeki
 and Fawcett, 1993] 
• Low-latitude Es layer instability providing free energy for
 the growth of interchange instability at equatorial 150-km
 [Tsunoda and Ecklund, 2004] 
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Compared to 150km-5, the 
agreement: 

For Vertical results 
•  Is very good with mean F-

region ISR drift 
•  Is excellent with 

extrapolated ISR drifts (less 
differences and higher 
correlation) 

Zonal results 
•  Is good with ISR-15 and 

150km-fit. 
•  Gets worse before 

noontime, but follows day-
to-day variability 

ISR Drifts vs 150-km drifts 

[from Chau and Woodman., 2004] 



Oblique  vs. Perpendicular ISR: 
Geometry 

•  Depending on α: 
–  Oblique: α > 0 
–  Perpendicular: α = 0 

•  What is the α boundary between 
modes? 

•  What are the antenna patterns used? 
•  What are the differences on ACFs 

and spectra between modes? 
•  How is the polarization of returned 

signals? 
•  How are the modes affected by 

coherent scatter echoes? 
•  What can be measured? 

B 
90-α 

k k 



Oblique vs. Perpendicular: ACFs 

Oblique 
•  ACFs are narrow 
•  1 ms = 150 km (for monostatic measurements) 
•  ACFs are very similar to the non-collisional, 

unmagnetized case. 
•  ACFs are dominated by the dynamics of the ions 
•  Within the pulse (or IPP) estimation is needed to 

avoid range ambiguity 
•  Critical angle: α = 0.334o (where ions and 

electrons behave as if they had equal 
“mass”). 

Perpendicular 
•  ACFs are very wide. Coulomb collisions and 

magnetic field effects need to be considered. 
•  ACFs dominated by the dynamics of the electrons 

(electrons behave “heavier” than ions). 
•  Very quickly gets wider (for small α values). 
•  Due to long correlation times, pulse-to-pulse 

estimation can be performed, and very accurate 
vertical and zonal drifts are estimated. 

[from Woodman, 2004] 

collisionless 

with collisions 

α = 0.25o 

2 ms 4 

α = 2.00o 

2 4 

α = 0.00o 

ms 



Oblique vs. Perpendicular: Spectra 

Oblique 
•  Spectra are wide (>1000 m/s or 300 Hz at 

50 MHz) and independent of α within 
typical antenna beam widths. 

Perpendicular 
•  Spectra get narrower (less than 150 m/s) for 

smaller α and change very quickly. 
•  Measured spectra results from a convolution 

of  spectra with different widths due to finite 
antenna beam width. 

[from Kudeki et al., 1999] [from Kudeki et al., 1999] 

without electron collisions 

with electron collisions 



•  Surprisingly, 150-km echoes are 
also observed at few degrees 
away from perpendicular to B 
(~1.8o) (“Oblique”). 

•  Oblique echoes present similar 
altitude-time dependence to 
Perpendicular observations. 

•  Oblique 150-km echoes present 
unexpected wide spectra (spectra 
widths > 1000 m/s). 

•  Questions: 
–  What is the actual spectrum 

shape? 
–  What is the angular brightness 

of these irregularities? 
–  Are these echoes due to density 

enhancements? 

Off-perpendicular to B 150-km echoes  

[from Chau, 2004] 



Spectrograms 
• No coherent integrations 
• Median filter =3, to remove 
interference, and Perpendicular 
contributions (in Perpendicular 
beam). 

Spectrograms 

• 32 coherent integrations 

• Spectral components are 
similar to typical 150-km low 
power observations 

Multi-beam Experiments: 
1.83o vs. Perpendicular (1) 



Spectra cuts 

• No coherent integrations 

• Median filter =3, to remove 
interference and Perpendicular 
contributions (in 
Perpendicular beam). 

Multi-beam Experiments: 
1.83o vs. Perpendicular (2) 



150-km ISR spectrum (1) 

Te = 700oK  

Te/Ti = 1 

[O+] = 10% 

[O2
+,NO+] = 90% 



Te = 700oK  

Te/Ti = 1 

[O+] = 50% 

[O2
+,NO+] = 50% 

150-km ISR spectrum (2) 



Te = 900oK  

Te/Ti = 1 

[O+] = 50% 

[O2
+,NO+] = 50% 

150-km ISR spectrum (3) 



Te = 900oK  

Te/Ti = 1.5 

[O+] = 50% 

[O2
+,NO+] = 50% 

150-km ISR spectrum (4) 



Te = 900oK  

Te/Ti = 2 

[O+] = 50% 

[O2
+,NO+] = 50% 

150-km ISR spectrum (5) 



RTI 

• There is a one-to-one correspondence 
between echoes observed between 160 and 
180 km. 

• Below 160 km there is a small correlation 
between Oblique and perpendicular echoes. 
There is more occurrence of  perpendicular 
echoes. 

Multi-beam Experiments: 
1.83o vs. Perpendicular (3) 



RTI after removal of  “Cusp” 

• Removal of  “slow” component by 
using a 5 running average filter. 

• There is a good correlation between 
upper echoes (above 155 km) and the 
lower echoes around 140 kms. 

• Echoes are stronger at angles closer 
to Perp, between 145 and 155 km. 

• We need to find out if  there is a time 
delay between echoes observed at two 
different beams. 

Multi-beam Experiments: 
1.83o vs. Perpendicular (No Cusp) (4) 



RTI just “Cusp” 

• Showing only “DC” component 

Multi-beam Experiments: 
1.83o vs. Perpendicular (“DC”) (5) 



Averaged SNR 

• Upper echoes (above 160 km) show a 
good correlation for both beams and 
similar echo strengths (green and 
yellow). 

• Lower echoes show stronger echoes at 
Perp (green stronger than the rest) 

• By comparing lower Perp echoes 
without “DC” (blue) to the on-axis 
echoes, there is a good correlation but 
with a time delay of  few minutes. 

Multi-beam Experiments: 1.83o vs. 
Perp. (Time series) (6) 



Averaged SNR 

• Upper echoes (above 160 km) 
show a good correlation (0.8) for 
both beams and similar echo 
strengths (green and yellow), 
without time delay. 

• By comparing lower Perp. echoes 
without “DC” (blue) to the on-axis 
echoes (yellow), there is a relatively 
good correlation (0.4) but with a 
time delay of  ~15 minutes, implying 
~5m/s northward motion around 
140 kms. 

Multi-beam Experiments: 1.83o vs. 
Perp. (Time series and Corr.) (7) 



Spectrograms 
• No coherent integrations 
• Median filter =3, to remove interference. 
• Echoes at more oblique angles are weaker. 
• The echo around 145km in the “6oS” beam 
comes from a meteor. 

Multi-beam Experiments: 
1.83o vs. 4.95o (1) 



RTI 

• There is a one-to-one correspondence 
between echoes observed between 160 and 
180 km, but closer to B echoes are stronger 
(even after considering 4dB antenna gain 
differences). 

• Note that in both beams, there are not 
strong echoes below ~155km, as is usually 
observed with perpendicular beams. 

Multi-beam Experiments: 
1.83o vs. 4.95o (2) 



150-km angular brightness 

Zenith angle (degrees) 

before Chau [2004] 

after Chau [2004] 

• Thermal signatures (ISR 
echoes) present an isotropic 
brightness. 

• Before Chau [2004], 150-km 
echoes were assumed to be very 
aspect sensitive, i.e., coming 
from very elongated field-
aligned irregularities (Gaussian 
shapes with ~�0.1o width) 

• Off-perpendicular to B 
observations, indicate a non-
Gaussian brightness distribution 
for the 150-km irregularities. 



Faraday Density Experiments (1) 

Parameters 

• IPP = 600 km 

• Baud width=0.75 km 

• Binary code: 28 

• N averages: 19968 

• N smooth: 5 

[from Chau and Woodman, 2005] 



Faraday density experiments (2) 

Instead of  density 
enhancements, 150-km echoes 
appear to correlate with density 
depletions below or above.   

Power 
Faraday 



Parameters 

• ??? 

Faraday density experiments (2) 

Power 
Faraday 



NS Structure: On-axis 



NS Structure: Around Perp to B. 



NS Structure: Perp to B 



Spectrum and NS Structure 

• Above 150 km: 
Spectra is wider and 
with an oscillating 
peak with a  period 
~5-10 min. 
• Below 150 km: 
Spectra is narrower, 
peak is not well 
defined. 
• Spectra structure 
appear to be 
associated to 
changes in location 
of  the scattering 
center.   



•  Multi-beam wide spectra 
–  Spectra off-perpendicular to B are very wide (> 1000 m/s). 
–  It appears that they do not present a smooth shape, present 

frequency structure, e.g., oscillating with a period of ~5-10 
min above 160 km 

–  Echoes get weaker as the angle respect to B is larger. 
–  Above ~160 km, perp. and oblique echoes are highly 

correlated and of comparable strength. 
–  Below ~150 km, perp. and oblique beams are correlated, but 

with ~15 min delay, maybe due to a meridional wind. 
–  Between 150 and 160 km, echoes are much stronger at Perp. 

beams. 

Recent 150-km findings (1)  



•  Density from Faraday measurements 
– Errors are high, but one see deterministic patterns 

as function of time and altitude that are correlated 
with the 150-km echoes. 

–  150-km enhanced echoes, although present wide 
spectra, do not occur on regions of high densities.  

– Enhanced echoes appear to occur on regions of +ve 
and -ve density gradients (see depleted regions 
above and below enhanced echoes). 

Recent 150-km findings (2)  



•  Interferometry results 
–  Scattering centers of  “oblique” echoes oscillate 

both in time (5-10 min) and altitude (5-8 km) 
–  Scattering centers from angles “�close to perp. to B” 

echoes also oscillate, but apparently not in phase 
with the oblique centers, suggesting a meridional 
modulation. 

–  Scattering centers of FAI also oscillates but with 
smaller amplitudes, they do not coincide with off-
perp. echoes. 

Recent 150-km findings (3)  




