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In the analysis of narrowband signáis, for instance radio signáis, one nor-

mally uses a complex correlation function. A question is usually asked on
the relationship of this complex function and the real functions of the real

physical world. These notes are motivated by such question and discuss the

advantages of such approach and its limitations.

Let f(t) be a real random, stationary and bandlimited (including quasisinu-
soidal) process. It is characterized by its real correlation function

R(T) = <f(t) f(t+T)> (foot note 1) . . (1)
. '

or its power spectrum

0° -JCOT

F(w) = J R(T) e dr . (2)
-00

•

By bandlimited we mean processes for which F(co) = O for to larger than a

given frequency " • Usually either R(T) or F(co) are sufficient to charac-

terize the process, but it is usually more convenient, especially when the

spectrum is relatively narrow (quasisinusoidal) and centered around a fre-

quency co , to characterize it alternatively in terms of two other functions

P(T) and, cp(co) which we will define in what follows.

Given co < co , we can always find a complex function S(t) = a(t)+ib(t) sucho max
that

JW-t-i

f(t) = P.e |s(t) e (3)

or
f(t) = a(t) cosoo0t + b(t) sinooQt (4)

Since we do not impose a condition on the Imaginary part of S(t) e Q° , under

general conditions the functions a(t), b(t) are not uniquely defined. But,
this arbitrariness disappears if we impose the condition that a(t) and b(t)
are bandlimited,i.e. if the spectrum of the real processes a(t) and b(t) are

zero for co larger than COQ. Under this conditions a(t) and b(t) in 4) are

FN l)simplies definition, = equal sign.
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unique (see Appendix) and henee al so S(t).

In terms of S(t) = a(t)-jb(t) we can write (see Appendix)

/ -*- "J'c)oTl
R(r) =|Re [<S(t)S(t+T)> e j . (5)

Let us define the complex autocorrelation function

P(T) = <S(t)?i(t+T)>. (6)

Because of the real and stationary character of f(t) it can be shown (Appendix)
that:

P(T) = p*(-r) i. e. P(T) has Hermitian symmetry. (7)

We can al so define a function

00 "J^n17
<p(o>)=/ P(T) e D dr (8)

- oo

which we will cali the "converted spectrum" of f(t).

Because of the Hermitian symmetry of P(T), cp(co) is real. The band limited con-

dition on a(t) and b(t) implies that:

cp(<o) = O for luí > WQ (9)

In terms of P(T) and cp(<x>) we can write

F "Ĵ lR(T) = Re[P(T) e (10)

and
- -

F(ü>) = ¿/P(T) e dtJP*(T)e dT,

(11)or
F(w) = -yf cp(co+ü) ) + -2f(p(co -u),

and using the "band limited" conditions we can write
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F(co) = y cp(to+co ) for co > O

cp(co-co) for co < O

Discussion

Since COQ is known (given) then R(T) is easily derived from p(t) (Eq.(lO)).
Also F(to) is easily derived from cp(ca) (Eq. (12)). Eq. 12 implies that F(to)
is completely determined by cp(co), which is usually narrow, in that F(co)
equals cp(co) displaced by an amount co from its origin plus its symmetric
counterpart. These interrelationships are so direct that one need not go
back to the real functions R(r) and F(co) for a physical interpretation of
the process.

There is a practical advantage in using and obtaining P(T) and or (p(to) in-
stead of the real R(T) and F(to), which lies in the fact that P(T) is much less

structured than R(T) and therefore needs less points for its practical deter-
mination and in that cp(to) has non zero valúes only cióse to the origin and can
easily be plotted.(See Figure)

The terms a(t) and b(t) can be obtained experimentally in the real physical

world. From the definition 4) we have

f(t) = £ [s(t)eJW° + S*(t)e JC'° ] (13)

-jco t
Multiplying by e and solving for S(t) we get

-Jw t •J2tünt
S(t) = 2f(t) e - S*(t)e . (14)

Since S(t) has a spectrum within O and co the second term can be filtered out
by letting S(t) as given in 13) go through a filter sufficiently narrow to let

the first term go through and filter out S*(co) e"J "o.

Thus
-JU t-,

f(t)eS(t) = Filter f(t)e

In practice S(t) is obtained by multiplying f(t) by cosco t and filter to obtain
a(t) and by multiplying it by sinco0t and filter to obtain the imaginary part
b(t). Notice that although-jb(t) is the imaginary part of S(t), b(t) itself is
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real and actually exist in the physical world. The autocorrelation P(T) is
then obtained directly by evaluating

P(T) = <a(t)a(t+T)>+<b(t)b(t+t)> + j<a(t)b(t+r)>-j<b(t)a(t+T)>.

The sampling rates are determined by the bandwidth of cp(co) that is by the
relatively slow characteristic times of P(T)- This is an additional advantage
since otherwise one would have to sample at twice the highest frequencies of
f(t), i.e. at frequencies at least of the order of 2u (as high as 4to ).

Notice that the approach is valid for all signáis with a spectrum within - 2co .
They need not be narrow around co , although this is usually the case and it is

in this case that the approach presents practical advantages. Also there would
be some technical problem with the filtering, if F(co)*0 at the low frequen-
cies as well.

Appendix

Here we shall show with the help of the Nyquist sampling theorem that under
the bandlimiting assumptions a(t) and b(t) in equation (4) of the main text

are uniquely determined. We shall also derive the stationarity of S(t) and

its Hermitian properties.

Let f(t) be real and statistically stationary,

i.e. R(T) = <f(t)f(t+r)>= <f(t+T)f(t+T+-r)> for all T's

and bandlimited, i.e.

F(co) = O for co > 2(.)o

we can always write

f(t) = a(t)coscu0t+b(t)sintL)0t

From Nyquist sampling theorem we know that f(t) (and also R(T)) is fully de-

fined if known at times t. (or T-) given by

t1 = O, T/4, 2T/4, where T = 2n/oo0

At these specific times
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a(t.) = f(t.) for j = 0,2,4,6

(2)
b(t.) = f(tn.) for i = 1,3,5,7

Given a(t.)> b(t.) they determine a unique set of functions a(t), b(t) if we
J

impose the condition they take the valúes a(t.) and b(t.) at t., t. and
J J

further if we assutne or forcé them to be band limited, that is if their spec-

trum F (u) = F, (co) = O for Icol >w0- Therefore for a given function f(t) and a

frequency COQ there is a unique set of functions a(t), b(t) satisfying 1). In

addition we have from 1) that

jtü t -J"ntnr Jwn(t+T) -jcon(t+T)-1 r u" t ~JtV'"ir J<Vl+T; -J%lt+TH
=3<[S(t) e } + S*(t)e |S(t+T)e +S*(t+t)e >

or i r JCVi ' J%(2t+T)-,
R(x) =^Re <S(t)S*(t+T)>e +^e| <S(t)S(t+T>e

L J ' L J
where

S( t ) = a( t ) - jb( t ) .

Since f(t) is stationary, then R(T) is independent of t. This implies that ejll'r( ¿'

P(T)S <S(t)S*(t+T)> is independent of t(stationary S(t)) and that <S(t)S(t+x)>=0

for all t's and T'S, i.e.:

[<a(t)b(t+T)>-<b(t)a(t+T)>|costo0(2t+T)-ií<a(t)b(t+T)>+<b(t)a(t+T)>l=0.

This in turn implies that

<a(t)a(t+T)>=<b(t)b(t+T)>
for all t's (3)

<a(t)b(t+T)>=-<b(t)ft(t+T)>

and that

Re P(T) = Re P(-T),

Im P(T) =-Im P(-T).

Consequently P(T) has Hermitian symmetry.

i.e.

P(T) = P*(-T). (4)

Noti-e that equations 2) present an alternative solution in obtaining a(t) and

b(t) to the one presented in the main text. One can obtain a(t) and b(t) directly

by sampling a pair of valúes at a t/4 interval. If the bandwidth of the process
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is much smaller than w , let us say cp(cj) is such that cp(co) = O for co> Q where,
Q«oc> ; then, the pair of sampling need to be taken only once every T'/2,

(j
where T' = 2n/Q.
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Schematic plots of the different functions mentioned in the text.


