• During the past decade we have learned how to “forward-model” the altitude variations of F- region incoherent scatter signals (power, correlations, spectra) collected with multi-beam radar configurations including polarization and spatial diversity: • Experience gained in differential-phase (Feng et al.), MST-ISR (A. Akgiray M.S. Thesis) experiments, and also beam-scanned ALTAIR results... • Advances in ISR theory close to perp-to-B: Sulzer and González (1999), Woodman (2004), Kudeki and Milla (2005), M. Milla PhD Thesis work... • Faster computing, availability of clusters, reliable magnetic field model (IGRF)... Perp-to-B incoherent scatter measurements of F-region drifts, density, and temperatures at JRO Erhan Kudeki1, Marco Milla1, Pablo Reyes1, Jorge Chau2, and Otto Castillo2 (1) University of Illinois (2) Jicamarca Radio Observatory • As a consequence we are reaching the point of being able to conduct difficult experiments at JRO such as measuring F-region densities and temperatures simultaneous with high-quality perp-to-B drifts: • We describe here one such experiment conducted in June 2008 and show preliminary results. 0 2 4 60 100 200 300 400 500 600 700 800 900 Densities [1011 m−3] He igh t [ km ] 1 1.5 20 100 200 300 400 500 600 700 800 900 Te/Ti He igh t [ km ] Basic idea used in the experiment: In an ionosphere with Ne and Te/Ti profiles shown on the left, a north-south beam scan would produce a total backscatter power map shown on the right, with the sharp enhancement (“dagger”) in the direction where the radar beam is perpendicular to B: away from perp to B, otherwise , A scan like this cannot be done at JRO having fixed beams, but the effect has been observed and fully modeled at ALTAIR to estimate Ne and Te/Ti parameters from power scan data. η =Ps ∝ Ne1 + Te/Ti Ps ∝ Neη 12 14 16 18 20 100 200 300 400 500 600 700 Power (dB) He igh t ( km ) Principal Polarization Date: 20−Sep−2004 12:22 PM 50.36° 79.43° 80.47° 81.50° 89.44° 12 14 16 18 20 100 200 300 400 500 600 700 Power (dB) He igh t ( km ) Orthogonal Polarization Date: 20−Sep−2004 12:22 PM 50.36° 79.43° 80.47° 81.50° 89.44° At ALTAIR, operating at 422 MHz, magneto-ionic effects are negligible, so that total power can be collected using a single polarization (circular). At JRO, operating at 50 MHz, MI-effects are important, and thus both “co-pol” and “x-pol” components of the scattered power need to be collected and processed to make Ne and Te/Ti estimation using a similar approach. ALTAIR power scan: Simulated total power and JRO beams used in June 08 experiment: WEST SOUTH EAST 2 1 5 4 3 6 UP-POL DN-POL TX RX RX1=WEST BOWTIE RX2=WEST QUARTER RX5=SOUTH CO-POL EQUAL POWER IN ALL BEAMS RX3=EAST BOWTIE RX4=EAST QUARTER RX6=SOUTH X-POL MAGNETIC NORTH RX1.RX2*=NS INTERF. RX3.RX4*=NS INTERF. June 08 experiment: A multi-beam and dual-polarization mode taking advantage of the modularity of the JRO antenna: Co-pol X-pol • A multi-slab magneto-ionic propagation model based on IGRF (see next slide): • “Rotates” the polarization vectors of tx’ed x-pol (dn) and y-pol (up) signals in proportion to electron density and magnetic aspect angles: • Faraday rotation at large aspect angles • Cotton-Mouton effect at small aspect angles • Two-way antenna beam pattern (see slide 7) calculations based on FFT’s of phasing distributions on antenna modules of both polarizations: • Includes complex valued two-way cross-beam patterns for “rotated” signal components --- e.g., east beam (dn) couples to west beam (up) via common sidelobes • Receiver gains included as model unknowns in addition to Ne and Te/Ti • Ionosonde virtual heights can be used as additional constraints • Updated collisional IS theory (see slide 14) used to relate the backscatter RCS to ionospheric state parameters Forward model details XY Z Qx Qy 1 B θ kˆθˆ φˆ Iterate after modifying ∆n, n¯, a, θˆ, φˆ due to slow varing density and #B vx ∝ pˆx · (Eθ θˆ + Eφφˆ) vy ∝ pˆy · (Eθ θˆ + Eφφˆ) ∆n = nO − nX 2 n¯ = nO + nX 2 a = FO YL n 2 O,X = 1− X 1− FO,X YL = Y cos θ, YT = Y sin θ, Y = Ω ω , X = ω2p ω2 A magneto-ionic propagation problem through a multi-slab ionosphere model: pˆx FO = F1 − F2, FX = F1 + F2, F1 = Y 2 T /2 1−X , F 22 = F 2 1 + Y 2 L pˆx = kˆ × kˆ × xˆ |kˆ × kˆ × xˆ| ≡ Exoxˆ+ Eyoyˆ + Ezozˆ ≡ Eθoθˆ + Eφoφˆ Polarization unit vector: bˆ φˆ = bˆ× kˆ |bˆ× kˆ| θˆ = φˆ× kˆ 21 5 4 3 6 DN-POL RX1=WEST BOWTIE RX2=WEST QUARTER RX5=SOUTH CO-POL RX3=EAST BOWTIE RX4=EAST QUARTER RX6=SOUTH X-POL UP-POL MAGNETIC NORTH RX1.RX2*=NS INTERF. RX3.RX4*=NS INTERF. MAGNETIC NORTH !x’ (rad) ! y ’ ( ra d) South beam (One quarter) D2W = 73.73 dB ABS = 4375.94 −0.1 −0.05 0 0.05 0.1 −0.1 −0.05 0 0.05 0.1 −40 −35 −30 −25 −20 −15 −10 −5 0 !x’ (rad) ! y ’ ( ra d) West beam (Bow−tie) D2W = 78.30 dB ABS = 4716.19 −0.1 −0.05 0 0.05 0.1 −0.1 −0.05 0 0.05 0.1 −40 −35 −30 −25 −20 −15 −10 −5 0 !x’ (rad) ! y ’ ( ra d) West beam (One quarter) D2W = 74.88 dB ABS = 3111.32 −0.1 −0.05 0 0.05 0.1 −0.1 −0.05 0 0.05 0.1 −40 −35 −30 −25 −20 −15 −10 −5 0 !x’ (rad) ! y ’ ( ra d) East beam (Bow−tie) D2W = 78.04 dB ABS = 4363.89 −0.1 −0.05 0 0.05 0.1 −0.1 −0.05 0 0.05 0.1 −40 −35 −30 −25 −20 −15 −10 −5 0 !x’ (rad) ! y ’ ( ra d) East beam (One quarter) D2W = 74.54 dB ABS = 2888.92 −0.1 −0.05 0 0.05 0.1 −0.1 −0.05 0 0.05 0.1 −40 −35 −30 −25 −20 −15 −10 −5 0 3-Tx, 6-Rx 3-Beam directions 1 polarization diversity (south) 2 spatial diversities (west and east) WEST SOUTH EAST 2 1 5 4 3 6 UP-POL DN-POL TX RX RX1=WEST BOWTIE RX2=WEST QUARTER RX5=SOUTH CO-POL EQUAL POWER IN ALL BEAMS RX3=EAST BOWTIE RX4=EAST QUARTER RX6=SOUTH X-POL MAGNETIC NORTH RX1.RX2*=NS INTERF. RX3.RX4*=NS INTERF. Time [Hour] Ra ng e [km ] DEWD 3Bb − South Beam (Up−pol) − Date: 24−Jun−2008 6 8 10 12 14 16 18 20100 200 300 400 500 600 700 SN R + 1 [d B] 0 1 2 3 4 5 Time [Hour] Ra ng e [km ] DEWD 3Bb − South Beam (Dn−pol) − Date: 24−Jun−2008 6 8 10 12 14 16 18 20100 200 300 400 500 600 700 SN R + 1 [d B] 0 1 2 3 4 5 Time [Hour] Ra ng e [km ] DEWD 3Bb − East Beam (Dn−pol) − Date: 24−Jun−2008 6 8 10 12 14 16 18 20100 200 300 400 500 600 700 SN R + 1 [d B] 0 1 2 3 4 5 Time [Hour] Ra ng e [km ] DEWD 3Bb − East Beam (Dn−pol) − Date: 24−Jun−2008 6 8 10 12 14 16 18 20100 200 300 400 500 600 700 SN R + 1 [d B] 0 1 2 3 4 5 Time [Hour] Ra ng e [km ] DEWD 3Bb − West Beam (Up−pol) − Date: 24−Jun−2008 6 8 10 12 14 16 18 20100 200 300 400 500 600 700 SN R + 1 [d B] 0 1 2 3 4 5 Time [Hour] Ra ng e [km ] DEWD 3Bb − West Beam (Up−pol) − Date: 24−Jun−2008 6 8 10 12 14 16 18 20100 200 300 400 500 600 700 SN R + 1 [d B] 0 1 2 3 4 5 21 5 4 3 6 DN-POL RX1=WEST BOWTIE RX2=WEST QUARTER RX5=SOUTH CO-POL RX3=EAST BOWTIE RX4=EAST QUARTER RX6=SOUTH X-POL UP-POL MAGNETIC NORTH RX1.RX2*=NS INTERF. RX3.RX4*=NS INTERF. MAGNETIC NORTH 0 2 4 6 x 104 100 200 300 400 500 600 700 800 900 Power Ra ng e [km ] [1] West 1 [2] West 2 [3] East 1 [4] East 2 [5] South (Up) [6] South (Dn) 0 2 4 x 104 100 200 300 400 500 600 700 800 900 Correlation [1,2] West [3,4] East [5,6] South −100 0 100 100 200 300 400 500 600 700 800 900 Phase [deg] [1,2] West [3,4] East [5,6] South “Beam weighted” simulations of power and cross-correlation profiles for the six receivers: 0 2 4 60 100 200 300 400 500 600 700 800 900 Densities [1011 m−3] He igh t [ km ] 1 1.5 20 100 200 300 400 500 600 700 800 900 Te/Ti He igh t [ km ] Hypothetical ionosphere: Simulated co-pol and x-pol power distributions: 6 8 10 12 14 16 18 20 250 300 350 400 450 500 550 600 1 1.5 2 Time [Hours] DEWD 3Bb − Temperature ratio (Te/Ti) − Date: 24−Jun−2008 Height [km] Te /T i 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 6 8 10 12 14 16 18 20 300 400 500 600 0 1 2 3 4 x 1011 Time [Hours] DEWD 3Bb − Electron Density (Ne) − Date: 24−Jun−2008 Height [km] Ne [m −3 ] 0.5 1 1.5 2 2.5 3 3.5 4 x 1011 0 2 4 6 x 104 100 200 300 400 500 600 700 800 900 Power Ra ng e [km ] [1] West 1 [2] West 2 [3] East 1 [4] East 2 [5] South (Up) [6] South (Dn) 0 2 4 x 104 100 200 300 400 500 600 700 800 900 Correlation [1,2] West [3,4] East [5,6] South −100 0 100 100 200 300 400 500 600 700 800 900 Phase [deg] [1,2] West [3,4] East [5,6] South Time [Hour] Ra ng e [km ] DEWD 3Bb − South Beam (Up−pol) − Date: 24−Jun−2008 6 8 10 12 14 16 18 20100 200 300 400 500 600 700 SN R + 1 [d B] 0 1 2 3 4 5 Time [Hour] Ra ng e [km ] DEWD 3Bb − South Beam (Dn−pol) − Date: 24−Jun−2008 6 8 10 12 14 16 18 20100 200 300 400 500 600 700 SN R + 1 [d B] 0 1 2 3 4 5 Time [Hour] Ra ng e [km ] DEWD 3Bb − East Beam (Dn−pol) − Date: 24−Jun−2008 6 8 10 12 14 16 18 20100 200 300 400 500 600 700 SN R + 1 [d B] 0 1 2 3 4 5 Time [Hour] Ra ng e [km ] DEWD 3Bb − East Beam (Dn−pol) − Date: 24−Jun−2008 6 8 10 12 14 16 18 20100 200 300 400 500 600 700 SN R + 1 [d B] 0 1 2 3 4 5 Time [Hour] Ra ng e [km ] DEWD 3Bb − West Beam (Up−pol) − Date: 24−Jun−2008 6 8 10 12 14 16 18 20100 200 300 400 500 600 700 SN R + 1 [d B] 0 1 2 3 4 5 Time [Hour] Ra ng e [km ] DEWD 3Bb − West Beam (Up−pol) − Date: 24−Jun−2008 6 8 10 12 14 16 18 20100 200 300 400 500 600 700 SN R + 1 [d B] 0 1 2 3 4 5 Least-squares fit beam- weighted power and cross- correlation profiles obtained from the six receivers to estimate the Ne and Te/Ti profiles at 5 min integration intervals: Time [Hours] He igh t [ km ] DEWD 3Bb − Temperature ratio (Te/Ti) − Date: 24−Jun−2008 6 8 10 12 14 16 18 20 250 300 350 400 450 500 550 600 Te /T i 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 Time [Hours] He igh t [ km ] DEWD 3Bb − Temperature ratio (Te/Ti) − Date: 23−Jun−2008 6 8 10 12 14 16 18 20 250 300 350 400 450 500 550 600 Te /T i 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 Time [Hours] He igh t [ km ] DEWD 3Bb − Electron Density (Ne) − Date: 23−Jun−2008 6 8 10 12 14 16 18 20 250 300 350 400 450 500 550 600 Ne [m −3 ] 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5x 10 11 Time [Hours] He igh t [ km ] DEWD 3Bb − Electron Density (Ne) − Date: 24−Jun−2008 6 8 10 12 14 16 18 20 250 300 350 400 450 500 550 600 Ne [m −3 ] 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5x 10 11 June 23-24, 2008 Experiments: Ne and Te/Ti estimates: −200 −150 −100 −50 0 50 100 150 20073.5 74 74.5 75 75.5 76 76.5 77 77.5 78 78.5 Velocity [m/s] Po we r s pe ctr um [d B] West beam (Bow−tie) Date: 23−Jun−2008 13:25:00 282.15 km 297.00 km 311.85 km 326.70 km Spectral fitting and Te plans Velocity [m/s] Ra ng e [km ] West beam (One quarter) Date: 23−Jun−2008 13:25:00 −200 −150 −100 −50 0 50 100 150 200 0 100 200 300 400 500 600 700 800 900 70 71 72 73 74 75 76 77 78 79 80 Velocity [m/s] Ra ng e [km ] West beam (Bow−tie) Date: 23−Jun−2008 13:25:00 −200 −150 −100 −50 0 50 100 150 200 0 100 200 300 400 500 600 700 800 900 70 71 72 73 74 75 76 77 78 79 80 Velocity [m/s] Ra ng e [km ] East beam (One quarter) Date: 23−Jun−2008 13:25:00 −200 −150 −100 −50 0 50 100 150 200 0 100 200 300 400 500 600 700 800 900 70 71 72 73 74 75 76 77 78 Velocity [m/s] Ra ng e [km ] East beam (Bow−tie) Date: 23−Jun−2008 13:25:00 −200 −150 −100 −50 0 50 100 150 200 0 100 200 300 400 500 600 700 800 900 70 71 72 73 74 75 76 77 78The spectrum Doppler shift is a direct measurement of the drift. The spectrum width will tell us what the temperatures are. Once the densities and Te/Ti are known, we can analyze our spectrum measurements and estimate the remaining parameter (Te) from the width of the spectrum. For this purpose an Incoherent Scatter theory valid for all magnetic aspect angles is needed. Jicamarca antenna beam illuminates this range of magnetic aspect angles Collisional IS spectrum model Frequency (Hz) As pe ct an gle (d eg ) Electron Gordeyev integral (Ne=1E12m!3, Te=1000K, !B=3m) !1500 !1000 !500 0 500 1000 15000 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Re {Je (f)} (d B) !20 !10 0 10 20 30 40 Based on the Fokker-Planck collision model, we have developed a Monte-Carlo procedure to compute the electron Gordeyev integral for all magnetic aspect angles (including the perpendicular to B direction). Using this collisional IS spectrum theory and including magnetoioinic propagation effects we can model the beam- weighted spectrum measured at Jicamarca. Using this model, we can fit the data and obtain Te. Of course, we can use these estimates to improve our estimates of Ne and Te/Ti. Conclusions, Future Work • We have learned how to model and fit multi-beam/multi-polarization power and correlation data to estimate electron density and Te/Ti profiles in addition to F- region vertical and EW drifts under quiet (non-turbulent) ionospheric conditions. • We still need to streamline the process for routine operational use. • Spectral fitting for Te estimation should now be possible given the Te/Ti profiles and the development of collisional ISR spectral model. • This is the fulfillment of objectives set about a decade ago, when spectral Te estimations were first tried (Bhattacharyya, 1998) and the inadequacy of ISR theory close to perp-to-B was first realized. • June 08 data set will be used in our renewed attempt to estimate Te. • The forward models developed should also be useful in model verification/assimilation: e.g., in LISN project, we can examine to what extent the LISN model ionosphere (Ne, Te, Ti) fits the Jicamarca multi-beam/multi-polarization correlation and spectrum profiles --- a first step towards assimilation of JRO data in LISN.