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Chapter 4

Statistical Characteristics of MST Radar Echoes and its
interpretation'

b Rownalp F. WooDMmaN
Jicamarca Radic Observatory
Instituto Geofisico del Peri

Introduction

As we shall see laler, radar backscattering is produced by fluctuations in
the refractive index of the illuminated medium wilh scale sizes equal to 1/2 the
wave iength of the eiectromagnetic probing wave. The fluctuations are a random
process, and so are, consequently, the signais received by the radar. Both have
to be characterized statistically. The power of the technique is based en the fact
that the statisticai parameters that define the signal received are related to the
slatistical parameters of the medium. This allows us to remote-sense the
medium from the ground.

| It is important, then, in order to understand the technique, to know the
statistical ways of characterizing 1) the fluctuations in refractive index and 2)
signals received. The second may be famiiiar to many of you. The first may not.
The second is easier 10 understand since it is a one dimensional process (lime).
- The first is harder, since involves processes in four dimensions, 3 in spage, and 1
in time; on the other hand, it uses extensions of concepts deveioped originaily
for one dimension, and shouid present no difficulties if these one dimensiconal
concepts are understood.

Fluctuations In Index of refraction come about malnly as a consequence of
atmospheric turbulence. If we are going to use these fluctuations to study the
atmosphere, it is important, in order to interpret the signals received, that we
understand some of the fundamental concepts reiated to atmospheric turbulence.

Because of above reasons, we have dacided before entering on the main
subject of our lecture, that of the characterization of radar echces and ils
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interpretation, to review some fundamental concepts in random process statistics
and in atmospheric turbulence,

Some statistical concepts

There are two concepts of fundamental importance which should be
reviewed: Autocorrelation Function and Frequency Power Spectrum. They are
interrelated. One can be defined in terms of the other. Mathematically it is much
simpler to define the first, although many find easier to grasp the physical
significance of the second.

Given a time series, either as a sequence of numbers in time  §,5,5,..5,.., Of
as a random function of time, s(), (We will use s() for both cases for
convenience, unless we want to stress the discrete nature of a sequence }, ils
autocorrelation function is defined as:

p(t)= E[s(t),5(t+1)] (1)

where E[ ] stands for the expectation of its argument. Good estimators of this
expectation are:

p'(1)= SOSHT) ' 2)

it the process is stationary ,or, under more general conditions,
p'(1)= <s@)s(t+1)s, . (3)

The overbar stands for a time average of duration T, and the brackets
stand for averaging over n identical experiments or observations.

The second estimator allows us to evaluate correlation functions even in
the case the process is not stalionary. When the process is not stationary, we
should write p(t; 1) , to stress the dependence on t, the time at which the
correlation is evaluated.

Let us see what a correlation function means physically. Lel us take
equation (2) as a good definition (it is, for all practical purposes, it the time T
taken for the average is long enough ). Fig. 1 show a sample function of the
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Figure 1 — Three realizations of the s(t)s(t+t) process illustrating its
evantual contribution to p'(t)= s(ts(t+t) ,T for t= 0, small and large.
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random functions s(t),s{t+1) and s(t)sit+t) for three displacements, 1=0, 1= "small”
and t= "large”, When 1=0, we get s(t)* for the product function, the integral of
which carresponds to an estimation of the power of the process, which we use as
a referencs.

If we increase t by small amount, s(t)s(t+r) does not vary much from the
=0 case, and the integral is slightly smaller than the power . |If t is large
enough, it is equally probable for the product to be positive or negative, and the
integral is zero.

But, what is small enough and what is large enough? The answer is
given by autocorrelation function itself. Note that, between the two 1's depicted in
tigure 1, there should be a 1, 1, at which the correlation is equal to 0.5p(0) and
that the correlation function decays from its maximum value to zero in a
characteristic time, 1, . This characteristic time or, alternatively, one derived from
the normalized second moment of p{t), has a ready interpretation and gives us
an idea of how fast the process varies. It can be centuries (changes in the
gioba! temperature of the earth) or hours (changes in the ambient temperature)
or, seconds {changes in the punctual tempserature ot a turbulent process) or any
other time scals. This is the most usual interpretation given o the correlation
function. There is more information , of course, besides the power and the
charactenstic time of the process in the functional shape of the correlation
function; for instance, if the shape is oscillatory it tells us that the process is
quasi-sinusoidal with a period given by the period of the osciliations.
Neveartheless, in many cases, it is sufficient 10 give only this simple interpretation.

Power spectrum — when defined carefully (e.g. Papoulis, 1965 is defined
as the Fourier Transform of p(1), namely

F(w) = IIZTCJr-p(T) exp(—fart) dt 4)

This is is a modern definition. The earlier definition and, in any case, a
good interpretative way of looking at it, is that the power spectrum, F{w),
measures the power density of a process at different frequencies. This means
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that, if the process is fed to a bank of filters centered at frequency w, The
average power of each filter would be proportional to F(w )}, where w, is the
center frequency of the filter. There are many estimators of F(m) which conform
to this definition. For instance

~f(t) exp(—jot) dtj=>
F e <IT (1) exp(—ot) di )

This‘ is equivalent to getting the Fourier transform of a subset of the
sequence, obtain its power (square it) and average many sub-sequences.

Extension to 3-D_and time processes

A good example of a three space dimensions and time random process is
the temperature or the velocity of a boiling pan of water, or any other turbulent
process. These processes are also characlerized by its autocorrelation function,
p(rt). It is defined in a fashion similar to its one dimensicnal case. For
instance, if we take n to stand for the deviations in density, or the refractive index
of a medium , its autocorrelation function is defined as :

p(r,x) = E[n(xtn(x+r,t+1)) (6)

That is, it is the expactation (in practice,the average) of the product of the
density at point x at time t , multiplied by the density at a point displaced r from
X, at a fime t units later. If the medium is stationary and homogeneous p does
not depend on x or t. Otherwise, we should write p(rT,xt), since the
autocorrelation would be different if measured in a different place or at different
time.

As in the case of one dimension, there is a characteristic length, r, , and a
characteristic time, 1, much beyond which the autocorrelation is small or zero. If
the medium is isotropic, the characteristic length is the same , regardlass of the
diraction of the displacement, 1. In this case we can use the magnitude , r,
instead of the vector , r, if the medium is anisotropic, there can be as many as
three characteristic lengths, one in each major axis direction.

As in the case of onedimension, the characteristic time gives us an idea of
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how long we have to wait before the three dimensional structure of a sample
process changes significantly. Similarly, the characteristic scale gives us an idea
of how far we have to move from a specific point, from which we have taken a
snap shot at the process for a second snap shot, taken at the same instant, to
differ significantly and yet show some resemblance. The directions of
displacement should preferably be taken along the three major axis of the
correlation function.

To envision the meaning of statistical anisotropy, let us consider the two
dimensional case of the vertical displacement of the surface of a choppy ocean
produced by a wind of constant direction, Here, there would be a tendency for the
waves, or aven swell, to form in with preference in cne direction, that of the wind.
If we displace ourselves along the crests of the waves, we have to move much
further for observational snapshots to look different than if we displace ourselves
along the direction of propagation of the waves (direction of the wind). The
characterstic langths in this case are different, being shorter along the direction of
the wind.

Again, for the purpese of an introductory interpretation, we have talked
about a single parameter per dimension. This is over simplified. One or few
parameters does not replace the whole correlation function unless we accompany
it with knowledge of its functional shape (e.g. Gaussian, Lorentian, sinusoidal,
expeonential,etc.), or by a sufficient number of evaluated points.

There is also a counterparl in 3-D processes to the concept of frequency
power spectrum. In this case we speak of wave-number—vector (extension of
wave-number) power spectrum, or k-spectrum.. In an analogous fashion, we
define it as the 3-D spatial Fourier transform of the space-time autocorrelation
function, p(r,1), specitically,

o(k) =1/(2ny’ fﬂ p(r,0) exp(-k.t) d'r N

Note that we have set 1 equal to zero . Therefore in this definition, we are
performing the displacements in space at the same instant of time, ie. no time
dynamics is included. We could also have used p(r) as a symbol for the same
concept. Again, its interpretation is similar to the frequency power spectrum. We
can interpret ¢(k) as a function which describes the "power" density of the
different wave number components of the process. We imagine the process to
result from the ( Fourier } superposition ot different spatial waves with different
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directions and wavelengths , each with a power ( amplitude squared) given by
¢ (k).

There is an important concept In talking about the directional scattering
properties of a medium. One talks about the aspect sensitivity of the scatterers. It
is a consequence of the anisotropic character of the ¢(k) which characterizes
anisotropic turbulent fluctuations. This anisotropy is sometimes better perceived
from the shape of the autocorrelation function, p(r). In this regard it should be
kept in mind tt]at, in any Fourier pair, like ¢(k) and p(r), wide functions transform
into narrow functions and viceversa. This means that if we have a horizontal,
pancake—like spatial autocomrelation function, it transforms into a verical pencil-
like k-spectrum,

We can relax, above, the restriction for T to be zero. We would obtain a
function, ¢(k,x), which associates cerain dynamics to each spatial wave
component. Each component will have a characteristic time associated 1o its life
time. This does not mean that the process no longer has power at that paricular
wave-number vector, but rather that wave component is completely independent
of the one observed a few characteristic times ,t,, ago.

To further complicate matters, we can perlorm an additional Fourer
transfoermation in time on p . We would obtain

Ok,o) = (1/2x ) f ) p(r, 1) exp(—K.r—jwt) d’rdt . (8)

In this case the dynamics of the process, for each wave-number vector, k, is
represented by a superposition of temporal oscillations with frequency ®, and
power density ®(k,m).

We are not presenting this cancepts for purely academical reasons. As we
shall see later, the signal statistics of the echoes received in a MST radar are
directly related to the spectrum ¢ (k1) (or @k, @) ) which characterizes the
density fluctuations of the medium. Although here, k, is no ionger a variable but
an specific wave—number vector determined by the frequency and geometry of
the radar. We should, then, be familiar not only with the mathematical definition of
these concepts, but with their physical significance as well. Only then we can
_ atiribute physical significance to the results of a MST radar experiment.

We have used the terms stationary and homogeneous. In the theory of
random process, they are defined as follows, A process is said to be stationary, it
the expectation of any function of its value, or values ( for instance E[s(t)] and
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E[s(t)s(t+1)] ), is independent of the time ot the sample function taken. It is said
to be homogeneous, if the expectation is independent of where the values of the
sample function are taken.

In the exact context of this definition, the time and physical space have to
be infinite in extend. In practice one uses the concept of quasi-stationarity and
quasi-homogeneity, in which the "any time" or "any point" implicit in the strict
definition is replaced by finite intervals of time and finite regions of space,
sufficiently large as to contain a large number of charactenstic times and length
scales. The assumption of stationarity or homogeneity is considered to be valid if
they hold within a particular observation time or region.

For further reading see Papoulis (1965) and Tatarsky (1961).

Some turbulence concepts.

The MST radar depends on turbulence to obtain echoes from the clear
atmosphere. It uses turbulence as a tracer of the dynamics ot the background
atmosphere. Also, since the statistical parameters of the received signal depend
on the statistical parameters of the refractive index fluctuations —produced by
turbulence—, the radar can also be used to study the turbulence process proper.
It is important, then, to understand some of the basics of atmospheric turbulence.

We would like 1o underline "basics™ since turbulence theory is a difficult
subject. In fact, as a consequence of its highly non linear behavior, and in spite
of all the advances in its mathematical description, we are still not able to predict
its behavior, even in a statistical sense.

The meaning of turbulence varies from a general dictionary type definition
to controversial and more limited definitions. For us, it suffices to define it as the
state of a fluid in which the velocity field is rotational and random in three
dimensions and time.

Although some atmospheric physicists envision the existence of two
(space) dimensional turbulence in the atmosphere, we will use the term only in a
three dimensional context. We are interested in 3-D turbulence with length
scales no larger than about a few hundreds of meters in the stratosphere and
stable troposphere (non—convective) and a few hundred to slightly above a
thousand melers in the mesosphere. We are also occasionally inlerested in the
small scales (meters to hundred of meters) as well as the larger ( kilometers )
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scales of tropospheric convectional turbulence.

For turbulence to exist we need a fluctuating velocity field. Radars, on the
other hand, are sensitive fo fluctuations in refractive index or, equivalently,
fluctuations in density or temperature at conslant pressure. Fortunately, in most
cases, velocity fluctuations bring about density fluctuations, although this is not
always the case.

f we consider a non stratified atmosphere (no gravily) at constant
pressure, veldcity fluctuations would not produce density fluctuations. Different
parcels of air wouid interchange positions, but since they have the same density,
no fluctuations would be produced. But, if a gradient of density exisi, for any
reason, then, regions of higher densily would be brought to regions with lower
densily and viceversa, producing fluctuations in density and hence in refractive
index. ‘

I we stear pure water, for instance, we could not perceive optically any
change, but if we mix it with clear syrup, it would produce a whitish fluid (while
the emuision last) as a consequence of the light scattering the small scaie
fluctuations in refractive Index are capabie to produce,

Mixing in a gravilational stratified almosphere is slightly morae complicated.
We have to introduce in this case the concept of "potentiai density” and "potentiai
temperature”.

Let us consider a medium with a constant temperature profiie. Under the
influence of gravity it would have a density like n = exp(-z/H). If we interchange
two parcels of differemt altitudes adiabatically and in pressure equilibrium, we
would coo! by decompression the parcel moving up into a lower pressure, and
heat the parcel moving down into higher pressure. So, if we steer locaily an
atmosphere with a constant temperature profile, we end up with fluctuations in
temperature, apparently contradicting ocurselves. It is more convenient  —
concepiually and mathematically — to characterize, instead, the state of the
medium by the temperature it would have if it were 1o be brought to sea level
adiabatically. This "temperature” is called potential temperature. It is a conserved
property of the medium, ie. it does not change as it is moved adiabatically to
other alttudes. In the language of turbulence theory it is said that it behaves as
a passive scalar. We can define a potential density in a similar fashion.

For turbulence 1o produce fluctuations in density or temperature we need a
gradient in potential density. Constant potential density backgrounds do not
produce fluctuations. When an atmosphere has such profile, we say that the
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{actual) temperature has an adiabatic lapse rate (about 1 every 100 meters).
The stratosphere has sither a constant or positive gradient temperature profile,
hence it deviates more from an adiabatic lapse rate than the troposphere. It is
potentially capable, then, to produce larger fluctuations for the same mixed layer
thickness than the troposphere.

In the mesosphere the refractive index is produced by the density of free
electrons. The gradient of both potential and real electron density gradient is
positive and hence capable of producing refractive index fluctuations: when mixed
by turbulence.

Assuming an initia! gradient in a passive scalar, one can derive (e.g.
Tatarsky,1961) a quantitative formula relating the standard deviation of the scalar
{like potential temperature or potential refractive index) in terms of the original
gradient and the depth of the turbulent mixing layer thickness. Assuming further
a Kolmogorov power spectrum density law (see below), that is a dependence of ¢
on k of the farm k™" He derived and expression for the standard deviation of
the fluctuations of the form

¢n(k)= a 0.033[.““ (grad n)lk-lm o)

As expected the flucluation density at any wavelength is directly
propontional to positive powers of the original gradient and the scale of the largest
mixing eddy, L,. "a" is a constant af arder unity.

We can also estimate roughly the vanance on the velocity field in the
following way. If we mix a (stable) gradient in potential density we produce work,
since we are moving up potentially heavier and down potentially lighter parcels ot
air. We need then an energy source. This source comes from shear. Without
shear, there is no source and no turbulence. The original shear after turbulence
is reduced to very low value due to turbulent viscosity. The excess of kinetic
energy resultant from the ditference in velocity of the originally shear profile and
the new constant velocity protile (see fig. 2) has to go into potential enargy, result
of the work we mention earlier, and the random turbulent kinetic enargy. it we
assume equiparition of the energy derived from the shear into 4 parts, 3 for the 3
different orthogonal components of the turbulent velocity (<u™>, <v>, <w™> ) and
cne for the potential energy, and we further assume a normal distribution of
velocities, we can derive that the variance of any of the velocity components
would be approximately (Woodman and Guillen, 1974; Sato and Woodman, 1982):

s
- 4
.
ﬁ‘j‘.i

T

Tor i

5.

S b o

g s,

b

SR ke




Figure 2 — Schematic profile of the turbulent fluctuating component, u, and
its relationship to Av, the shear component that is randomized by
turbulence
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<u™> = 1/48(Av)? (10

where Av is the difference in velocities between the top and bottom of the layered
region that went turbulent i.e.

<u = 1/48( L, dwidz ) (11)

A normal distribution of velocities is a fair assumgption, since il parcel of
fluid is influenced by the superposition in space and time ( velocity is the integral
of force) of many independent forces and the limit theorem applies. This is an
important additional statistical property of the medium with consequences in the
shape of the correlation and spectrum of the signal.

A related subject to that of equations (10) and (11} is that of Richardson's
criteria for stability. It says that a layer is unstable if

Ri = (g d/dz Infy (dv/dz)* < 1/4 (12)

The criteria can be interpreted as a condition for turbulence to be energetically
possible, namely the available kinetic energy in the shear has to be 4 times larger
than the gain in potential energy after the mixing. This is in agrement with above
arguments,

Some of these criteria can be used to extract hidden information from MST
radar expenments, information that on first thought should not be available.
Woodman and Guilien, for instance, using above relations, assuming that the
onginal shears are marginally unstable, and from the measured values of the
spectral width, deduced that the turbuient layers in the stratosphere were of the
order of 50 meters, even though the resolution of the instrument was 5 km. Sato
and Woodman have later validated this arguments by measuring <u™ and L,
with the 150 meter resolution 430 MHz radar at Arecibo.

Richardson's criteria telis us that turbulence Is energetically possible, but it
does not tell us how it comes about. We need an unstable process that would
make small disturbances grow and eventually brake down into the non-linear
regime that we call turbulence. One such a process is the Kelvin—Heimhoitz
instability. The process is analogous to the way wind, blowing on the ocean
surface, peaks a particular wave, that which has a phase velocity equal to the
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wind velocity, and make it grow untit it breaks down. in the atmosphere shear
effectively produces a wind that blows with respect to the denser fluid underneath,
it peaks a particular gravity (buoyancy) wave, and makes it grow until eventually
brake into a billow and this in turn into smaller scale turbulence. The phenomena
is confined to the layers within which the process is energetically possible, i.e.
were Richardson's criteria is satisfied.

Turbulence is also possible without shear, if the numerator in equation (12),
that is it the gradient in potential temperature, is also zero or negative. We then
say that the atmosphere is statically unstable. We effectively have a heavier fluid
resting on top of a lighter one, a condition that is definitely unstable (Raleigh—
Taylor instability).

Both processes mantioned above, Kelvin-Helmhoitz and Raleigh—Tayior
instabilies, can come about in the atmosphers as a consequence of large
ampiitude gravity and lower frequency waves in the atmosphere. These waves
have a velocity field which Is transverse to their k . Thelr k-vector is aimost
vertical. 1t is then possible, as the waves grow in amplitude with height, to
produce aimost horizontal shears that satisfy Richardson's criteria. The slight tilt of
the velocity fiald of the wave is also capable to lift regions of higher (potential)

density above regions of lower density, making them statically unstable.

An often quoted and very important conclusion that has come out of
turbulence theory is Kolgomorov's wave-number spectrum. It says that within a

given range of wave-number values the wave-rnumber power spectra is of the
form

Kip(k) o K™ (13)
We have place the K factor on the left hand side to conform with tha -5/3 power

law which is often quotad in the literature. The difference comas from the use of
what is referred as the one dimensional ( in three dimensions ) spectrum, in

- which the Fourier transformation from r-space to k-space is performed by
-transforming in one dimension integrating along the magnitude of r.

The range within which this law is valid is called tha "inertial subrange®.
The relationship can be derived on pure dimensional arguments with the
assumption that for scaies smailer than the primary energy containing scales, but
large enough so that molecular viscosity does not play a role, there should be a
dimensionless reiationship between eddies of ditferent sizes and that they should
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be isotropic. The law brakes down at dimensions close to the largest eddy
possible, and on the other end, at small dimensions where the inertial forces are
comparable to the ones produced by molecular viscosity , i.e. at scales where
molecular viscosily becomes important in extracting energy ( into thermal) from
the eddies. Within the inertial subrange, kinetic energy is cascaded from the
larger o the neighboring smaller eddies.

Kolmogorov's law is isotropic and valid for non stratified media. In the case
of the gravity stratified atmosphere, Kolgomorov's law is valid for the smaller
scales, where potential energy is smaller than kinetic energy. On the larger scale
it fails before it reaches the largest scales. The region between the "outer scale ~
and the inertial subrange, where potential energy is significant is referred to as
the "buoyancy subrange”. Not only the —5/3 power law fails; isotropy is no longer
true, gravity, and the unstable phenomena responsible for the larger eddies, have
preferred directions which spoil the isotropic symmetry.

The turbulent slate of a fluid is often specified by the outer scalg, ie. the
size of the largest eddies, and the energy dissipation rate, £ (e.g. Hocking,1983). it
can also be specified by the outer scale and the velocity variance, the second
being also related 10 the energy levels involved. Both are theoretically related
through the molecular viscosity of the fluid. We prefer the velocity variance for
MST radar work, since it involves a radar measurable quantity, as compared to a
theoretically derived e, which involves certain assumptions.

For further reading see Batchelor (1953), Tennskes and Lumiey(1972),
Bolgiano(1968) and Tatarsky

Relationship between radar signals and atmospheric medium_statistics

Signal statistics

The usefulness of a MST radar is based on the close relationship there is
between the statistics of the signa! received and the statistical properties of the
atmosphere. It is our intention to show and discuss this relationship, its
implications and limitations. Before we get into this task, let us first review the
stalistica! nature of the signals received and ways to characterize their propertias.

The experimental setup of an atmospheric radar has bean covered by the
previous lectures (See also Balsley and Gage,1980). Regardless of the possible
variations of radar systems, it is convenient to think of the signals as a two
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dimensionai process, but in which both dimensions have units of time. The idea
is depicted in figure 3. The figure shows radar signal returns for a sequence of
identicai puises. We are showing the signals after fiitering and decoding, so we
can stiii talk about identical puises even if we have used a compiementary pulse
scheme. In one of the dimensions we have the deiay time after the time of pulse
transmission. On the other dimension, we have the time of puise transmission.
The process is discrete in this dimension. We can then represent the signal
received as s(i,t'), where t stands for the (discrete) time at which the pulse was
transmitted, and t' the delay time after the puise. t' is continuous as an anaiogue
output of the receiver, but in practice it is aiso discretized by the sampiing and
digital processing. As before we will be careiess in differentiating the continucus
vs. the discrete representation of signals.

It is convenient to make a change of variabies and replace t by 2h/c,
where h stands for the radar range defined by the deiay t, considering a pulse
propagation at he speed of iight, c. We can then write s(t,h) to describe the
signal, dropping the 2/c factor from the notation for convenience. In this way we
get around the disturbing dependence on two times as independent variables.

The radar signal is intrinsicaily a non-stationary time process as a
consequence of the non-homogeneous nature of the atmosphere. By writing it In
the form s(t,h) we have converted it into muitipie (practically) stationary processes
in ime t, one for each range of interest. We can change our notation once more
and write s,() to stress the parametric nature of h. We can now think of h as a
iabel, labeling paraliel processes, one for sach altitude.

We know how to characterize a random stationary process: by its
autocorreiation function. f the echoes come from a (practicaliy) homogeneous
turbulence, we can further argue using the limit theorem (sum of many

“independent contributors) that the process is Gaussian, in which case ail the

information we can extract from the process is in its autocorreiation function.
Gaussian or not, C,(1) is defined as

C.(1) = E[s,(1)s,(t+1)) (14)

A good estimator of C, is <s,(t)s,(1+1)>, where the average has been evaluated by
taking n pairs of sampie points. Altemativeiy, as we have aiready seen, we can
characterize the signais by its frequency power spectrum, F (w), given by the
Fourier transform of C,(tr). Good estimates of F,(w) can be obtained from
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Figure 3 — Two dimensional schematic representation of the radar signals.
{ is the time of each radar pulse and t” the radar range delay. The
process of interest is S,(t), i.e. the sampled signal at a given range,
h, as a function of the time t of pulse transmission.
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discrete Fourier transforms of C,(v) or directly from the sequence by the
techniques that wili be described later in the iectures.

So far we have considered in the introduction and the discussions above
that the radar signals received are real. Indeed they are. Wa live in a real world.
On the other hand, for practical reasons, the signals which originally have a
frequency almost equal to the transmitter frequency are converted to base band.
To preserve all of the information contained in the original signal we need two
converted signals, The so call Q and | components ( see lecture on radar
hardware). 1t can be shown (e.g. Woodman and Kohl, 1976) that if we form a
complex signal with the Q and | component as real and imaginary component,
everything we have say is valid, if we replace s(l)s(t+1) by s(f)s’(1+1). We can
recover the statistics of the signals before baseband conversion by multiplying the
correlation function by exp{jat), where «, is the transmitter frequency, and then
taking the real parnt. Any complex phase can then be interpreted as a real phase
with respect to the transmitter frequency. In particular a Doppler shift in the
received signag is manifested as a complex phase of the form gt in the
converted signal, and as a complex phase of the form wyt in the cormeliation
function.

In the frequency domain, that is in the corresponding frequency power specira,
the effects are simpler , a spectrum of the form F(w-w,) is converted to a
spectrum of the form F(w). A Doppler shift shows as a displacement in both.

A _general relationship

In the appendix we have derived a very general relationship between the
statistical of a radar signal and the statistics of the fluctuations in density ( we
could have used the dislectric properties, the temperature, electron density or any
other relgvant linearly related quantity) of a scattering medium. There, we take the
approach of considering the most general conditions the least amount of
approximations. Particular cases allow further approximations and specific
exprassions that one can use in praclice to estimate medium paramaters or 1o
discuss instrumental effects. It has the advantage of going from the most general
o the particular keeping good frack of the approximations involved and their
limiting implications. Furthermore, it does not take any additional conceptual effort
to derive the most general expression, namely
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C(t, ) = f d3xd’r dt'dt’ x(trx) ¥ (+Tt+r,x+r) p(r,r:x) (15)

Cumbersome as it looks, because of the variety of arguments, the expression
represents linear operations involving only two functions of easy interpretation, %
and p. p is the space- time autocorrelation function of the fluctuations
responsible for the scattering. It characterizes the medium and depends only on
the propertties and dynamics of the medium. The function x(t; t',x) may be called
the "instrument function”. It can be interpreted as the output of the instrument as
a function of time as a consequence of a given arbitrary transmitter output shape
{pulsed or continuous) having placed a point scatterer at point x in spacs, for an
instant, at time t'. It is analogous to the impulse response of a system, although
here the impulse is in the system charactenstics: the scattering density.

The instrument function , yx, includes the pulse shape of the transmitter,
any (amplitude, phase or frequency modulation) coding and decoding, match
filtering , the geomsetry of the experiment, the transmitting and receiving
characteristics of the antennas and the propagation properties of the medium,
including any refraction if necessary. The determination of p is a statistical
problem related to the physics of the medium. the determination of x is an
elactronics and electromagnetics problem. As far as the characteristic of the
medium, it includes non homogeneous and anisotropic cases. It is also valid for
ionespheric radars including the incoherent scatter technique.

Although not discussed here or in the appendix, the approach can be
extended easily to the case the system has two outputs, like in the case of a
radar interferometer. Woe just replace the product of identical y’s by the product
XeX» Where the a and b label stand for the outputs of the two antennas, or the
two frequencies in a frequency domain interferometar (Kudeki and Stits , 1987)

At the appendix we have derived expressions which include explicitly the
transmitter pulse shape , the receiver filter and deccding impulse response, and
the antenna pattern. In order to perform some of the integrations and make
discussion possible, we have also assumed that the scattering volume, defined by
the antenna patterns and the effective pulse width is larger than the characteristic
sizes of the fluctuations, although this assumption can be relaxed if necessary. It
is possible to reduce the complexity of the expressions further, taking
approximations which are valid for spacific cases.
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The MST case

In the case of MST or clear—air radars it is well justified to assume that
the characteristic time of the medium is much larger than that of the pulse and
matching fiter. In that case we can use eguation A.15 and write (with a slight
change in notation):

Cleh) = f dsdi’ K} ok (§)1:8.") p(h=h")p (h=-h'+1) (16)
1

It differs from the appendix notation in the use of h' for the range {(delay) variable
of integration and h for the "range" sampling time. We have also conveniently
selected length units such that ¢/2 { halt the speed of light) is unity. This allows
us to use h and h' for a spatial as well as a time variable. The coordinate
system of integration is defined by surfaces of equal delay and an arbitrary two
dimensional coordinate, s, in the transverse diraction. k is in the direction of h.
The directicnal dependance of ¢ on § is shown explicitly. This dependance is
impaortant in the case of anisotropic turbulence and will be responsible for aspect
sensitive effects. The possibility of non-homogeneous turbulence is also shown
explicitly in the dependance of ¢ on h and s. This is imporant since it is known
that turbulence occurs in layers thinner than the usual range resolution of the
radar. The formula is valid for mono—static and bi-static radars, and K(s,h) stand
for the product of the transmitter and receiver arntenna weighing patterns. The
dependance of K in h is usually slow ( mainly the inverse of range squared ) and
can be taken out of the integral.

It is important to stress the fact that k, is not the variable vector k; it is a
constant vector defined by the vector difference of the incident and the scattered
wave number vectors which characterize the incident and scattered
electromagnetic wave which leaves the transmitter and arrives to the receiving
antenna, respectively. In the case of a.backscatter radar it has a wave number
twice the coresponding wave number of the illuminating wave, and the same
direction,

If we crosscorrelate, as we shouid, only samples which correspond to the
same range, then we have an expression for the auto correlation of the time
stationary process s,(1) we defined above. This is equivalent to restricting the time
of the second sample to be at even multiples of the pulse repetition period. In
which case, since the filtered pulse function p(t) is penodic, i.e. since p(t)=
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p(t+nT), we can replace the product of displaced p's above by |p(h—h").
If we further assume that the medium is homogeneous in the transverse
direction s, we get a simpler but yet very general expression for C(t):

Civ) = f d’s K¥(s) fdh' o(k,(s),T; h) Ip(b-h"f (17

Betore we continue with the discussion of this equation it is convenient to
make one further approximation, discuss the results and then come back to this
more general expression.

If we further assume that we have a homogensous atmosphere in all
directions, and that the antenna has a beamwidth much narrower than the
characternistic angular width of any aspect sensitivity which ¢(k(s),t) may present,
we can take ¢ out of the integral and wrnte

C(r) = B o(k,.7) (18)
or

F(w) = B d(k,,w). (19}

The success of radars to study the atmosphere is based on these simple
formulas. Even in the case that the approximations behind them are not quite
valid, its discussion allows us a first order approximation of the results. We shall
discuss the significance of this equation first, and then remove some of the
approximations that make it valid.

We will discuss only the implications of the terms ¢ or & on above
equations. Since both expressions are interrelated, we will most of the time limit
our discussions to the time domain expression, i.e equation (18) and extend it to
the frequency domain (equation (19)) when desirable. We will not discuss the
proportionality term, B, since that is equivalent to a discussion of the radar
equation, which we have already seen in the previous lectures.

The first conclusion we can derive from these expressions is that the
amplitude and dynamics of the radar signal depends linearly on the amplitude and
dynamics of only one Fourer component of the density fluctuations of the
medium, that which has a wave-vector equal in amplitude and direction to twice
(backscatter case Jhe wave-vector of the probing electromagnetic wave. In
terms of wavelengths, the radar is sensitive only to fiuctuations with a wave
length half the wavelength of the probing wave and a diraction equai to the line
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ot sight. The radar effectively filters out very sharply all the spatial Fourier
components which are not equal to k.. This wave component is still a random
process. lts dynamics is characterized by its temporal correlation function, ¢(k,,t).
The signal received has the same dynamics as this particular wave component.
The "power” , i.e. the amplitude squared averaged, of the particular wave
component of the density fluctuations the radar is sensitive to, is given by ¢(k,,0).
Therefore the power of the radar signal is proportional to the "power” of the same
spatial wavle component. Furthermare, if we assume that the k—spectrum follows
a Kolmogorov law, we can indirectly infer the power density at other wavelengths.
1t the medium is inmoble with respect to a frame of reference, in this frame
of reference we can show that ¢(k,x) is real. This is a consequence of the
invanance of p(r, t) under an interchange of r with —r for any <. If it were not
invariant we would violate our inmoble assumption since there would be
dynamically a preferred direction. An observer maoving with respect to this
reference at velocity v would measure instead a correiation function of the form
p(r-vt, 1), as a consequence of a transformation x' = x—vt in the defining equation
(6) for p. Using the displacement theorem of Fourier transform pairs, we derive a
k-spectrum of the form ¢(k, t)exp(—k,.vt). Repiacing this spectral form in
equation (18), and remembering that ®(k, 1) is real,we conclude that the phase
slope of the signal correlation is a measure of the projected velocity of the
medium with respect to the radar. The projection is along k.. In terms of the
frequency power spectrum F,(w), again using the displacement theorem, we get a
new expressior, F (o-w,), where , is , not surprising, the Doppler fraquency,

Wy = K.V = (v/20)w, . 20)

Our next step is to show that the characteristic time of the signal
correlation is determined by the variance, <w™, of the turbulent velocity. This is
better shown in the frequency domain. if the scattering volume is larger than the
largest eddies, we are sure to have a good sample of all possible velocities within
the volume: Normally the eddies are much larger than the wavelength of the
fluctuations the radar is sensitive to. We can then divide the scattering volume
into many scattering sub—volumes. The signa! received would be equal to the
sum of each of the contributions of these sub—volumes, each of which would
impose a Doppler shift proportional to its averaged projected velocity w" . This
projected velocity would not differ much from a corresponding local w', since we
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know from turbulence theory that most of the energy is in the largest scale
eddies. Therefore the power frequency distribution ( spectrum) of the
backscattered signals is going to be distributed in the same way as the probability
distribution of w' . Its second moment, o, would be proportional to the variance
of the velocity <w™>, with the same constant of proportionality as the one which
relates the velocity to the Doppler shift, but squared, namely

o = o <w™>14c? | (21)

Furthermore, we have mentioned before that from experimental results as
well as from limit theorem arguments, we expect the random turbulent velocities
to be normally distributed, therefore, we also expect the frequancy power
spectrum of the radar signals to be distributed likewise.

A normal frequency power spectrum is defined by three parameters: its
area( total power), disptacement and width; or, alternatively, by its three first
moments. It transforms to an autocorrefation function which is also normal,
although complex. The three parameters transform into : the amplitude , phase
slope and width of the autocorreiation function, respectively. That is all the
statistical information either one of them contains, and that is all we should look
for in this case. On the other hand we have seen that they are related to very
important parameters of the medium. In fact, the relation and importance holds
even if normality is not assumed.

Let us come back to the more general equation, (17). The whole
expression can be taken as a weighted averages of ¢, averaged over all ranges
weighted by the filtered pulse shape squared, and over all angles weighted by the
antenna pattem. In the case of a bi-static arrangement, the averages are taken
over surfaces of equal delay ( "range") and over appropriate transverse
coordinates ( "angla™).

The pulse function is non-zero for values close to h-h'=0 , and a depth
equal to its width afler convalving it with the filter function (similar shape for
matched conditions). this means that the range integral is eftectively sampling &
at h'=h , averaging neighboring values within approximately a pulse width.

Similarly, the antenna weighing function is non-zero for values close to the
axis of the beams, and a width given by the beamwidth of the antennas.

it the dependance of ¢ on s or h is relatively siow as compared to the
width of the weighing functions p* and K?, an average value of ¢, representative
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of the center point of the sampled scattering volume at range h and center angle
of the beam patterns s= s,, can be taken out of the integral. The integrand is
reduced to the two weighing functions, which integrate to a volume V, as large as
the non zero regions of p’ and K?, multipied by the proportionality constants
imbedded in them. The result,

Cit) =b V ¢k, t. h), 22)

is a proportbnal expresion as the one in (18) and (19), which we have already
discussed. We have replaced k(s,) by k, where k, stands for the
correspending one at the center of the beam.  The only difference being the
explicit linear dependance on the volume, V, and the averaging nature of the
integral operation

An important use of equation (17) is in the evaluation and discussion of
broadening of the spectrum, F{w), as a consequence of finile beamwidth and wind
shear. The evaluation should be done by actually using the equation, and a
medel of the medium characteristics and the radar system in the integrand. But, it
is possible to get a feeling of how the broadening comes about by breaking the
integral into the sum of integrals over smaller volumes sufficientiy smali for
eduation (18) to be valid. Each subvolume will contribute to the spectrum with
comparably shaped spectra but with differert Doppler shift, k,.v. The Doppler
shifts would be different either bacause k, varies in direction within the beamwidth
(beam broadening) or because v varies (shear broadening). The resultant
spectrum would be significally wider if these shifts are larger than the ones
produced by the random turbulent velocities. ( See Hocking, 1983, for further
dis'cussions).

Notice here that it is possible for non isotropic turbulence to have a &
dependent on s through its dependance on the direction of k, , that is an aspect
sensitivity. If the aspect sensitivily is wider than the beamwidth, the radar would
be able to resolve it and actually measure the angular dependance, provided of
course that the beam is steerable. If the aspect sensitivity is sharper than the
beam pattern, then the weighing in the integrand will be performed by the aspect
sensitivity function , and the statistics of the echoes will be mainly that
corresponding to the most favored aspect angle. The contributing volume will
also be corespondingly smaller.(See Doviak and Zmic, 1984, for further
discussions).
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Something similar would happen if the h dependance of ¢ is smaller than
the pulse width. The most important consequence being that the volume would
be smaller than that defined by the pulse. Thus, the actual strength of turbulencs,
¢(k), would be underestimated if the h dependance of ¢ is not taken into account.

Partial reflection,

So far wa have considered only radar echoes that have been produced by
random turbulent-produced fluctuations in refractive index. It is possible to have
in the atmosphere stratified structure sufficiently large in the horizontal extent as
to be considered deterministic for all practical purposes. In fact, the aspect
sensitivity that has been measured is so sharp that has let some researchers (
Réttger and Liu,1978 ; Fukao et al,1979; Gage and Green 1978 ) to postulate that
the echoes are produced by partial reflection from stratified gradients. in this
case is more convenient to talk, borrowing from optics, about the refiectivity of the
structure, R. It is a coefficient, defined by the ratio of the intensity of the reflected
over the incident electromagnetic wave, incident on the structurs. A formula
often used in the literature to evaiuate R is

_(*Ldn
R= T Hrexp(jk,z)dz.

Recently, Woodman and Chu, 1988, have shown that the limits, L/2, if they fall at
points where the integrand has not gone to zero on its own, can introduce
artificial discantinuities in the first derivative which overestimate the reflectivity by
many orders of magnitude. Nevertheless, partial reflection is possible if step like
structure of a fraction of a degree Kelvin exist within a length scale of a meter or
s0. The existence or not of such a discontinuous structure weould have to be
established with an independent technique. The aspect sensitivily observed with
radars can aiso be expiained in terms of anisotropic turbulence at the edges of
the turbulent layars observed with the sama technique (Woodman and Chu, 1988).

Characteristics of noise and clutter interferance

Radar echo signais are always contaminated, in variabie degress, with sky
and raceiver noise and echoes from undesirable targets, like mountains, other
ground structurgs, ocean waves, etc.. The latter is referred as clutter. In order to




Figure 4 — Schematic plot of a typical VHF MST radar signal showing a)
the signal compaonent, b) non-fading ground clutter, ¢) fading ground
clutter, d) possible ocean clutter and e) receiver and sky noise.
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properly interpret the desired signals, and be able to discriminate betwsen them
and noise or clutter, we need to know the spectral characteristics of the lattar as
well,

Sky and receiver noise, after passing through the receiver, has a
bandwidth determined by the receiver filter, The filter in turn is normally matched
to the transmitter pulse width, or Baud width if coded. The pulse width is a small
traction of the pulse repetition period, which also determines the sample time of
the sequence s,(). Therefore, at this sampling rate, the noise samples are
independent. They are aiso statistically independent with respect to the signal.
Hence, the noise contribution to the autocorrelation function of the received
signals is a Dirac function centered at the origin. Its contribution to the trequency
power spectrum is a flat threshold. !t behaves, then as white noise.

The characternistics of ground clutter are the opposite to those of noise.
They are very narrow in the frequency domain and wide in the time domain. To
first approximation clutter shows as an spectral line in the frequency domain,
centered at zero frequency, since it comes from rigid structures with no relative
velocity with respect 1o the radar. At low VHF frequencies, this is practically the
case. At UHF frequencies, the reported clutter characteristics (Sato and
Woodman, 1981) have two components, an spectral component accompanied by a
waaker narrow, but finite, width component both centered at zero frequency. The
speciral ling comes as in the VHF case from the rigid ground structures, the
wider compaonent is believed to come from wind induced motion of tree branches
or from phase modulation of the spectral compenent induced by changes in the
effective phase path length betwean the radar and the target. Both are possibie.
Changes in the width of this component with different surface wind conditions
support them both, Fortunateiy, except under very windy conditions, the wider
component is still a few to several times narrower that the width of the
atmospheric echoes and one can discriminate against them (Sato and Woodman,
1981). The task is made easier by its confinement to the center of the spectrum.
Under windy conditions, specially when one is interested in the small vertical
component, ground clutter is a problem at UHF frequencies.

For those radars near the ocean or large lakes, ocean clutter is a source
of interference. It can compete in strength with the atmospheric echoes, specially
at the higher ranges. Ocean clutier comes from wavelets on the surface with a
wave length equal to half the wavelength of radar. It is Doppler shifted by a
frequency corresponding to the phase velocily of the wavelet. This velocities are
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of the order of a few meters per second, and hence comparable to the
atmospheric velocities we are interested in. This should not surprise us, since
the wavelets are exited by matching velocity components the surface wind speed,
To make matters worse, ocean clutter echoes have spectral widths which are also
comparable to that of the desired echoes (Sato and Woodman, 1982b) . Still it is
possible to discriminate against them, taking advantage of the predictable
frequency shift and their constancy — in amplitude and frequency— as a function
of range and time. The problem being limited to those allitudes where the wind
profile crosdes the value corresponding to the velocity of the wavelets, and only in
the case ils strength is comparable or weaker to the intarference.
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APPENDIX
Scattering of EM Waves from Dielectric Density Fluctuations*

R. F. Woodman
Arecibo Observatory, Arecibo, PR

Radars are used for remote probing of the upper atmosphere. Monostatic and bistatic
configurations have been used. The echoes are obtained from the scattering of the illuminating
wave by fluctuations in the dielectric properties of the medium under study.

The fluctuations in the local dielectric constant of a medium are direct consequences of
fluctuations in the density of the medium or, more properly, on the density of that component or
components in the medium responsible for its dielectric behavior, e.g., electron density in an
ionized pas, "air" density and water vapor in the low atmosphere, etc.

In the case the medium is in thermodynamic equilibrium, the fluctuations are reduced toa
minimum (thermal level). In such a case, and for an ionized plasma, we refer to the technique as
incoherent scatter. These fluctuations are never at zero level due to the discrete nature of matter
(Summations of delta functions will always produce fluctwations.)

Density fluctuations are statistically characterized by the density space-time correlation
function p{r, T, x) defined as

p(r,T X)=<n(x)n(x+ 1,t+1)> (D

where n(x,t) is the microscopic random density of the medium at position x in space and time t. In
{spatially] homogeneous medium p is independent of x and p(r.t) = p(r,7; x).

Hagfors has treated the problem of how fo find p{x,t) for an ionized medium in
thermodynamic equilibrium (or quasi-thermodynamic for the case T, # T;). Farley has described
the different techniques for obtaining estimates of p(r, 7, x) from the scatter echoes.

We shall develop here the functional relationship that exists between the statistical
characterization of the signal received in a radar experiment and the fluctuations in the medium
characterized by p(r, 1 x). The fluctuations need not be at the thermal level, so we are not limited
to the incoherent séatter problem. We should point out that the usefulness of large radars for the
study of the upper atmosphere is not limited to incoherent scatter. Proof of which is found in the
large number of papers produced by the Jicamarca Qbservatory by studying backscatter echoes
from E- and F-region irregularities and from turbulent fluctuations in the neutral atmosphere. In
fact, some smaller radars are built (STARE, SOUSY and the TS radars) which depend on the
enhaneed reflectivity produced either by instabilities or turbulence. This could be the case in
EISCAT when observing auroral phenomena or the effects of artificial heating. It will also be the
case when studying neutral dynamics using backscatter signals from turbulent fluctuations.

Said functional relationships can be found in the literature but it is usually derived from
very simplified conditions with assumptions which are not necessarily valid. The derivation is
usually heuristic and in many cases difficult to assess the range of validity of the derived

expressions. Such approach is, of course, useful for didactic purposes and when the purpose of

the paper is on other aspects of the problem. Derived expressions in the literature are usually
derived for a specific technique {out of the many described here by Farley) and for specific
conditions (e.g., homogeneous media, continuous illumination, slowly varying echoes, narrow
pulses, etc.). We shall derive here the functional relationship between the siatistical properties of
the cchocs and the statistical properties of the medium under very general conditions.

*Lecture presented at the M.P.L EISCAT School, January 1979, Oberstdorf, W. Germany




We shall consider an experimental configuration as depicted in Figure 1. The medium
under study is illuminated by an EM wave of frequency wy, modulated by an arbitrary complex
signal p(t), scattered EM waves are received at a different location {or at same as a particular case),
coherently detected, properly filtered and decoded (if necessary). We are interested in evaluating
the complex autocorrelation of the signal received, O(t), i.e.,

Clt)s<OO*(t+1)> 2)

in terms of the space and time density correlation of the medium.

The signal O(t) is a random process, usually nonstationary, is fully characterized by its ime
autocorrelation function C(t,t). The dependence on t can normally be associated with a given
range, h, corresponding to the delay.

We assume: (1) that there is only primary scattering (first Born approximation valid), i.e.,
the medium is transparent, the illuminating field at a point x within the medium is due to the
primary illuminating field and the scatiered fields at x are negligible; (2) the system is linear, i.c., if
O1(t} is received for py(t) and O5(t) for pa(t). The'a((t) + PO,(t) is received for an excitation
apy(t) + 5 Py(t). The linearity of the propagation in the medium is guaranteed by the linearity of
Maxwell equations,

The linearity of the system allows us to evaluate the output signal as the linear
superposition of the contributions of each differential volume, d3x with density n(x,t). This
differendal contribution can be evaluated in terms of the linear operators depicted in Figure 2. Here
we have modeled the propagation of the transmitter to the scattering point by a delay operator with
delay Ty(x) and an amplitude factor K(x) which represent the effect of antenna gain and other
system parameters. The scattered signal is proportional to the local instantaneous (random) density
© n(x,t) of the medium times the volume d3x. The dielectric properties of the medium, the receiver,
antenna, and other propagation properties are contained in a constant gain (in ime) Ky(x). There is
a delay block with delay To(x), a detector and a filter before we finally get our output from the
differential contribution fromn( x,t). The filler is characterized by the complex input response h(t)
and includes any decoding scheme. Decoding is a convolution operation and can be considered as
part of the filter.

The evaluation of the delay functions Tj(x), T2 x) and the constant terms K(x), Ky(x)
does not concern us here and are assumed to be known. The output of the system can then be
written as

o(t,x)d3x = d3x .[ dt’ K(x) p(t’ — T(x)) ¢ ¥ TR n(x,t’ — To(x)h(t — 1) (3
where we have already operated on the "signal” with the delay operators 8(t — T)(x) and
8(t - Ty(x)). Here we have used T(x) = T((x) + Tz(x) for the total delay and K(x) = K(x) *
'K3(x). The total signal output is then” -
Oft) =J. d3§ o(t,x) 4)
and the autocorrelaton, C(t.t) = < O(t) O*(t + T) >, can then be writlen as:
C(ry =) d3x d3xdrdr'K(x) K(x") p(t'~T(x)) p*(t"~T(x)e~ %, (T ~ T(x)
*h(t - ) h{t+1-t") p[x’ - x, " — ' — (T(x) ~ To(x")); x] (5)

It is convenient to write this expression in terms of variables
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Clry = I d3 x d3r dr’ dv K(x) K*(x + 1) pt' — T(x ) p*{t' + T = T(x + 1))
e e W (TE -T + 1) h(t— ) h*t+t—t' ~ 1) p[r,v —(Ta(x} -T2 x + 1)) g]
(6

This expression is simplified considerably if we take advantage of the fact that in most cases the
characteristic length of the density correlation function, r., (equal to the Debye length in the LS.
case) is much smaller than the characteristic length of K(x) and the characteristic length, clp,
corresponding to the width of the pulse p(t). This allows us fo replace K(x + r) by K(x) and p(t -
T(x + 1)) by p(t — T(x)) in the integrand with no appreciable effect on the imegral.

Also, the difference in propagation time Tp(x) — To(x + 1) is of the order of r/c for points
within a correlated volume. This is much smaller Than the characteristic time of the decay of the
correlation function unless one is dealing with relativistic plasma. Therefore we can ignore this
term in the time argument of the correlation function. In addition, the oscillatory nature of the
exponential, with a wavelength comparable to the wavelength of the probing wave, makes the

integrand unsensitive to any possible long scale structure of the correlation function across the
surfaces of constant T.

Furthermore, the almost linear behaviorof T(x + r)on r for | r | < r. allows us to linearly
expand T(x + 1) in the exponent around x and write: -

woT(x + 1) = w, T(x) + woV r T(x) -1 = wy T(x) + k(x)er (7N

where k(x) = kj(x) - ky(x), and kj(x) and ka(x) are the local wave number of the incident and
scattered wave, respectively. Withthis approximation we can write:

Clrt) =) d3x dvdt’ K2(x) p(t’ — T(x)) p*(t" + ' - T(x))
sh(t =) h*(t+ 11—t = 1) Kk(x), 15 x) (8)

where p = (§, T; x) is the spatial Fourier transform of p(r, T; X) defined by

PET x) =) Breds LT x) ©)
Notice that as far as r is concerned, x can be considered as a constant parameter. Also notice that
the output of the expériment depends only on the Fourier component evaluated at a particular set of
wave numbers k(x), which for most cases is a constant. It is equal to 2k; in the backscarter case.
Equation (8) is the general expression we are after; it involves only two basic assumptions and one
approximation regarding the length scale of p(r). It can be used as the starting point for simpler
expressions applicable to the particular cases.

Next we consider a few particular cases as itlustrative examples.

Case 1. Continuous excitation.

In the case of a cw bistatic experiment, e.g., the French incoherent scatter radar, we have
p(t) = a, where a is a constant.

In such a case the output of the experiment is time stationary and the correlation function,
C(t) = C(t,1), is given by

C(t) =a? ) dx K%(x) j &’ pkE), T X) Gt =) (10)
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where the second integral is the usual convolution of the comrelation function of the input signal to a
filter by the sutocorrelation function, dny(T) of the filter characteristic. The spatial integral
represents a weighted average of the contnbutions of each differential volume, weighted by the
beam patterns of the antenna (and the 1/R? dependence). For homogencous media and constant
k(x) =k, the spatial integral is independent of p and defines a volume, V, and we have

C(v) = a2K2 V J p(k.D) (T —7) A7 (11)

The above equations, if expressed in the frequency domain, take an even simpler form where the
convolution integral is transformed to a product of frequency functons.

Case 2. Filter time scale smaller than characteristic time of p.

In this case the integrand is different from zero for small values of the argument of h{=),
1e., when

t=t
=T+t —t

Thus, p(k(x), "; x) can be taken out of the v’ integral evaluated at t" = t. We can then write (8) as
Clrn) =} d3x K2(x) f(k(x), T x) PO-T(x)) p*(t + T - T(x)) (12)

where p is defined as

p() = J dt’p(t") h(t - 1) (13)

that is the pulse shape passed through the filter or decoder. In optimum designs h(t) is identical to
p(t), and p(1) is then the autocorrelaton of the pulse shape. In multiple pulse experiments the filter
is identical to a pulse element of the sequence and P(t) is a sequence of autocorrelated pulses.

Surface of constant delay, T = T(x), can be used as one of the variables of integration
(e.g., range in a backscatter case with plane wave fronts) and a suitable set of two transverse
coordinates, s, for the remaining two. We can then write:

d3x = d25 cdT (14)

where ¢ is the local phase velocity of light taken to be a constant for simplicity, dz_s_ is a surface
differential. Equation (2) then takes the form

Cln) =c J d?s .[dT K%(s,T) fk(x), © 5, T) pt=T) p*(t - T+ 1) (15)
Case 3. Backscattering from a (quasi-) homogeneous andisotropic medium.

This case illustrates the effect of decoding and filtering on the dependence of the
autocorrelation function. The assumptions involved allow us to replace f(k(x), T’ x) by (k. U)
and to take it out of the spatial integral. For quasi-homogeneous cases we can take ({k, T, x) with
the value 1t has at the center of the volume, which corresponds to the particular delay t of the
measurement. Therefore we will write p(k,t’) 10 extend the generality.

‘We can also perform the spatial integral in terms of the variables s and T, Only K%( x)isa
function of s and we can perform the integral with respect to this variable. If K2 is a factor which
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groups all the dimensional factors in K2(x) then the spatial integral gives us K2A(T), where A(T) is
g an equivalent area defined by the s dependence of the beam pattern. On most cases of interest A(T)
is a slowly varying function of T, slower than the pulse length and can be taken out of the integral
evaluated at the sampling delay t. Considering the above we write equation (8) as

C(t,t) = CK2A() ) dvdvdTEk, T p =T p+ (' + T =D ht -t hit + t-1" -t

=CK2ZA®M) J dtpk) J d' h(t= ) h*(t -t +1—1) J dT p(t" - T) p*(t" + ' - T)
(16)

or

Clt,t) = CK2A(D J‘dt' gk, ) dpp (V) O (T-1) an ,

where ¢, (1) is the autocorrelation function of the pulse shape and ¢y (%) the autocorrelation
function of the filter and decoding system.

Mustrative Examples

In order to gain a better understanding of the significance of the formulas derived for cases :
2 and 3, we have constructed Figures 3 and 4, respectively, corresponding to two often used pulse
schemes, Case 1 does not need an illustration since in this case the spectrum of the signal received
is just the product of the spectrum of the medium with the systems filter characteristics,

Figure 3 depicts the different shapes of the functions involved for a double-pulse
experiment, in a backscatter mode, in which two narrow pulses are sent, Tg apart. In this case the
experiment provides information on the correlation function @\(k t), at only one delay, © = Tg
i corresponding to the pulse separation. In practice the correlation function is evaluated only at this
I delay. To obtain the value of the correlation function at other delays, another pair of pulses is sent
i with the proper spacing.

:l

| Notice that C(t,t) is different from zero only in the vicinity of 1, the useful part, and in the
vicinity of T = 0 corresponding to a power measurement, Such power measurernent is not useful
since it contains not only the contribution from the desired height but also the "self-clutter”
contribution from t — 1, as illustrated in the two-dimensional plot of p(t—T) p*(t-T +1).

,‘ . Multiple pulse schemes can be illustrated in a similar fashion, the main difference being that
i several correlation delays can be estimated in a single sequence and that the self-clutter is larger and
i coming from several different altitudes.

| Figure 4 illustrates the case in which a long pulse (as compared to the medium correlation
] times) is sent. The receiver impulse response is narrow and considered square for the sake of
{ - simplicity. Two effects are clear from the picture, the medium correlation function is multiplicd by
! a triangular function, ¢,(1), and the result convolved with a narrower function, Pnn(t), given by
i the self-convolution of the filter input response.
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