

Inverse Methods in Aeronomy

D. L. Hysell

Earth and Atmospheric Science, Cornell University, Ithaca, New York

scientific method

gravity anomaly

inverse problems

linear or nonlinear

● i.e. convolution, Fourier transform, Abel transform, Radon transform

– existence, uniqueness, stability
– "Riemann-Lebesque Lemma"

inverse problems

- filtering (tomography, SAR, planetary, pulse decoding)
- length methods (ISR lag profile analysis)
- MAP methods (Abel inversion, radar imaging)

These are equivalent!

filtering

$$Gm = d$$

$$m = G^{\#}d = \underbrace{G^{\#}G}_{R_m = I?} m$$

$$Gm = \underset{R_d=I?}{GG^{\#}}d = d$$

$$m(\xi) = \int dx \underbrace{\int d\psi G^{\#}(\xi, \psi) G(\psi, x)}_{K(\xi, x) = \delta(\xi - x)?} m(x)$$

Backus Gilbert, filtered backprojection ... could be matched filtering, but probably isn't.

Radon transform

$$d(\theta, s) = \iint m(x, y) \delta(x \cos \theta + y \sin \theta - s) dx dy$$
$$\hat{d}(\theta, k) = \hat{\hat{m}}(k \hat{n}_{\theta})$$

CEDAR 2008 - p. 7/2

sinogram

(filtered) backprojection

$$m(\mathbf{x}) \stackrel{?}{=} \int_{0}^{2\pi} d(\theta, s = \hat{n}(\theta) \cdot \mathbf{x}) d\theta$$
 adjoint

$$H(k) = |k| \quad \text{filter}$$

$$m(\mathbf{x}) \stackrel{?}{=} \frac{1}{4\pi} \int_{0}^{2\pi} Hd(\theta, s) d\theta$$

$$= \frac{1}{4\pi} \frac{1}{2\pi} \int_{0}^{2\pi} \int_{-\infty}^{\infty} |k| \hat{d}(\theta, k) e^{iks} dk d\theta$$

$$= \left(\frac{1}{2\pi}\right)^{2} \int_{0}^{2\pi} \int_{0}^{\infty} k \hat{d}(\theta, k) e^{ik(x\cos\theta + y\sin\theta)} dk d\theta$$

$$= \left(\frac{1}{2\pi}\right)^{2} \int_{0}^{2\pi} \int_{0}^{\infty} k \hat{\hat{m}}(k \hat{n}_{\theta}) e^{i\mathbf{k} \cdot \mathbf{x}} dk d\theta$$

length methods

$Gm = d, G \in \mathbb{R}^{nxm}, \operatorname{rank}[G] = p$

	least squares	minimum length	weighted damped
			least squares
rank	p = m < n	p = n < m	p < n, m
termed	overdetermined	underdetermined	mixed determined
means?	no exact soln	no unique soln	mult equiv soln
min.	$(Gm-d)^t C_d^{-1}(Gm-d)$	$m^t C_m^{-1} m$	$e^t C_d^{-1} e + \alpha^2 m^t C_m^{-1} m$
$m_{ m est}$	$[G^t C_d^{-1} G]^{-1} G^t C_d^{-1} d$	$C_m^{-1}G^t[GC_m^{-1}G^t]^{-1}d$	$[G^t C_d^{-1} G + \alpha^2 C_m^{-1}]^{-1} G^t C_d^{-1} d$
			$C_m^{-1}G^t[GC_m^{-1}G^t + \alpha^2 C_d^{-1}]^{-1}d$
	max likelihood	Occam's razor	0, 1, 2 regularization

Moore Penrose pseudoinverse: existence, uniqueness, stability

$$G = U\Lambda V^{t}, \quad Gm = d \quad Gx = 0 \quad x^{t}G = 0$$

$$= \underbrace{\begin{pmatrix} \text{column} & \text{left} & \\ \text{nullspace} & 0 & 0 \\ \hline & \text{nullspace} & 0 & 0 \\ \hline & & nxm & mxm \\ \hline & & nxm & mxm \\ \end{bmatrix}}_{nxm} \underbrace{\begin{pmatrix} \Lambda_{pxp} & 0 \\ 0 & 0 & 0 \\ \hline & & nxm & mxm \\ \hline & & mxm \\ \end{bmatrix}}_{mxm} \underbrace{\begin{pmatrix} \Lambda_{pxp}^{-1} & 0 \\ 0 & 0 & 0 \\ \hline & & nxm \\ \hline & & nxm \\ \hline & & nxm \\ \end{bmatrix}}_{nxm} \underbrace{\begin{pmatrix} U_{pxn}^{t} \\ U_{(n-p)xn}^{t} \\ U_{(n-p)xn} \\ \hline & & nxm \\ \hline & & nxm \\ \end{bmatrix}}_{nxm}$$

$$= V_{mxp}\Lambda_{pxp}^{-1}U_{pxn}^{t}$$

– condition no. $\equiv \Lambda_{\max} / \Lambda_{\min}$

The following are equivalent:

- gSVD using filter factors of the form $f_i = (s_i^2 + \alpha^2)/s_i^2$, where s_i are the singular values and α is the so-called regularization parameter. The data covariance matrix can be incorporated by transforming and scaling *G* and *d*.
- Minimization of the cost function $(Gm - d)^t C_d^{-1} (Gm - d) + \alpha^2 m^t C_m^{-1} m$, where $C_m^{-1} = L^t L$. The model estimator that accomplishes this is $m^{\text{est}} =$ $(G^t C_d^{-1} G + \alpha^2 C_m^{-1})^{-1} G^t C_d^{-1} d$ This strategy is termed 'weighted damped least squares.'
- Conjugate gradient weighted least squares minimization with an initial guess $m^{\text{est}} = 0$ and with early iteration termination consistent with some finite α .

Augmented least squares, seeking the least-squares solution to the augmented minimization problem:

$$\min \left\| \begin{pmatrix} C_d^{-1/2}G \\ \alpha L \end{pmatrix} m - \begin{pmatrix} C_d^{-1/2}d \\ 0 \end{pmatrix} \right\|_2^2$$

where $C_d^{-1/2t} C_d^{-1/2} = C_d^{-1}$.

Solving (for m^{est}) the characteristic equation

$$\begin{pmatrix} G^{t}C_{d}^{-1} & \alpha L^{t} \end{pmatrix} \begin{pmatrix} G \\ \alpha L \end{pmatrix} m$$
$$= \begin{pmatrix} G^{t}C_{d}^{-1} & \alpha L^{t} \end{pmatrix} \begin{pmatrix} d \\ 0 \end{pmatrix}$$

the result being the weighted damped least squares estimator above.

long-pulse data

CEDAR 2008 - p. 14/2

ambiguity functions

full profile analysis

cost function

Augmented nonlinear least squares

- \checkmark prediction error norm $e^t C_d^{-1} e$
- $||T_e''||_2^2 ||T_i''||_2^2$ temperature roughness
- $T_i/T_e \leq 1$ temperature ratio
- $||H^{+''}||_2^2$ hydrogen ion roughness
- composition fractions [0,1]

12 LT

CEDAR 2008 – p. 18/2

3 *L***T**

CEDAR 2008 – p. 19/2

$$P(m|d) = \frac{P(d|m)P(m)}{P(d)}$$

$$P(d|m) = \frac{1}{(2\pi)^{N/2}|C_d|^{1/2}}e^{-\frac{1}{2}(Gm-d)^t C_d^{-1}(Gm-d)}$$

$$P(m) = ?, e^{\alpha S}$$

$$M = \sum_{i=1}^{m} m_i$$

perm =
$$\frac{M!}{\prod_{i=1}^{m} m_i!}$$
$$S = -\sum_{i=1}^{m} m_i \log(m_i/M)$$

maximum entropy

$$E = S + \lambda^t (d + e - Gm) + \Lambda(e^t C_d^{-1} e - \Sigma)$$

$$m_i = M \frac{e^{-\lambda^t G^{[,i]}}}{Z}$$
$$Z = \frac{\hat{I}^t m}{M}$$

$$E = \lambda^t (d+e) + M \log Z + \Lambda (e^t C_d^{-1} e - \Sigma)$$

CEDAR 2008 - p. 21/2

Abel transform

CEDAR 2008 - p. 22/2

occultation simulation

CEDAR 2008 - p. 23/

not discussed

- regularization parameters (L-curve, GCV, adaptive methods)
- error analysis (full error covariance matrix)
- stability, speed, tradeoffs

- Aster, R. C., B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems, Elsevier, New York, 2005.
- Gull, S. F., Developments in Maximum Entropy data analysis, in Maximum Entropy and Bayesian Methods, edited by J. Skilling, pp. 53–71, Kluwer Academic Publishers, Dordtrecht, 1989.
- Jaynes, E. T., Where do we go from here?, in *Maximum-Entropy and Bayesian Methods in Inverse Problems*, edited by C. R. Smith and W. T. Grandy, Jr., chap. 2, pp. 21-58, D. Reidel, Norwell, Mass., 1985.
- Kaipio, J., and E. Somersalo, Statistical and Computational Inverse Problems, Springner Verlag, 2004.
- Menke, W., Geophysical Data Analysis: Discrete Inverse Theory, Academic, New York, 1984.
- Parker, R. L., Geophysical Inverse Theory, Princeton, 1994.
- Sen, M. K., and P. L. Stoffa, Global Optimization Methods in Geophysical Inversion, Elsevier, New York, 1995.
- Tarantola, A., Inverse Theory, Elsevier, New York, 1987.