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Abstract: The impact of climate change on droughts in the Lake Titicaca, Desaguadero River, and Lake
Poopo basins (TDPS system) within the Altiplano region was evaluated by comparing projected
2034-2064 and observed 1984-2014 hydroclimate time series. The study used bias-corrected monthly
climate projections from the fifth phase of the Coupled Model Intercomparison Project (CMIP5),
under the Representative Concentration Pathway 8.5 (RCP8.5) emission scenarios. Meteorological,
agricultural, and hydrological droughts were analyzed from the standardized precipitation, stan-
dardized soil moisture, and standardized runoff indices, respectively, the latter two estimated from
a hydrological model. Under scenarios of mean temperature increases up to 3 °C and spatially
diverse precipitation changes, our results indicate that meteorological, agricultural, and hydrological
droughts will become more intense, frequent, and prolonged in most of the TDPS. A significant in-
crease in the frequency of short-term agricultural and hydrological droughts (duration of 1-2 months)
is also projected. The expected decline in annual rainfall and the larger evapotranspiration increase
in the southern TDPS combine to yield larger projected rises in the frequency and intensity of
agricultural and hydrological droughts in this region.
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1. Introduction

Drought is a transitory climatological anomaly characterized by below-normal pre-
cipitation during an extended period [1,2]. Drought affects the precipitation regime, hy-
drological cycle, and socioeconomic systems associated with hydrological conditions [3].
These impacts can be differentiated by their time properties. Below-normal precipitation
lasting from weeks to years can be called a meteorological drought. A hydrological drought,
characterized by a decrease in streamflow or reduced aquifer recharge [4—6], could follow
a meteorological drought through the hydrological cycle. A meteorological drought over
an extended period of time can also develop into an agricultural drought, which is charac-
terized by a decrease in soil humidity over a prolonged time interval [7-9]. Each drought
type can affect the population and productive activities (irrigation, rain-fed agriculture,
livestock farming, water storage in lakes or reservoirs, etc.), with different intensity, du-
ration, and frequency causing scarcity and increasing water demand. Dry spells can also
affect rain-fed agriculture even during the wet season in the Andes [10].
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Western South America is frequently affected by drought events because of its complex
topographic features and high spatio-temporal hydro-climatic variability [11-14]. This is
the case in the Altiplano region shared by Peru and Bolivia (Figure 1), where droughts
affected 460,000 farmers during the 1982/83 period [15]. Economic losses in Peru and
Bolivia were estimated at $128 million and $88 million for the 1982/83 and 1989 /90 periods,
respectively [16]. Twenty-five meteorological drought events were also registered between
2000 and 2010 in Peru, causing crop loss, livestock mortality, and the proliferation of pests
and diseases, affecting small agricultural producers, urban populations, and electricity
production [17].
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Figure 1. (a) Location of the Lake Titicaca, Desaguadero River, and Lake Poopo basins (TDPS system) in South America

(b) TDPS, gauging stations (red dots), rainfall, and/or temperature stations (black dots).

Hydrological and agricultural droughts could have multiple causes in the Bolivian
Altiplano, where nearly 50% of the active population is dedicated to farming [18]. Diver-
sion of water, from the Desaguadero River, the main tributary of Lake Poop9, for irrigation
and increasing evaporation related to local and global warming were identified as the main
factors behind the recent disappearance of Lake Poop6 in 2015 and 2016 [19]. The drying
up of Lake Poop¢ in 1994 and 1995 was associated with strong negative rainfall anoma-
lies [19,20].

Scientific studies aimed at evaluating the impacts of climate change on droughts have
mainly focused on the analysis of climate variables such as precipitation, soil moisture,
and runoff by using global circulation models (GCM) [4,6]. GCM-based projections of
climate change during the 21st century consistently predict an increase in surface air
temperature over the central Andes [21-23]. Significant long-term warming has been
detected for the Altiplano, with the positive trend in daily maximum temperature being
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stronger than that of the daily minimum [24,25]. Both trends and GCM projections indicate
that evapotranspiration is increasing.

GCM results by [26] projected a decrease in summer precipitation over the central
Andes south of 12° S. Regarding climate change, [23] predicted consistent drying for the
Bolivian Altiplano between a 1997-2008 baseline and 2050 GCM scenarios. A multi-model
ensemble analysis of Coupled Model Intercomparison Project phase 3 (CMIP3) by [21]
found an almost year-round increase in westerly flow at mid- and upper levels over the
central Andes, resulting in decreased moisture transport from the Amazon and the Atlantic
Ocean toward the Altiplano during summer, which could reduce summer precipitation by
10% to 30% from 1970-1999 to 2070-2099. In contrast, a recent study [27] observed that the
relationship between easterly winds and austral summer precipitation over the Altiplano
has weakened in recent years, leading to more uncertainty in future projections.

Climate change and its impacts on precipitation and evapotranspiration over the
Altiplano region therefore require further study. In particular, extreme events such as
droughts must be addressed, as changes in intensity, duration, and frequency are highly
relevant given the implications of global warming scenarios for the Altiplano [18]. Lake Tit-
icaca is considered a wetland of international importance by its significance in terms of
ecology, botany, zoology, limnology, and hydrology. It is therefore important to explicitly
examine the potential impacts of future climate change across the Altiplano and estimate
the sensitivity of each drought type to different scenarios. Climate change projections
along the Andes suggest the need for approaches that contribute to the development of
capabilities and knowledge for adaptation [28].

The aim of this study is to investigate the impacts of climate change on the charac-
teristics of meteorological, hydrological, and agricultural drought in the Lake Titicaca,
Desaguadero River, and Lake Poop¢ basins (TDPS system). Frequency, duration, and inten-
sity properties are analyzed for each drought type, using multiple GCM, emission scenarios,
and hydrological modeling. Drought indices based on historical frequency distributions of
variables such as precipitation, soil moisture, and runoff [4,6] are used to investigate the
potential impacts of future climate change on different domains of the hydrological cycle
in the TDPS system.

2. Study Area

The northern and central parts of the Altiplano are characterized by the presence
of lakes Titicaca and Poopd, two large bodies of water connected by the Desaguadero
River. The TDPS (Titicaca, Desaguadero, Poopo, Coipasa Salt Pan) system, as this region is
known, extends over an area of 145,000 km? (14.2°-20.04° S; 66.4-71.07° W) in Peru and
Bolivia, varying in altitude from 3600 to 6550 masl. Lake Titicaca (8500 km?) is the highest
(3809 masl.) navigable lake in the world (Figure 1b). The TDPS system is located between
the Pacific coastal deserts of Peru and northern Chile and the humid Bolivian Amazon.
It is characterized by a semiarid climate, with mean annual precipitation ranging from
1000 mm in the north to 200 mm in the southwestern part [19]. The region exhibits a marked
seasonality, characterized by local boundary layer moisture and zonal winds during the
wet season (December—March). During the rest of the year, the Altiplano climate develops
from the mid-level westerly flow that brings dry air from the Pacific Ocean region [29].
At interannual time scales, negative and positive rainfall anomalies during El Nifio and La
Nifa are observed in the Altiplano, respectively [30-32]. At decadal and interdecadal time
scales, [33,34] found that during warming decades in the central-western Pacific Ocean,
westerlies are intensified at 200 hPa above the Central Andes, producing decadal periods
of a hydrological deficit over the northern Altiplano. This indicates that the interannual
variability of precipitation between December and February is likely controlled by the
same mechanisms over the Altiplano, consistently with the results obtained by [27].
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3. Materials and Methods
3.1. Data

Hydroclimatological data from the National Meteorology and Hydrology Services
(SENAMHI) of Peru [35] and Bolivia [36] were collected. The observed datasets included
monthly precipitation and maximum and minimum temperature from 1964 to 2014 at
138 meteorological stations along the TDPS (Figure 1). To ensure the greatest monthly
data availability, a common period (1984-2014) was selected. To assess data quality,
the resulting database, made up of 121 rainfall stations, was submitted to the regional
vector method (RVM). The RVM assumed the annual rainfall in the same climate zone was
proportional between stations, with little random annual variation as a result of rainfall
distribution [37,38].

Monthly mean streamflows from nine hydrological stations, based on their basin size
(covering 60% of the TDPS area), were also collected. Streamflow data management was
performed using HYDRACCESS software [39]. The first part of the 1984-2014 study period
comprised the final years of a wet period in the TDPS system, which was followed by
a longer and drier subperiod that started in the 1990s. This interdecadal variability had
already been identified by several authors e.g., [22,33].

The outputs of 31 GCM from phase 5 of the Coupled Model Intercomparison Project
(CMIP5) under the Representative Concentration Pathway 8.5 (RCP8.5) emission scenario
was used in this study. The RCP 8.5 scenario was selected because it usually, as it usually
yields the largest climate change impacts [40]. The climate projection datasets were collected
from the KNMI Climate Explorer, which is a web application (https://climexp.knmi.nl/
start.cgi) for statistical analysis of climate data, providing timely climate datasets.

In climate change studies, uncertainty is associated with issues such as emission
scenarios [41], climate model structure [6], and downscaling/bias-correction methods [42].
Downscaling using regional climate models (RCMs) is conditioned by climate dynamics
on larger (continental) or even global scale [42]. Some RCM studies [22,26] have been
conducted along the TDPS system. Previous drought studies, however, did not consider
emission scenarios [43].

3.2. Methodology

As input for hydrological modeling, a reference evapotranspiration (ET) dataset was
estimated using the Hargreaves and Samani model [44]. This model recommends a simple
equation to estimate ET, using maximum and minimum temperature and solar radiation
data (Equation (1)).

ET = 0.0023 (T, + 17.8)(Tinax — Tin)*> % Ra 1)

where: ET (mm/day), T}, is the mean temperature (°C), Tjuay is the maximum temperature
(°C), T,y is the minimum temperature (°C), and Ra is extraterrestrial radiation (M]/ m?/d).
This method yields results similar to those obtained by the FAO Penman-Monteith equation
for the Altiplano [45,46]. Those authors and [47] found that the Penman-Monteith and
Hargreaves-Samani methods are in close agreement with data from lysimeters for pasture
varieties used as reference crops. A recent study developed in the Peruvian Altiplano also
found a significant correlation (r = 0.55-0.87, p < 0.05) between potential ET calculated with
Hargreaves-Samani and Penman-Monteith methods [45]. The Hargreaves-Samani method
has already been used for climatic and hydrological studies in the Andes [18,48,49].

Finally, the evapotranspiration dataset estimated using the Hargreaves Samani method
and the observed precipitation were interpolated by the Kriging method (0.20° x 0.20° grid-
cell size) [50], using up to 121 climatic stations.

3.2.1. Bias-Corrected Climate Projections and Selection of GCM Models

To compare the GCM outputs and observed datasets, a common assessment platform
was previously provided. Gridded downscaling based on interpolation was performed
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by using the nearest-neighbor interpolation method. This is an algorithm that stores all
the available data and classifies the new data based on a similarity measurement [51-53].
As the spatial resolution of the GCM output ranged from 1° to 4°, they were interpolated to
the resolution of the precipitation and ET datasets (0.20° x 0.20° grid-cell size). The nearest-
neighbor interpolation method is suitable for the study region, as the TDPS system is
mostly flat, with 80% of its area in the altitude range from 3650 to 4300 masl. Furthermore,
the interannual variability of precipitation during the wet season is likely controlled by
the same mechanisms over the TDPS [27,33,34]. Finally, a smoothed spatial distribution of
rainfall for the TDPS was obtained.

To quantify uncertainty in projections of climate change impacts on droughts, all cli-
mate model datasets were submitted to a bias correction method (precipitation and evapo-
transpiration estimated with 0.20° x 0.20° grid-cell size). This was done using distribution-
based bias correction algorithms that preserved relative changes [54] at a monthly time
scale. The normalized data were used in a parametric mapping approach for adjusting the
monthly variability of GCM data to match the variability of the observed data (1984-2014),
removing unrealistic jumps. Specifically, the approach used a multiplicative algorithm that
preserved properties at a seasonal or monthly scale.

The performance of GCM models was evaluated by comparing observed precipitation
P and calculated ET (Equation (1) with observed temperature data) with every one of
the 31 GCM correspondent outputs for the 1984-2014 period. Three statistical criteria
were used: the Pearson correlation coefficient (CC), root-mean-square deviation (RMSD),
and coefficient of variation (CV). To facilitate the interpretation of the statistical results,
Taylor diagrams ([22,55,56] were used. In the Taylor diagram, the reference (black dot)
corresponded to CC, RMSD, and CV values of 1, 0, and 0, respectively. Thus, in the Taylor
diagrams, the position of the GCMs dots relative to the reference dot was an integrated
indicator of GCM efficiency in reproducing observed data. The shorter the distance between
the GCM and the reference position, the closer the GCM and observed variable estimates.
To select the best GCMs, skill scores for each GCM and each variable were calculated
according to [54]. This allowed the final selection of climate projections from five GCMs:
EC-EARTH, HadGEM2-ES, IPSL-C.M5A-LR, MIROCS5, and MPI-ESM-LR [57-61] (Table 1).

Table 1. Description of the five global circulation models selected for analysis of droughts in
this study.

Model Country Institute Name Reference

European Community

EC-EARTH model Europe Earth-System Model [57]

. . Met Office Hadley
HadGEM2-ES model United Kingdom Centre MOHC [58]
IPSL-CM5B-LR model France Institut Pierre [59]

Simon Laplace
Center for Climate System

Research /National

MIROCS5 model Japan Institute for [60]
Environmental Studies

MPI-ESM-LR model Germany Max Planck Institut [61]

fur Meteorologie

3.2.2. GR2M Model

Complex physically-based hydrological models usually include a significant number
of parameters to represent every single component of the water cycle. As a consequence,
they require very detailed and comprehensive information, which may not be available
or could be too costly to collect. The cost of setting and running a model also increases
with the time scale used. Taking into account the data availability for the Altiplano and
the goals of this study, the GR2M lumped hydrological model was chosen. GR2M is
a monthly water balance model [62,63]. The GR2M model has yielded good results in
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hydrological studies conducted in basins or catchments of the Andes-Amazon region [49],
Peruvian Andes [64—66], Ecuadorian Andes [67], and Colombian Andes [68]. It has also
been applied in Asia [69,70], Europe [71,72], and Africa [73-76], among other locations.

The GR2M model is based on the transformation of precipitation to streamflow [77]
through two functions: (a) a production store function organized around a reservoir,
called reservoir-soil (S), and (b) a transfer function governed by the second reservoir,
called gravitational water reservoir (R), which is used to estimate the underground ex-
change (Figure 2).
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Figure 2. GR2M model scheme, describing precipitation (P), Evapotranspiration (E), water storage of the (S) reservoir,

the precipitation that enters the soil (P;), the amount of water that contributes (Table 2), the effective precipitation (P3) and

the gravitational water reservoir (R), the capacity of the reservoir-soil in mm (Xj), the coefficient of groundwater exchange
(X2), and runoff (Q) [62]. Source: CEMAGREF (www.cenagref.fr).

Table 2. GR2M model performance (coefficient of determination R? and Nash-Sutcliffe coefficient
NS) and model parameters (capacity of production store X; in mm and water exchange coefficient
(X2), using observed datasets for nine sub-basins controlled at the hydrological stations identified as
red dots/numbers in Figure 1.

Optimal Parameters

N Station Country R2 NS X; X,

1 Ramis Peru 0.86 0.84 5.60 0.98
2 Unocolla Peru 0.72 0.76 5.56 1.16
3 Ilave Peru 0.80 0.81 5.54 0.98
4 Huancané Peru 0.85 0.84 5.54 1.13
5 Calacoto Desaguadero Bolivia 0.50 0.66 9.03 0.36
6 Calacoto Maure Bolivia 0.40 0.60 5.90 0.85
7 Chuquifa Bolivia 0.42 0.66 6.02 0.99
8 Ulloma Bolivia 0.30 0.78 9.30 0.44
9 Escoma Bolivia 0.62 0.58 5.76 1.00

Initially, water storage for the S reservoir (X; in mm, the capacity of the reservoir-
soil) is estimated using input (P) and output (ET). Py refers to the excess precipitation that
directly enters the R reservoir. P, refers to the amount of water as a subsurface flow that also
contributes to the R reservoir to estimate the groundwater exchange. The sum of P; and P,
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corresponds to the effective precipitation P3 that enters the gravitational water reservoir (R)
(maximum capacity set at 60 mm). The contribution to R is instantaneous at the beginning
of the time step, and the reservoir then empties gradually. The change in water level in this
R reservoir determines the flow rate of water that can be released or stored (Ry) (Figure 2).
R; is associated with the X, parameter (the coefficient of groundwater exchange) (Figure 2).
Finally, to determine runoff (Q), the gravitational water reservoir releases water according
to a quadratic function. Calibration of the GR2M model with observed streamflow data
was carried out by using a shuffled complex evolution metropolis algorithm [78,79] to
find optimum model parameter sets at 9 streamflow gauging stations over the 1984-2014
control period.

To estimate the spatial distribution of the X; and X; parameters, first the observed
precipitation and estimated ET were used as input to the hydrological model for nine basins
of the TDPS system and the control period (1984-2014) (Table 2). X; and X, parameters
were obtained by calibration with observed streamflows (NS ~ 0.6-0.84, Nash Sutcliffe
coefficient). Then X; and X; grid maps (PM) generated from hydrological modeling for
the 1984-2014 period were also used for hydrological modeling for the 20342064 period.
For unmonitored regions, parameters of neighboring basins were used.

Each pixel contained monthly time series of the precipitation (P) and ET datasets
(1984-2014) and X; and X, values. Thus, monthly time series of soil moisture (S) and runoff
(Q) obtained from hydrological modeling (20342064 period) were estimated to analyze
the changes between 1984-2014 and 2034-2064 in drought properties (intensity, duration,
and frequency) of meteorological, agriculture, and hydrological droughts using P, S, and Q
data series, respectively.

3.2.3. Drought Analysis

Climate change impacts were analyzed at three levels—meteorological, agricultural,
and hydrological droughts—using monthly precipitation (P), soil moisture (S), and runoff
(Q) datasets for the 20342064 period, relative to the 1984-2014 period. To characterize
meteorological, agricultural, and hydrological droughts, the standardized precipitation
index (SPI) [80,81], standardized soil moisture index (SSMI) [82,83], and standardized
runoff index (SRI) [84], respectively were used. These indices quantified the observed
anomaly as a standardized departure from a selected probability distribution function
that modeled the raw data. To analyze meteorological, agricultural, and hydrological
droughts (SPI, SSMI, and SRI), every grid cell of P, S, and Q datasets were considered as a
temporal series.

In the central Andes, the rainy season occurs in the austral summer and the dry season
in winter. The seasonality is even stronger and the wet season is shorter in the Altiplano
region [18,21]. The choice of timescale was related to the objectives to be achieved [85].
The one-month time scale was applied to every one of the SPI, SSMI, and SRI indices
given that seasonality, the semiarid climate, and the fact that even 1-month long droughts
during the rainy onset (September-November) and wet (December—April) seasons have
serious impacts on crop yields in the Altiplano [86], thus requiring meteorological and
agricultural droughts to be analyzed at a detailed time resolution. Hydrological droughts,
which are usually studied at longer time scales, were examined also at the 1-month time
scale for comparison.

The procedure can be described by the following four steps: (i) fit a probability density
function to the frequency distribution of the P, S, and Q variables for the one-month time
scale, (ii) use the fitted distribution to estimate the cumulative probabilities by numerical
solutions methods, (iii) transform the cumulative probabilities to the Z-values of a normal
distribution with zero mean and unit variance. Finally, (iv) in this study, a drought event
was registered when the 1-month drought index (SPI, SSMI, or SRI) fell below the threshold
(—1.0), which was the same for all drought indices. This threshold indicated that the
deviation from average conditions exceeded one standard deviation. A drought in the
range —1.0 to —2.0 was considered moderate and severe below —2.0 [6].
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Probabilistic distributions for the historical period were developed to be used for
future projections. This assumed that the distribution parameters would not change in
the future and could be extended to analyze climate change [6,87-89]. Time series of the
drought indices were estimated over a gridded map in the TDPS using a multi-model
ensemble. The duration of a given drought event was defined as the consecutive and
uninterrupted time period (one or more months) having an observed drought index below
the threshold. The frequency was calculated as the total number of months below the
threshold over a defined period (1984-2014; 2034-2064). In addition, the frequencies of
drought events according to their duration were also calculated for the 30-year periods.
The drought intensity was defined as the average value of the drought index (SPI, SSMI,
or SRI) below the threshold over a defined period (1984-2014; 2034-2064).

SPI

Monthly SPI was estimated from the precipitation series fitted by a gamma distribu-
tion [3,80,81]:
1
fx) = BT ()

x“*le%, x>0 (2)

where « > 0 is a shape parameter, § > 0 is a scale parameter, x is the amount of precipitation,
I'(y) is the gamma function.

SSMI

SSMI was obtained from the soil water storage series resulting from hydrological
modeling (S) (Figure 2). To estimate the distribution of soil moisture, the beta probability
distribution was used, because the magnitude of soil water storage was limited [83].
A representation of the beta distribution was as follows:

a—1
B («, B)

where « > 0 is a shape parameter, B > 0 is a shape parameter, and x is the proportional
amount of soil water storage. The integral of the probability density function was approxi-
mated to a summation over (0, 1).

fx) = (1—x)FP! 0<x<1 @)

SRI

The runoff series (Q) was fitted by a lognormal distribution [84], with a probability
density function defined as:

—(Inx — y)z

1
7 IU ==
f(x M ) xaﬁ exp[ 202

where y is the scale parameter, ¢ is the shape parameter, and x is the amount of run.

To calculate the relative changes in drought intensity, the months with a drought index
(SPI, SSMI, or SRI) below the threshold (—1.0) were filtered from the two 30-year datasets.
Then, the drought intensity for each grid cell was calculated as the average of the index
values for the filtered (drought) months. The change in percentage was calculated as the
difference in drought intensity between the 2034-2064 and 1984-2014 periods divided by
the drought intensity of the 1984-2014 period. Meanwhile, the total number of drought
months below the threshold over a defined period (1984-2014; 2034-2064) was used to
calculate the relative changes in drought frequency analogously. The extended wet season
(onset and proper wet season, September—April) was used for the calculations because the
precipitation during the dry season is very low (close to zero).

, x>0 ()
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4. Results
4.1. GCM Uncertainty Assessment

Thirty-one GCM outputs from phase 5 of the CMIP5 under the Representative Con-
centration Pathway 8.5 (RCP8.5) emission scenarios were evaluated. GCM outputs were
combined with the GR2M model to estimate the changes in variables that were relevant
for water resources management in the TDPS. To analyze the impact of the uncertainty of
climate projections on future streamflow predictions, GCM datasets were compared with
observed datasets. For conciseness, assessment of only three subbasins of the Lake Titicaca
basin to the north and three subbasins of the Desaguadero River in the south are shown in
Figures 3-5.

Taylor diagrams for the 1984-2014 control period were plotted using climate model
datasets for three sub-basins of the Lake Titicaca basin to the north and three sub-basins of
the Desaguadero River to the south (Figures 3 and 4). The diagram shows the performance
of the GCM before (red dots) and after (blue dots) correction. A high correlation coefficient
between the non-corrected GCM and observed datasets is exhibited (r ~ 0.8, p < 0.05),
centered root mean square deviation (RMSD) from 40% to 100% and coefficients of variation
mostly above 40%, evidenced a large dispersion of the models’ performance (Figure 3).

Coefficient of variation(%)
Coefficient of variation(%)

Coefficient of variation(%)
Coefficient of variation(%)

Coefficient of variation(%)
Coefficient of variation(%)

Figure 3. Taylor diagrams displaying a statistical comparison for precipitation datasets (coefficient of
variation (%), the root mean square deviation RMSD (%) and the correlation coefficient) between
climate models with bias correction and climate models without bias correction (blue and red dots,
respectively) for six basins controlled at the following stations: (a) Ramis, (b) Unocolla, (c) Ilave
(located in Peru), and (d) Chuquina, (e) Calacoto Maure, (f) Calacoto Desaguadero (located in Bolivia),
for the 1984-2014 period.

The bias-corrected datasets (blue dots in Figure 3) showed less dispersion, improved cor-
relation coefficients (r ~ 0.90, p < 0.05), and reduced RMSD at about 40% (Figure 3). As ex-
pected, the GCM non-corrected ET datasets showed less dispersion, lower RMSD, and
higher correlation with observed datasets than the precipitation datasets (Figure 4). How-
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ever, the bias-corrected ET datasets still showed improved performance, with a correlation
coefficient higher than 0.85 (p < 0.05) and RMSD below 20%.

Finally, five global climate models with the highest skill scores were selected (i.e.,
EC- EARTH, hadGEM2-ES, IPSL-CM5A-LR, MIROCS5, MPI-ESM-LR) [57-61] (Table 1).
The MIROC-ESM and MPI-ESM-LR models have previously been used to study the impact
of climate change in the Bolivian Altiplano [22]. Precipitation and ET monthly mean
analysis using the bias-corrected datasets show that the five GCMs represent quite well the
observed annual cycle of precipitation in the Altiplano (Figure 5a), characterized by a dry
(May-Sep) and a wet (Dec-Mar) season. A slight overestimation of precipitation was ob-
served during the wet season for some basins (Figure 5a). For potential evapotranspiration,
the five models also represented quite well the monthly fluctuations of estimated ET in the
six basins (Figure 5b).
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Figure 4. Taylor diagrams displaying a statistical comparison for evapotranspiration datasets (coef-
ficient of variation (%), the root mean square deviation RMSD (%), and the correlation coefficient)
between climate models with bias correction and climate models without bias correction (blue and
red dots, respectively) for six basins controlled at the following stations: (a) Ramis, (b) Unocolla,
(c) Ilave (located in Peru), and (d) Chuquifia, (e) Calacoto Maure (f) Calacoto Desaguadero (located in
Bolivia), for the 1984-2014 period.
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Figure 5. (a) Comparison of precipitation monthly means (1984-2014) between climate models
(EC-EARTH, HadGeM-ES, IPSL-CM5A-LR, MIROC, MPI-ESM-LR) and observed data (mm/month),
in the basins controlled at the Ramis, Unocolla, Ilave, Chuquifia, Calacoto Maure and Calacoto
Desaguadero stations. (b) Comparison of evapotranspiration monthly means (1984-2014) between
climate models (EC-EARTH, HadGeM-ES, IPSL-CM5A-LR, MIROC, MPI-ESM-LR) and observed
data (mm/month) in the basins controlled at the Ramis, Unocolla, Ilave, Chuquifia, Calacoto Maure,
and Calacoto Desaguadero stations. Red dots 1,2,3,4 (Peru) 7,6, and 5 (Bolivia), respectively,
in Figure 1.

4.2. GR2M Model Performance

Table 2 shows the Pearson coefficient of determination R?, Nash-Sutcliffe (NS) coeffi-
cient, and model parameters (X1, X;) for nine sub-basins of the TDPS. In most sub-basins,
R? and NS were high (NS ~ 0.60-0.84). They were also higher for the Lake Titicaca
tributaries (Peru) than for the Desaguadero River ones. To exemplify the simulation of
streamflows from observed precipitation, two sub-basins controlled at stations Ramis
(NS = 0.84, Peru) and Calacoto Maure (NS = 0.6, Bolivia) are shown in Figure 6 as represen-
tatives of the northern and southern parts of the TDPS system. To exemplify the simulation
of streamflows from observed precipitation, two sub-basins controlled at stations Ramis
(NS = 0.84, Peru) and Calacoto Maure (NS = 0.6, Bolivia) are shown in Figure 6 as represen-
tatives of the northern and southern parts of the TDPS system. Ramis was chosen as the
largest and most representative northern sub-basin and theCalacoto Maure sub-basin was
selected because it is not affected by Lake Titicaca fluctuations.
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~——— Modeled

- Precipitation

Figure 6. Observed and modeled streamflow hydrographs between 1984 and 2014 at (a) Ramis and (b) Calacoto Maure
stations. (c¢) Location of Ramis and Maure river sub-basins controlled at the Ramis and Maure stations are indicated on
the map.

The X; values suggested a greater storage capacity of the reservoir-soil in the Calacoto
Maure basin than in the Ramis one. X; values suggested a greater groundwater exchange
in Ramis than in Calacoto Maure (Table 2). This was probably associated with the relatively
steep topography of the Ramis basin and the semi-flat landscape of the Calacoto Maure
one (Figure 1).

4.3. Spatial Distribution of Changes in Drought Characteristics

To evaluate the spatial distribution of changes in temperature, precipitation, and evap-
otranspiration (1984-2014) associated with future climate scenarios (2034-2064) (Figure 7),
a multi-model ensemble mean was calculated using the selected models (EC- EARTH,
hadGEM2-ES, IPSL-CM5A-LR, MIROC5, MPI-ESM-LR) for the 2034-2064 period along the
TDPS system.
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Figure 7. Changes in (a) mean temperature (°C), (b) mean annual precipitation (%), and (c¢) mean annual evapotranspiration
(%) for the 2034-2064 period, relative to the 1984-2014 period.
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Warming in the 0.5-3.5 °C range is observed in Figure 7a, with the largest temper-
ature rise occurring in the southeastern and the smallest one in the northwestern TDPS
(0.5—1.5 °C). According to model projections, the northern and central TDPS will experi-
ence a slight increase of 3-6% in future annual precipitation (Figure 7b), while a decrease
of up to ~3% is expected in the southern TDPS in Bolivia (Figure 7b). The spatial distri-
bution of ET changes was similar to that of temperature changes: from a 5-8% increase in
evapotranspiration in the northern TDPS to 8-10% in the southern zone (Figure 7c).

Because of the strong seasonality of rainfall and the semiarid climate of the TDPS,
the extended wet season between September and April was also prioritized for analysis.
Monthly relative changes (%) in precipitation and evapotranspiration (Table 3) and the per-
centage changes in the annual coefficient of variation for the 2064-2034 and 2014-1984 peri-
ods were estimated (Table 4). Finally, three sub-basins controlled at the Ramis, Ilave (north),
and Chuquifia (south) stations were selected for additional comparisons (Tables 3 and 4).
Table 3 shows that the largest monthly rise in precipitation would occur in December
or January (the wettest month) in the three sub-basins. The largest decrease occurs in
September and October in the southern Chuquifia sub-basin. Table 4 shows a projected
rise (2-4%) of the coefficient of variation of annual rainfall; this is largest in the Chuquifia
sub-basin.

Table 3. Precipitation and evapotranspiration (ET) changes (%) during the wet season (September—April) for the 2034—2064 period

relative to 1984-2014 for the basins controlled at the Ramis, Ilave (Peru), and Chuquifia (Bolivia) stations.

Precipitation Changes %

September  October = November December January February March April

Ramis —24 -1.8 3.3 8.1 7.3 6.4 6.2 5.4
Ilave —0.1 -1.5 29 6.1 8.2 4.5 3.7 49
Chuquifia —74 -7.8 -3.7 3.7 6.0 2.0 1.6 -0.2
Evapotranspiration Changes %
Ramis 8.7 7.9 7.9 7.3 6.8 6.8 7.7 7.7
Ilave 8.9 7.9 8.3 8.7 7.5 7.9 8.8 8.5
Chuquifia 10.1 9.6 10.2 9.5 7.7 8.6 8.8 9.2

Table 4. Coefficient of annual variation (%) for the control period (1984-2014) and future period
(2034-2064), for the basins controlled at the Ramis, Ilave (Peru), and Chuquifia (Bolivia) stations.

Coefficient of Variation (%) Ramis Ilave Chuquiiia
Annual P, control period 1984-2014 83.1 934 93.2
Annual P, future period 2034-2064 85.1 95.7 97.0

Annual ET—control period 1984-2014 13.9 174 20.3
Annual ET—future period 2034-2064 13.7 16.9 20.0

4.4. Changes in Drought Intensity, Duration, and Frequency

Figure 8a—f shows the spatial distribution of changes in drought intensity and fre-
quency for 2034-2064, compared to 1984-2014, according to the model’s ensemble. Sig-
nificant differences (%) were observed among the results of meteorological, agricultural,
and hydrological droughts. Little change (from —5 to +5%) is expected in the intensity
of meteorological droughts in the northern and central TDPS regions (Figure 8a). A di-
minishing frequency (0 to —20%) of meteorological droughts was observed in the Titicaca
basin (northern TDPS) (Figure 8b). In contrast, a moderate rise (5-10%) in meteorological
drought intensity and a significant (10-40%) increase in frequency is expected for the
southern TDPS (Figure 8a,b). At the annual scale, the precipitation did not show a clear
pattern of change in the northern TDPS. Although for some regions of the southwestern
TDPS, the precipitation predominantly decreases [18]. The sign (negative/decline in the
north and positive/rise in the south) and magnitude (moderate) of the changes in intensity
and frequency of meteorological droughts are first associated with the predicted moderate
changes in rainfall (Figure 7b) for the climate change scenario 20342064, as meteorolog-
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ical droughts are defined only by rainfall anomalies (SPI index). The large changes in
frequency are also associated with the expected precipitation decline onset of the rainy
season (September-November) for the 2034-2064 period (Table 3).
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Figure 8. Changes (%) in the average intensity and frequency of meteorological droughts (SPI) (a,b),
agricultural droughts (SSMI) (c,d), and hydrological droughts (SRI) (e,f) for the 2034-2064 period,
relative to the 19842014 period.
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A rise in intensity (0-20%) and frequency (up to 90%) of agricultural droughts
(Figure 8c,d) is predicted for almost the entire TDPS, being greater in the southern TDPS
(Figure 8c,d). This is to be expected, as the SSMI index (and soil water balance) used to
define agricultural droughts is calculated with the GR2M model using both precipitation P
and reference evapotranspiration ET as input variables. The larger changes in the southern
TDPS are related to both the reduced precipitation (~3%) and the increased evapotranspira-
tion (~10%) predicted by GCM in this region (Figure 7b,c). A greater increase in frequency
than intensity suggests that the interaction between the ET rise and interannual rainfall
variability plays a more sensitive role in hydrological modeling when soil moisture content
and runoff are estimated.

The increase in intensity (up to 20%, Figure 8e) and frequency (up to 90%, Figure 8f)
of hydrological droughts follows a similar spatial pattern as agricultural droughts in the
TDPS. The greater frequency (~90%) in the central region (Figure 8f) is attributed to a
lower underground exchange estimated for basins controlled at the Ulloma and Calacoto
Desaguadero stations (Table 2). In contrast, the regions with the highest underground
exchange, identified for the basins controlled at the Chuquifia and Calacoto Maure sta-
tions (Table 2), have the lowest frequency increments of hydrological droughts (~25%)
(Figures 1 and 8f). This is associated with the close relationship between soil moisture and
runoff, as both variables were calculated by the GR2M model using the same rainfall and
evapotranspiration inputs. In particular, the similarities in the changes in the intensity
of hydrological and agricultural droughts in the southern TDPS are due to the expected
decrease in rainfall and increase in evapotranspiration in this region (Figure 7b,c).

To analyze the change in the duration of each drought type, the relationship between
the number of droughts (frequency) and their length (duration) was plotted on the same
graph for six sub-basins controlled at the Ramis, Unocolla, Ilave, Chuquifia, Calacoto Maure,
and Calacoto Desaguadero stations. Our results from the five selected GCMs showed no
significant changes for meteorological droughts lasting more than 4 months (Figure 9).
Nevertheless, meteorological droughts lasting between 1 and 3 months are more frequent
under the RCP 8.5 than in the baseline scenario.
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Figure 9. Frequency of meteorological droughts according to their duration. Results for baseline and futures scenarios
defined by five selected global circulation models (GCM) are shown for six sub-basins controlled at the following stations:
(a) Ramis (1), (b) Unocolla (2), (c) Ilave (3), in Peru, and (d) Chuquifia (7), (e) Calacoto Maure (6), (f) Calacoto Desaguadero
(5), in Bolivia. Numbers in parentheses indicate the location of control points in Figure 1b.

Most GCM-based agricultural drought duration curves are above the baseline, particu-
larly for droughts lasting between 2 and 4 months (Figure 10), evidencing a general increase
in the frequency of this type of drought for all sub-basins. This is consistent with agricul-
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@
=1

tural drought changes found in intensity and frequency analyses (Figure 8c,d). It should
be noted that no agricultural drought lasting more than 5 months has been identified
using SSMI, either for the baseline or RCP 8.5 scenarios, except for the EC-EARTH model.
Hydrological drought frequency also increased for most climate change scenarios, partic-
ularly for droughts lasting between 1 and 4 months, in contrast, hydrological droughts
lasting between 5 and 6 months are gradually reduced (Figure 11).
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Figure 10. Frequency of agricultural droughts according to their duration. Results for baseline and futures scenarios defined

by five selected GCM are shown for six sub-basins controlled at the following stations: (a) Ramis (1), (b) Unocolla (2),

(c) Ilave (3), in Peru, and (d) Chuquifia (7), (e) Calacoto Maure (6), (f) Calacoto Desaguadero (5), in Bolivia. Numbers in

parentheses indicate the location of control points in Figure 1b.
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Figure 11. Frequency of hydrological droughts according to their duration. Results for baseline and futures scenarios

defined by five selected GCM are shown for six sub-basins controlled at the following stations: (a) Ramis (1), (b) Unocolla
(2), (c) Ilave (3), in Peru, and (d) Chuquifia (7), (e) Calacoto Maure (6), (f) Calacoto Desaguadero (5), in Bolivia. Numbers in
parentheses indicate the location of control points in Figure 1b.

For the 2034-2064 scenario, the frequency of short-duration droughts lasting 1 to
2 months would increase on average by 30%, 76%, and 61% for the meteorological, agri-
cultural, and hydrological types, respectively (Figures 9-11). Whereas the frequency of
droughts lasting between 3 and 4 months would increase by 1%, 7%, and 11% for the
meteorological, agricultural, and hydrological types, respectively (Figures 9-11). These re-
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200

sults were consistent with the spatial patterns identified in the frequency of meteorological
(Figure 8b), agricultural (Figure 8d), and hydrological droughts (Figure 8f). It is worth men-
tioning that under the RCP 8.5 scenario, a large increase in the frequency of meteorological
droughts lasting 1 month was observed (Figure 9). In contrast, the impacts of climate
change on the frequency of agricultural and hydrological droughts will be distributed
between durations of 2 and 6 months (Figures 9 and 10).

The frequency of specific drought durations using the 3-month SPI, SSMI, and SRI was
also evaluated. A similar temporal pattern in the frequencies of droughts according to their
duration using the 1- and 3-month indices was found. The corresponding Figures S1-S3
are provided as supplementary information.

A further evaluation was carried out (Figure 12) to show the changes in the frequency
of moderate and severe droughts for the Ilave, Ramis, and Desaguadero basins, controlled
at the Ilave, Ramis (Peru), and Chuquifia (Bolivia) stations, respectively (black dots 1, 3,
and 7 in Figure 12). Meteorological drought frequency increased in most of the five GCMs
scenarios for the southern TDPS. Indeed, an increase in severe droughts is predicted for
every basin analyzed (Figure 12a—c).
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Figure 12. Total number of drought months (frequency, y-axis) of meteorological (a—c), agricultural (d—f), and hydrological
(g-i) droughts for the future period (2034-2064) in comparison to the baseline period (1984-2014). Results for five future
GCM scenarios for three selected sub-basins controlled at the Ramis (1), Ilave (3), and Chuquifia (7) stations are shown.
Numbers in parentheses indicate the location of the control points in the map.

Fewer moderate meteorological droughts were predicted for basins controlled at
the Ramis and Ilave stations (northern TDPS) (Figure 12a,b). This can be explained by
the slight rainfall increase expected (3—6%) (Figure 7b) to occur during the wet season
(December—April) in the central and northern regions of the TDPS (Table 3). In contrast,
the rise in the number of severe meteorological droughts was bigger in the southern basin
controlled at the Chuquifia station (Figure 12c). This can be explained by precipitation
decreases between September and November in the southern regions (Table 3, Figure 7).

The frequency of agricultural droughts, as estimated from the SSMI, is expected to
increase from the baseline (1984-2014) to every one of the five GCM 2034-2064 projections
(Figure 12d—f). On average, over 100 moderate droughts and 55 severe droughts were
projected for the RCP 8.5 scenarios. Dramatic increases in the frequency of severe droughts,
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as estimated from the SRI are also expected (Figure 12g—i). The rise in the number of
moderate and severe hydrological droughts was bigger in the southern basin controlled
at the Chuquifia station than in the northern basins controlled at the Ramis and Ilave
stations (Figure 12g—i). This can be explained by the bigger projected ET increase between
September and April, and the bigger projected precipitation decrease for the southern
TDPS between September and April, as precipitation and ET were used to estimate SRI
from the GR2M modeling (Table 3).

5. Discussion

The results of this study show an increase in drought severity in most of the Alti-
plano region: The impact of droughts is more evident between September and November.
In particular, the significant rise in the monthly frequency of hydrological and agricultural
droughts could be associated with the expected reduction in rainfall in those months
(the rainy season onset). An increase of drought frequency during this season is worrying,
as the water demand of agricultural systems reaches its peak during this season [19,90].
A recent article [91] documented GCM projected temperature and precipitation changes
of the same signal as this study between September and November over the Altiplano.
The impact of these changes would be stronger in the southern TDPS. Indeed, trends in
the duration and magnitude of drought events for the Bolivian Altiplano in the last three
decades show a similar spatial pattern [18].

Meteorological droughts (duration of less than 3 months) propagate nonlinearly into
agricultural and hydrological droughts (duration greater than 3 months). This propagation,
shown by SRI and SSMI indices when agricultural and hydrological effects, respectively,
are analyzed, is associated with the close relationship between soil moisture and runoff.
Both variables are calculated from GR2M modeling using as inputs both rainfall and
evapotranspiration; the latter is not considered by SPI analysis for analyzing meteorological
droughts. An increase in potential evapotranspiration (from 4 to 10%) is explained by
rising temperatures (from 0.5°C to 3.5 °C). In addition, because the ET increase is greater
during the onset of the wet season (September-December) it should further contribute to
more frequent hydrological and agricultural droughts.

The projected precipitation increases in January (the wettest month) and the rise of the
coefficient of variation of annual precipitation suggest an intensification of the hydrological
cycle. This is consistent with recent studies that suggest rainfall concentration [10,92,93].
Meteorological droughts in the Altiplano have been associated with El Nifio-Southern
Oscillation (ENSO events) [94,95]. Indeed, rainfall over the Altiplano decreases during El
Nifo episodes [30,31]. In addition, [96] also found that warming episodes over the Eastern
Pacific Ocean also reduce precipitation over the As most GCMs, including the GCMs
selected for this study (EC- EARTH, hadGEM2-ES, IPSL-CM5A-LR, MIROC5, MPI-ESM-
LR), project an increase of ENSO episodes at the end of the 21st century [97]. The Pacific
teleconnection may explain, at least partially, the increase in the frequency of droughts in
the TDPS system. Indeed, studies of precipitation variability using observed datasets have
documented trends towards drier conditions in the Altiplano [18].

In this study, a potential issue source of uncertainty is the choice of reference datasets.
The potential uncertainty ranges of GCMs make a full characterization impossible. For com-
parison reasons, only five GCMs with the highest skill score were selected [42,54]. The re-
sults above confirm that significant uncertainties exist in future drought simulations.
This may arise from different sources such as emission scenarios, GCM structure, and down-
scaling /bias-correction methods [4-6]. In this study, every GCM was downscaled and
bias-corrected by algorithms that preserve properties [54], which were comprehensively
validated at a seasonal time scale.

Uncertainty of the study results is likely to be influenced by the GCM outputs, in spite
of the selection carried out previously. The evaluation of the capacity of the GCM to describe
the climate variability (particularly precipitation) at interannual and decadal-interdecadal
time scales is suggested. This is still not very frequent in climate change assessments and it
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was beyond the scope of this study, as the Altiplano climate spatio-temporal variability is
not sufficiently known [98].

Moreover, limitations on hydrological model performance are likely associated with
input data uncertainty, simplified hydrological processes, and the propagation of drought
from meteorological to hydrological and agricultural systems [64]. Indeed, the most promi-
nent disagreements are found for the moderate and extreme frequency of agricultural and
hydrological droughts characterized by propagation from meteorological droughts [4-6].
However, our results show that it is possible to employ the GR2M model for streamflow
simulations in the Altiplano.

6. Conclusions

The impact of climate change on meteorological, agricultural, and hydrological
droughts has been evaluated using drought indices estimated from global climate models
under the RCP 8.5 emission scenario. The 2034-2064 period relative to 1984-2014 was
used to identify expected drought changes in the Altiplano region (the Lake Titicaca,
Desaguadero River, and Lake Poopo basins-TDPS system, Peru-Bolivia). According to
the ensemble of five selected GCMs, greater temperature and evapotranspiration rises
are expected in the southern region of the TDPS system than in the northern one for the
2034-2064 scenario. On the other side, a slight increase in annual precipitation is expected
in the northern TDPS and a moderate decrease in the southern TDPS.

Drought projected changes show a north-south gradient, becoming more intense and
frequent in the central and southern Altiplano. Furthermore, a nonlinear propagation from
meteorological droughts to agricultural and hydrological systems results in drought fre-
quency and duration being amplified from meteorological to hydrological and agricultural
droughts. This amplification, shown by SRI and SSMI indices when agricultural and hydro-
logical effects, respectively, are analyzed, is associated with the close relationship between
soil moisture and runoff. A similar pattern is observed for agricultural and hydrological
drought intensity for most of the TDPS system.

The frequency of meteorological droughts lasting between 3 and 4 months would
remain basically the same, but a significant rise in the frequency of meteorological droughts
lasting between 1 and 2 months is expected for the climate change scenario for the entire
TDPS, that would develop between the dry season and the rainy season onset.

The results obtained in this study are someway limited by the modest performance
of most global climate models in the Altiplano region. The relatively large dispersion
of the GCM outputs and the associated high uncertainty, particularly for precipitation,
propagates from meteorological to hydrological and agricultural droughts estimates. It is
clear that there is significant room for improvements in GCM simulations for the Altiplano.
A better understanding of the Altiplano spatio-temporal variability of precipitation at
different scales and its associated causes could contribute to reducing GCM uncertainty.

Climate change would likely increase the frequency, intensity, and duration of drought
events in the Altiplano. Potential impacts of climate change on droughts, extreme precipi-
tation events, or climatic parameters, such as dry-day frequency and wet-day frequency,
can contribute directly or indirectly to increased environmental problems in the Andean
Altiplano (soil erosion, landslides, floods, dry spells). Adaptation strategies should be
developed to mitigate future impacts of climate change on the very vulnerable and growing
population of the Altiplano and its sensitive natural systems. This study should provide
relevant information for the development of more effective drought management plans.

The lack of observations is one of the main limitations for the performance of agro-
climatic and hydro-climatic models in high mountain regions [86-89]. Simulated climatic
datasets from high-resolution models could support the lack of datasets for agro-climatic
and hydro-climatic modeling in high mountain regions [26,99,100].
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Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
441/13/2/175/s1, Figure S1: Frequency of meteorological droughts according to their duration
using the 3-month SPI. Results for baseline and futures scenarios defined by five selected GCM
are shown for six sub-basins controlled at the following stations: (a) Ramis (1), (b) Unocolla (2),
(c) Have (3), in Peru, and (d) Chuquina (7), (e) Calacoto Maure (6), (f) Calacoto Desaguadero (5),
in Bolivia. Numbers in parentheses indicate the location of control points in Figure 1b, Figure S2:
Frequency of agricultural droughts according to their duration using the 3-month SSMI. Results for
baseline and futures scenarios defined by five selected GCM are shown for six sub-basins controlled
at the following stations: (a) Ramis (1), (b) Unocolla (2), (c) Ilave (3), in Peru, and (d) Chuquifia (7),
(e) Calacoto Maure (6), (f) Calacoto Desaguadero (5), in Bolivia. Numbers in parentheses indicate
the location of control points in Figure 1b. Figure S3: Frequency of hydrological droughts according
to their duration using the 3-month SRI. Results for baseline and futures scenarios defined by
five selected GCM are shown for six sub-basins controlled at the following stations: (a) Ramis (1),
(b) Unocolla (2), (c) lave (3), in Peru, and (d) Chuquifia (7), (e) Calacoto Maure (6), (f) Calacoto
Desaguadero (5), in Bolivia. Numbers in parentheses indicate the location of control points in
Figure 1b.
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