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To my mother Chela, my father Ñofi, my sister Pili, and my brother Caĺın.
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CHAPTER 1

INTRODUCTION

The main concern of this thesis is the estimation of ionospheric parameters from

incoherent scatter (IS) power data collected with the ALTAIR radar. The estimation

is performed using a radar calibration and inversion technique based on a forward

model of the scattered power. The model considers the physics of the ionosphere

in terms of IS radar cross section (RCS) of the medium. The inversion procedure

provides the estimates of plasma density and electron-ion temperature ratio (Te/Ti)

of the probed ionosphere. This introductory chapter overviews the incoherent scatter

radar (ISR) technique and concludes with an outline of the remaining chapters in

the thesis.

1.1 The Incoherent Scatter Radar Technique

Electromagnetic waves traveling thorough a medium with a varying refractive index

will be partially reradiated or scattered in different directions. In the ionosphere,

as in any other plasma, refractive index variations are caused by fluctuations in

the density distribution of charged particles that constitute the medium. When

ionospheric particles are in thermal equilibrium, the scattering process is termed

incoherent.

Applications of incoherent scattering for ionospheric research using large and

powerful radar systems were first proposed by Gordon [1958]. He suggested that

incoherent scattering could be used to measure ionospheric electron densities, but
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it was subsequently discovered that other parameters can also be obtained, e.g.,

electron and ion temperatures, ion composition, and plasma drifts. A detailed

review of these ISR methods and their importance for ionospheric studies can be

found in Beynon and Williams [1978].

The problem of calculating the spectrum of incoherently scattered radio waves

was first addressed by Dougherty and Farley [1960], Fejer [1960], and others. Differ-

ent methods of derivation were followed, but the results were nearly the same. Over

the years, the theory has been successfully tested on many experimental observa-

tions. Using sophisticated algorithms for inversion of ISR data, physical parameters

of the background ionosphere are routinely measured in radio observatories dis-

tributed around the world [Evans , 1969; Farley , 1970].

The extension of the spectral theory to include the effects of an external magnetic

field was of particular interest for ionospheric research [Farley et al., 1961; Fejer ,

1961]. The theory showed that the spectrum has some dependence on the magnetic

aspect angle α—defined as the complement of the angle between the scattered field

wavevector ~k and the ambient magnetic field ~B. For α greater than a few degrees,

the spectrum is fairly independent of the magnetic aspect angle, and it is only for

small α that the dependance shows up. In this regime, the spectrum gets narrower

and taller as α→ 0◦, limit where the wavevector is perpendicular to ~B.

A known issue in the theory was its inaccuracy in quantifying the observations at

small magnetic aspect angles. Recent experimental techniques developed for modes

propagating perpendicular to ~B [Kudeki et al., 1999, 2003] have brought back to

light this problem. This was inherited by the spectral models from neglecting the

effect of collisions in the physics of the plasma. In the past few years, Sulzer and

González [1999] and Woodman [2004] have tackled the problem. A new model for

the spectrum at small magnetic aspect angles has emerged, and further development

in radar techniques perpendicular to ~B can be pursued.
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1.2 Thesis Outline

Radar scans of the low-latitude ionosphere were conducted with the ALTAIR system

during the Equis 2 campaign. An interesting feature of the observations was the

increment of the returned power when the radar beam went through a perpendicular

direction with respect to the Earth’s magnetic field. A detailed description of the

radar configuration used in these observations is presented in Chapter 2.

A radar equation that models ALTAIR power data is derived in Chapter 3. The

model accounts for the physics of the ionosphere in terms of the total RCS of the

medium. Since small aspect angles are involved, the RCS model is based on new

theoretical approaches that account for the effect of Coulomb collisions in a plasma

[Woodman, 2004; Kudeki and Milla, 2006].

Taking advantage of the aspect angle sensitivity of the backscattered power

collected at ALTAIR, electron densities Ne and Te/Ti profiles were estimated using

the forward model of Chapter 3. For this purpose, accurate calculation of some

system calibration constants was required. The methods for the computation of

these parameters are developed in the first section of Chapter 4. The second section

details the numerical technique used in the data inversions, namely, a regularized

least-squares minimization algorithm. The procedure relies on the L-curve criterion

for optimal selection of the regularization parameter, and provides smooth profiles

of the ionospheric variables.

The proposed ISR technique works for the region around magnetic perpendicu-

larity, and under the plausible assumption of meridional homogeneity of the iono-

sphere over a horizontal scale of a few hundred kilometers. The results obtained

with this method are presented and discussed in Chapter 5.

The thesis concludes in Chapter 6 with a critical discussion of the procedures

developed for this application. The work presented here has been recently published
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by Milla and Kudeki [2006] and Kudeki et al. [2006]. Moreover, the results have

been used for comparison with in situ density measurements carried out by rockets

during the Equis 2 campaign [Friedrich et al., 2006; Lehmacher et al., 2006].
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CHAPTER 2

RADAR CONFIGURATION
AND DATA ACQUISITION

The Advanced Long Range Tracking and Identification Radar (ALTAIR) is a dual-

band (VHF and UHF) high-sensitivity radar designed for ballistic missile detection

and tracking. It is located on Roi-Namur island of the Kwajalein Atoll in the west-

ern Pacific (9.39◦ N, 167.47◦ E). Its 150-ft parabolic dish antenna is fully steerable,

capable of accelerations of 2◦/s2 and angular rates of 10◦/s [Lemnios and Gromet-

stein, 2002]. Its transmitter can deliver up to 4MW of peak power in the UHF

band with a maximum duty cycle of 5%. During transmission, circularly polarized

pulses are used, while in reception, both right- and left-circularly polarized returns

can be monitored and detected independently. These characteristics, in addition to

its unique location with respect to the Earth’s magnetic equator (4.3◦ N geomag-

netic latitude), make ALTAIR suitable for IS observations of the equatorial and

low-latitude ionosphere.

2.1 Experiment Description

During the 2004 Equis 2 NASA rocket campaign, ISR measurements of the low-

latitude daytime ionosphere were conducted by the ALTAIR UHF radar. The mea-

surements were made for common volume comparisons with rocket based D- and

E -region electron density estimates described in Friedrich et al. [2006]. During the

observations, the ALTAIR beam was scanned along a north-south oriented plane

that coincides with the rocket trajectories, and incoherently scattered returns were
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Figure 2.1 An example of the ALTAIR scan measurements collected during the
Equis 2 campaign. In colors, levels of backscattered power calibrated to match
electron densities in the probed region are displayed.

sampled from D-region heights up to the topside F -region. The scan geometry and

radar data collected in a single scan are illustrated in Figure 2.1 where the color

map corresponds to the logarithm of the backscattered power.

In the scans, the radar beam was swept along the −13.5◦ azimuth plane starting

from an elevation angle of 50◦ up to zenith position and steering at an angular

rate of 8 s/deg. Thus, each scan lasted about 5min and 20 s. As the beam moves,

ALTAIR probed the ionosphere at different magnetic aspect angles, going through

a perpendicular orientation with respect to the geomagnetic field at an elevation

around 80◦. The perpendicular orientation coincides with the spike-like intrusion

seen in Figure 2.1. This is better illustrated in Figure 2.2 where power is now
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Figure 2.2 Backscattered power data displayed as function of beam elevation angle
and height. The white arrows depict the relative orientation of the geomagnetic field
with respect to the radar beam direction. Note that the power enhancement at an
elevation ∼ 80◦ corresponds to altitudes where Te > Ti and the radar line-of-sight
is perpendicular to ~B.

displayed as a function of elevation angle and height. The superposed white arrows

depict the relative orientation of the geomagnetic field ~B with respect to the radar

beam direction. The enhanced power corresponding to the spike observed in both

figures is characteristic of the incoherent scatter process in regions where the electron

temperature exceeds the ion temperature (i.e., Te > Ti) and the probing direction

is perpendicular to ~B.

Table 2.1 presents a summary of the primary ALTAIR parameters configured

for these ionospheric scans. As indicated, the radar was operated using an LFM

waveform (chirped pulse) of 400µs duration, 422MHz center frequency, 250 kHz

7



Table 2.1 Experiment configuration.

Radar parameters
Peak power 4MW
Radar frequency 422MHz
Pulse modulation 250 kHz LFM
Pulse width 400µs (60 km)
Inter-pulse period 8.3ms (1250 km)
Sampling rate 1.6µs (240m)
Range 65 -755 km
Samples per pulse 2874
Pulses per scan 38400
Scan duration 5min and 20 s
Angular scan rate 8 s/deg

bandwidth, and a 120Hz pulse repetition frequency (PRF) that corresponds to an

interpulse period (IPP) of 8.33ms. In total, 38400 pulses were transmitted during

each scan. Note that this sampling period is longer than typical correlation times

of the ISR signal returns (that are less than 1ms for ALTAIR’s radar wavelength).

Thus, the signal spectrum is severely aliased, making impossible the estimation of

meaningful ionospheric parameters using any pulse-to-pulse correlation or spectral

analysis. However, we were able to make meaningful estimations by taking advan-

tage of the magnetic aspect angle dependence of the measured power. The effects

introduced due to LFM modulation of the transmitted pulse—and subsequently

matched-filter detection of the returned signal—are properly accounted for in our

inversion procedure, and will be described and formulated in the next chapter.

2.2 Radar Power Profiles

As mentioned previously, the ALTAIR antenna is configured to independently de-

tect right- and left-circularly polarized returns using coherent and matched-filter

reception. During the radar scans, outputs of these complex channels were sampled
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Figure 2.3 ALTAIR echo power measured in both (a) “principal” and (b) “orthog-
onal” antenna channels that are right- and left-circularly polarized. Each profile
corresponds to a different elevation angle. Note that depolarization of the re-
turned signal was not detected because generalized Faraday effects are negligible
at 422MHz.

at a rate corresponding to 240m range spacing, and a total of 2874 gates were taken

covering radar ranges between 65 and 755 km.

In Figure 2.3, radar echo power calculated from the sampled voltages at both re-

ceiver outputs are plotted as function of height. Each individual profile corresponds

to a different elevation angle of the radar beam and represents an integration over

1000 radar pulses. This is equivalent to 8.33 s of data during which the beam

moves about one degree. We can notice that only the channel labeled as “principal

polarization” contains backscattered power, indicating that possible depolarization

effects can be neglected in our analysis. This is an expected result, not only because
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circularly polarized transmissions correspond to a normal mode of propagation for

most scanning directions involved, but also because generalized Faraday effects [Yeh

et al., 1999] are very weak at 422MHz even for propagation perpendicular to the

geomagnetic field (in which case the normal modes are linearly polarized).

During the Equis 2 campaign, ALTAIR was operated in this mode on September

20, 21, and 25, 2004. A collection of radar scans were recorded at unequally spaced

time intervals and only for daytime hours. In addition, “control” data was taken

on January 15, 2005. In the next chapter, we develop a quantitative model for

the enhanced power data detected by the principal polarization channel, which is

subsequently used in Chapter 4 to estimate Ne and Te/Ti profiles of the low-latitude

ionospheric regions.
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CHAPTER 3

INCOHERENT SCATTER
POWER MODEL

In this chapter, we present a soft-target radar equation for the incoherently scattered

power data recorded by ALTAIR. The radar power is modeled in terms of the IS

radar cross section, which is a function of plasma density, electron-ion temperature

ratio, and magnetic aspect angle [Farley , 1966]. In addition, pulse compression

effect due to matched-filter detection is considered in terms of the radar ambiguity

function (AF). Our model explains and quantifies the angular variability of the

backscattered signal at small magnetic aspect angles. In this regime, the effects of

electron and ion Coulomb collisions become important [Sulzer and González , 1999]

and have to be considered in the RCS model. This is accomplished by following the

procedure outlined in Kudeki and Milla [2006] based on the collisional incoherent

scatter spectrum model developed by Woodman [1967], and the empirical collision

frequency formula proposed by Woodman [2004].

3.1 Radar Equation and Ambiguity Function

In soft-target Bragg scattering each infinitesimal volume dv ≡ r2drdΩ of a radar

field-of-view behaves like a hard-target with a radar cross section dv
∫ dω

2π
σ(~k, ω),

where σ(~k, ω), by definition, is soft-target RCS per unit volume per unit Doppler

frequency ω
2π

, and ~k ≡ −2kor̂ denotes the relevant Bragg vector for a radar with a

carrier wavenumber ko. As a consequence, the hard-target radar equation generalizes
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for soft-target Bragg-scatter radars as

Pr(t) =
∫
dr dΩ

dω

2π

G(r̂)A(r̂)

(4πr)2
Pt(t−

2r

c
)σ(~k, ω), (3.1)

where Pt(t) ∝ |f(t)|2 is the transmitted power carried by a pulse waveform f(t), G(r̂)

and A(r̂) are the gain and effective area of the radar antenna as a function of radial

unit vector r̂, r is the radar range, and c the speed of light. Furthermore, equation

(3.1), which assumes an open radar bandwidth, can be recast for a match-filtered

receiver output as

Pr(t)

EtKs

=
∫
dr dΩ

dω

2π

g2(r̂)

r2
|χ(t− 2r

c
, ω)|2 σ(~k, ω), (3.2)

where Et is the total energy of the transmitted radar pulse, Ks denotes a system

calibration constant including loss factors ignored in (3.1), g(r̂) is the self-normalized

version of G(r̂), and

χ(τ, ω) ≡ 1

T

∫
dt ejωt f(t)f ∗(t− τ) (3.3)

has a magnitude known as radar ambiguity function [Levanon, 1988]. In (3.3) the

normalization constant T denotes the duration of pulse waveform f(t) and (3.3)

itself is effectively the normalized cross-correlation of Doppler-shifted pulse f(t) ejωt

with a delayed pulse echo ∝ f(t − τ) that would be expected from a point target

located at a radar range

R ≡ c τ/2. (3.4)

Hence, variable τ in (3.3) not only represents a time delay, but also a corresponding

radar range R. We will refer to τ as delay or range as we find convenient in the

following discussion. A detailed derivation of Equations (3.2) and (3.3) is offered in
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Figure 3.1 Ambiguity function |χ(τ, ω)| of a chirped pulse of width T = 400µs
and frequency span ∆f = 250 kHz.

Appendix A.

In our experiment, we have used a chirped pulse waveform

f(t) = rect(t/T ) ej β
2
t2 , (3.5)

which, in effect, causes a slow linear variation of the carrier frequency over a band-

width ∆f and at a rate β
2π

= ∆f
T

. The corresponding ambiguity function,

|χ(τ, ω)| = 4(
τ

2T
) |sinc(

(T − |τ |)(ω + βτ)

2
)|, (3.6)

is plotted in Figure 3.1 for T = 400µs and ∆f = 250 kHz (parameters used in the

experiment). This expression is derived in Appendix B.
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According to formula (3.6), the overall width of |χ(τ, ω)| along the delay axis τ

over the frequency bandwidth B of the RCS spectrum corresponds to 2πB/β (given

B � ∆f), which implies a range resolution ∆r—defined as the range separation

between independent measurements—described by

2∆r

c
=

2πB

β
=
TB

∆f
. (3.7)

For instance, for a plausible ionospheric bandwidth of B = 10 kHz, the range reso-

lution is ∆r = 2.4 km. In addition, any mean Doppler shift of the RCS spectrum

will imply a displacement of the actual position of the backscatter signal; such a

displacement can be estimated as

d = fo T
vd

∆f
, (3.8)

where vd is the Doppler shift measured in m/s and fo the radar carrier frequency in

Hz. In ionospheric observations, possible Doppler shifts are around 100m/s, with a

corresponding displacement of about 67m, a small fraction of the range resolution

∆r that can be safely neglected.

Assuming that σ(~k, ω) varies slowly with the radar range r, and that the AF is

almost flat within the bandwidth of the RCS spectrum (which is the case of this

application), we can simplify Equation (3.2) to obtain

Pr(R)

EtKs

≈ δR

R2

∫
dΩ g2(r̂)σ

T
(~k), (3.9)

where R = ct
2

is the measured radar range,

δR ≡
∫
dr |χ(

2

c
(R− r), 0)|2 (3.10)
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is the effective range depth of the radar scattering volume, and

σ
T
(~k) ≡

∫ dω

2π
σ(~k, ω) (3.11)

is the total volumetric RCS where dependence on range R is implied.

3.2 Incoherent Scatter RCS Spectrum (σ)

The IS theory establishes that the volumetric RCS spectrum of a quiescent iono-

sphere can be written as [Dougherty and Farley , 1960; Farley et al., 1961]

σ(~k, ω) = 4πr2
e 〈|ne(~k, ω)|2〉 (3.12)

where re is the classical electron radius and

〈|ne(~k, ω)|2〉 =
2Ne

ω

 |jk2λ2
e + µyi(~k, ω)|2 Re{ye(~k, ω)}

|jk2λ2
e + ye(~k, ω) + µyi(~k, ω)|2

+
|ye(~k, ω)|2 Re{yi(~k, ω)}

|jk2λ2
e + ye(~k, ω) + µyi(~k, ω)|2

 (3.13)

denotes the space-time spectrum of electron density fluctuations. Above, Ne is the

mean electron density, λe is the electron Debye length, µ the temperature ratio Te/Ti,

and ye and yi are normalized electron and ion admittance functions proportional to

conductivities in the medium. These admittances can be expressed as

ys = j + θs Js(θs), (3.14)

where s denotes each species (electrons or ions) and θs ≡ ω√
2kCs

is the frequency

normalized by wavenumber k and thermal speed Cs. The function Js, which will be

specified later, is a Gordeyev integral that can be interpreted as one-sided Fourier
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transform of normalized autocorrelation of echoes from charged particles in the

absence of collective interactions [Hagfors and Brockelman, 1971].

3.3 Efficiency Factor of Electron Scattering (η)

Replacing expression (3.12) in (3.9), we have

Pr(R)

EtKs

≈ 4πr2
e Ne(R) δR

R2

∫
dΩ g2(r̂) η(~k), (3.15)

where

η(~k) ≡
∫ dω

2π

〈|ne(~k, ω)|2〉
Ne

(3.16)

is the efficiency factor of electron scattering that is 1
2

in a plasma in thermodynamic

equilibrium, or, more generally, (1 + Te
Ti

)−1 in a nonmagnetized plasma with an

arbitrary Te/Ti and negligible Debye length [Farley , 1966]. However, in our forward

model, we will need the efficiency η for a magnetized plasma with an arbitrary Te/Ti

and for arbitrarily small aspect angles α.

In general, noncollisional models for (3.13) become singular as α → 0◦ and

make numerical evaluation of η impossible in the same limit. This difficulty can

be circumvented by using a collisional model for (3.13). In our computations of

η, we used the collisional model developed by Woodman [1967], which is based on

a simplified Fokker-Planck operator for Coulomb collisions, the relevant collision

process for F -region altitudes [Sulzer and González , 1999]. The model leads to a

Gordeyev integral [Kudeki et al., 1999; Kudeki and Milla, 2006]

Js(θs) =
∫ ∞

0
dt e−jθst e

−ψst−1+e−ψst

2ψ2
s

sin2 α

e
− cos(2γs)+ψst−e−ψst cos(φst−2γs)

2(ψ2
s+φ2

s)
cos2 α

, (3.17)
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where ψs ≡ νs√
2kCs

and φs ≡ Ωs√
2kCs

are normalized collision- and gyro-frequencies,

respectively, and γs ≡ tan−1( νs
Ωs

). For νi and νe we make use of the collision frequency

models of Woodman [1967] and Woodman [2004], respectively, which are

νi/νi0 = 0.601 (3.18)

and (Equation (14) in the original paper)

νe/νe0 = 1.06 + 7.55 sinα/ sinαc − 2.00 (sinα/ sinαc)
2

+ 0.27 (sinα/ sinαc)
3, (3.19)

where αc ≡ sin−1(2πνe0
kCe

) is a critical aspect angle and

νs0 ≡
e4Ne

4πε20m
1/2
s (2KTs)3/2

ln(24πλ3
eNe) (3.20)

is the so-called Spitzer collision frequency for species s (electrons or ions).

In numerical evaluations of η, Gordeyev integrals Js were computed using a

chirped z-transform algorithm suggested by Li et al. [1991]. Each integral was eval-

uated for a total of 215 sample frequencies equally spaced from 0 to 125 kHz. The

algorithm samples the integrand of Js in sections of the same length, and adds

iteratively the contribution of each section as it is needed for convergence of the

integral. Despite the accuracy that this algorithm provides, it became computa-

tionally demanding to obtain Js at angles close to perpendicular to ~B because of

the narrowness of the IS spectrum in this regime. Nevertheless, computations were

possible even at α = 0◦ as a consequence of the collisional model used.

The efficiency factor η has been calculated for different values of aspect angle

α, temperature ratio Te/Ti, and electron density Ne. As an example, Figure 3.2(a)

displays the values of η computed for a constant density of 1012 m−3 and Te = 1000 K.
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Figure 3.2 Efficiency factor η as function of (a) magnetic aspect angle vs. Te/Ti

for a constant electron density of 1012 m−3, and (b) electron density vs. Te/Ti for

α = 0◦ (perpendicular to ~B). Both graphics correspond to the case of Te = 1000 K.
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Here, note that the dependence of η on the magnetic aspect angle becomes relevant

for small α (smaller than ∼ 3◦). In addition, Figure 3.2b shows the variation of

the efficiency factor as function of Ne for α = 0◦ and Te = 1000 K. In this case, η

increases as Te/Ti rises from unity. Note that the rate of change is not uniform for

different density values.

Overall, it was found that η is not highly sensitive to variations of the collision

frequency parameter. For instance, increasing νe by factor of 3 or decreasing it by

a factor of 10 did not change the computed η values by more than ∼ 1%. On the

other hand, drastic changes, such as a factor of 30 increase in νe, cause noticeable

changes in the efficiency factor.
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CHAPTER 4

RADAR CALIBRATION AND
INVERSION TECHNIQUE

Accurate estimates of ALTAIR radar calibration parameters are required for the

utilization of the IS power model presented in the previous chapter. The experi-

mental procedures followed in the determination of these parameters are described

in Section 4.1. In addition, Section 4.2 presents the regularized least-squares min-

imization algorithm used in the estimation of densities Ne and temperature ratios

Te/Ti from IS power data. The technique relies on a graphic criterion for optimal

selection of the regularization parameter denominated L-curve.

4.1 Calibration and Power Model Calculations

The use of radar equation (3.15) to model the measured power data requires the

availability of transmitted pulse energy Et and system constant Ks. Since the

transmitted peak power Pt is recorded in ALTAIR data headers on a per pulse

basis, the pulse energy is trivially obtained as Et ≡ Pt T . In addition, the Ks value

that accounts for all the losses and gains of the entire radar system is calculated

from peak power measurements conducted with a spherical target of a known RCS.

This calibration is routinely performed at ALTAIR and its value is also stored in

the data headers.

In addition, the effective range depth δR needed in the power model (3.15) can

be computed either analytically by replacing (3.6) in the definition (3.10), or exper-

imentally by integrating the radar response due to a single point target. The second
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Figure 4.1 Example of the radar response due to a single point target used in the
calibration of the effective range depth δR. The measured power corresponds to an
integration over 100 pulses and it is normalized to its peak value.

approach provides a more accurate estimate of δR given that any systematic imper-

fection in the pulse generation is intrinsically taken into account. Some examples of

point target radar responses—as the one displayed in Figure 4.1—were selected and

then integrated to calculate δR for each of them. The minimum of these values was

chosen as the appropriate δR and it is equal to 633.2m. Note that this calibrated

constant is a little larger than its analytical value (∼ 600 m).

The computation of the solid angle integral in (3.15) was simplified assuming that

ionospheric parameters do not vary locally in longitude. Therefore, only changes

along the direction of the scan were considered. This assumption is justified by the

narrowness of the ALTAIR UHF antenna beam with a beam-width of less than one
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degree. As a result, we collapsed the solid angle integral into a 1-D angular integral

along the direction of the scan.

We considered two different approaches to evaluate the angular integral just

described: The first one corresponds to assuming a fixed beam direction during the

transmission of the 1000 pulses used to obtain a single averaged power profile. This

approach is justified if the efficiency factor η varies linearly across the beam, in

which case, it can be replaced by its central value and reduce the integral to the

calculation of an equivalent solid angle defined as

δΩ ≡
∫
dΩ g2(Ω). (4.1)

This simplifies the radar equation (3.15) into

Pr(R)

EtKs

≈ 4πr2
e δR δΩ

R2
Ne(R) η(k̂), (4.2)

where vector ~R ≡ R k̂ is the position vector of the scattering parcel with respect to

the radar location. Because only a few points of ALTAIR’s UHF antenna pattern

were available from calibration measurements, we made use of a polynomial inter-

polation to increase the angular grid of the normalized antenna gain. Using these

interpolated data, the solid angle was determined to be δΩ = 2.0272× 10−4 sterad.

In the second approach, we accounted for the effect of the angular displacement

of the beam from pulse to pulse and averaged 1000 profiles corresponding to each

beam position to obtain a model profile for the measured power data. Comparison of

the two methods revealed negligible differences in test cases, and, as a consequence,

the bulk of the results to be presented in the next chapter were obtained using the

less costly first approach.
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4.2 Regularized Inverse Algorithm

A regularized least-squares inverse algorithm [Tikhonov and Arsenin, 1977] was used

to perform electron density and Te/Ti estimations from the modeled power data.

In general, a regularization technique allows us to introduce some prior information

about the characteristics of the parameters to be estimated in order to obtain better

results. Next, we will describe our algorithm and the assumptions made in this work.

First, the ionosphere was envisioned as a stratified medium composed of layers

of a fixed width that extend along longitude and latitude following the curvature

of the Earth, such that, in each layer, the density and temperature ratio can be

considered constants. Below, the vectors ~Ne and ~Tr denote respectively the electron

density and Te/Ti profiles that were estimated after minimization of the following

cost function

∑
i

pi
m − P i

r( ~Ne, ~Tr)

σi
p

2

︸ ︷︷ ︸
Data-term

+ λ2
∑
j

(T j+1
r − T j

r )2

︸ ︷︷ ︸
.

Regularization-term

(4.3)

In this expression, pm is the measured power collected by the radar, and Pr and

σp denote its model and standard deviation, respectively. Our power model also

accounts for the background noise level detected by the radar receiver, a level that

was estimated from samples taken below 80 km altitude. Above, the variable λ

denotes the regularization parameter, and its significance will be discussed later in

this section.

In expression (4.3), the index i implies summation over a set of radar ranges

and scanning angles that correspond to the region where the power enhancement

was observed. Thus, we are considering seven data profiles whose magnetic aspect

angles are between −2.5◦ and 2.5◦ (corresponding to scanning directions between
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77◦ and 83◦ elevation). In range, samples taken each 6 km (which is also the width

of each j-th layer) provide good enough resolution to characterize the F -region.

The simple form of the data-term in (4.3) is justified by the independence of our

measurements. Based on our AF analysis, we know that samples with a separation

of 6 km are range independent. In addition, given that the interpulse period of the

experiment (8.33ms) was longer than the correlation time of ISR returns, there

is no angular or pulse-to-pulse correlation between power profiles. Therefore, we

can define the standard deviation of the measured power as σp ≡ pm√
ni
, being ni

the number of incoherent integrations (averages) performed to obtain an individual

profile, in this case ni = 1000. Here, it is useful to indicate that at 422MHz,

the correlation time of beam weighted ISR returns coming from the region around

perpendicular to ~B is of the order of 1ms.

From the analysis of our power model, it turns out that the dependence of

the measurements on the plasma density is stronger than its dependence on Te/Ti.

Therefore, at ranges with relatively low SNR, the inverted Te/Ti values may be

very noisy. This fact motivated the inclusion of the regularization-term in the cost

function (4.3) which is the discrete gradient of the temperature ratio profile weighted

by λ. Our goal in applying this regularization is to obtain smooth and unbiased

Te/Ti estimates.

The outcome of the inversion procedure has some dependence on the right choice

of the regularization parameter. An optimal value of λ reduces the noise variance in

the inversion results without biasing the model appreciably away from the measured

data. Hansen [1992] describes a graphical technique for choosing the regularization

parameter which is named L-curve and consists in plotting the residuals of the data-

and regularization-terms for different realizations of λ. The shape of this curve

usually resembles an L and its “corner” or point of maximum curvature provides

the optimal regularization parameter. The method is based on the criterion of
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Figure 4.2 Example of the L-curves we have computed for optimal selection of the
regularization parameter. Note that the corner of the curve represents a trade-off
between the residuals of the data- and regularization-terms.

equalizing the contributions of each term in the cost function (4.3).

Figure 4.2 displays one of the L-curves we computed for the data collected on

September 20, 2004. In this case, a value of λ = 1.58 provided the desired quality

in our estimated profiles. Furthermore, we noticed that the L shape is not very

sharp around the corner, and regularization parameters between 1 and 2 produced

almost the same quality in the results. For other scans, we found optimal parameters

within the same range; therefore, we chose a constant value of λ = 1.5 for all the

estimations we performed.

In Figure 4.3, we show some of the outputs of the inverse procedure correspond-

ing to the same case of Figure 4.2. The first two columns display the measured
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and modeled power profiles, the third one is the difference between data and model

weighted by their uncertainties, and the last one is the regularization term. We

are judging the quality of our fitting results following the goodness-of-fit criterion,

which states that good estimates are obtained when the data-term normalized by

the degrees of freedom of the data, i.e., the number of data points minus the number

of estimating parameters, is around unity. Much larger or smaller values may imply

a poor knowledge of σp and/or an inappropriate data model. In our estimations, we

found values for the normalized data-term typically between 0.9 and 1.1, giving us

confidence about the quality of our results.
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CHAPTER 5

ELECTRON DENSITY AND
Te/Ti ESTIMATES

Using the IS radar equation and inversion procedure described in previous chap-

ters, F -region densities and Te/Ti estimates were obtained using the power data

collected by ALTAIR. These results have shown to be in near perfect agreement

with simultaneous density measurements performed by Roi-Namur ionosonde sys-

tem. The comparison validates the technique. In addition, under the assumption

of equal electron and ion temperatures (i.e., Te = Ti), high-resolution density maps

of the E -region ionosphere were also computed as function of height and distance

from the radar. These data constitute the first low-latitude D- and E -region in-

coherent scatter measurements conducted at ALTAIR since 1979 [Tsunoda, 1995].

Interesting features of these measurements are discussed throughout the chapter.

5.1 F -Region Results

Figure 5.1 presents Ne and Te/Ti maps for September 20, 2004, constructed from

profile estimates obtained with the data model and inversion technique described

in this thesis. The density map shows a typical low-latitude F -region ionosphere

exhibiting a characteristic rise during the morning hours. Also, Te/Ti is elevated

above unity mainly between 200 and 300 km as expected in daytime measurements.

In order to validate our results, we performed comparisons with electron density

profiles obtained with the Roi-Namur ionosonde system. As shown in Figure 5.2,

the agreement between fitted-ISR and ionosonde estimates is excellent, specifically
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Figure 5.1 (a) Electron density and (b) Te/Ti estimates of the F -region ionosphere
inverted from ALTAIR radar scans collected on September 20, 2004.
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Figure 5.2 Electron density comparison between fitted-ISR and ionosonde mea-
surements corresponding to the time (a) before and (b) after midday on September
20, 2004. Density-like profiles are also plotted and were calculated by scaling the
power data collected at directions around α = 0◦ and assuming η = 1

2
as if the

ionosphere were in thermal equilibrium.

at the peak and bottom-side of the F -region. The agreement at the peak effec-

tively verifies the correctness of the ALTAIR calibration constant Ks, whereas the

agreement in the bottom-side verifies the forward model underlying the data inver-

sion given that the values and altitudes of enhanced Te/Ti are plausible in view of

our understanding of the physics of the region. This was also verified by the good

comparison of our results with temperature values obtained from the International

Reference Ionosphere (IRI) model [Bilitza, 2001].

In Figure 5.2, we are also comparing our fitted results with a set of power profiles

from the vicinity of α = 0◦. They have been scaled into equivalent density profiles

by proper Ks and assuming η = 1
2

as if the ionosphere were in thermal equilibrium.
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Somewhat surprisingly, we note that the profile corresponding to the scan angle

closest to α = 0◦ (about 80.5◦ elevation) agrees very well with the fitted-ISR and

ionosonde profiles. This may be the smooth result of having a moving beam with a

finite width that averages the scattering contributions from different aspect angles

around perpendicular to ~B. Finally, note that the effect of Te/Ti > 1 disappears

at altitudes below 130 km, where density estimates can be obtained at all elevation

angles assuming η = 1
2
. This is the assumption made in the calculation of E -region

electron density maps that will be presented in the next section.

The technique described in previous chapters requires only a few scan directions

across magnetic perpendicularity in order to obtain unbiased Ne and Te/Ti estimates

with a calibrated IS radar operating in the UHF band. The time resolution of the

profile estimates can be improved by restricting the overall scan angle to a few

degrees (2◦ or 3◦) centered about α = 0◦ and increasing the frequency of the scans.

This procedure can also be applied with IS radars in VHF range provided that

ionospheric depolarization effects, more important at VHF, are taken into account

in a proper manner [Kudeki et al., 2003].

5.2 E -Region Results

Figure 5.3(a)-(d) present E -region electron density data collected during four differ-

ent UHF ALTAIR scans corresponding to different days. In each panel the vertical

axis is geodetic altitude and the horizontal axis represents ground distance away

from ALTAIR (in approximately northward direction). Panel (a) shows densities

measured on September 20, 2004, that were conducted for comparison with rocket

measurements carried out the same day [Friedrich et al., 2006]. In addition, the

projection of the rocket flight trajectory onto the radar scan plane is depicted by

a black line. The lateral displacement of the trajectory from the scan plane was
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less than 3 km throughout the upleg portion of the flight. Panels (b) and (c) show

ALTAIR scan data from September 21 and 25, respectively, whereas panel (d) is

from January 15, 2005.

Note that all the panels in Figure 5.3 exhibit a Te/Ti related enhancement (like

in Figure 2.1) at around 20 km ground distance down to an altitude of about 130 km.

The enhancement, however, is not visible at lower altitudes, indicating that over the

altitudes where rocket and ALTAIR comparisons were carried out, the condition

Te = Ti was well satisfied; ALTAIR density profiles below 130 km are not expected

to have distortions due to altitude variations of background parameters such as

temperature, collision frequency, and geomagnetic field.

Panels (a)-(c) in Figure 5.3—but not panel (d)—exhibit meridionally extended

E -region structures above 100 km. The temporal variation of the structures for

September 20, 2004, can be examined in Figure 5.4, which is a montage of AL-

TAIR density measurements for a constant latitude of 10◦ N (about 70 km north

of ALTAIR). The montage combines and interpolates data from 22 scans taken on

September 20 at times indicated by the dashed vertical lines shown in the figure.

The descending temporal signature in Figure 5.4, as well as horizontal coherence

scales in excess of 100 km inferred from Figure 5.3(a)-(c), suggest a tidal origin for

the observed structures. Note that Figure 5.3(a) shows localized density minima

at about 105 and 120 km altitudes, whereas Figure 5.3(b) and (c) from later lo-

cal times (on different days) exhibit a single density minimum at about 115 and

110 km, respectively, in general agreement with the temporal signature observed on

September 20. In Figure 5.4 we see at earlier local times a pair of density minima

consistent with Figure 5.3(a), but a single descending minimum in the afternoon

consistent with Figure 5.3(b) and (c). Overall, the information contained in Figures

5.3 and 5.4 imply a tidal-driven dynamics with some degree of day-to-day regularity

for upper E -region altitudes in September 2004 time period. There is no indication
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Figure 5.4 E -region electron density profiles measured at a constant latitude 10◦ N
from September 20, 2004.

of a similarly strong tidal effect in the measurements of January 2005.

Another feature from Figure 5.3 is the hint of a thin density layer in panel

(c) centered about 120 km altitude. Figure 5.5 presents a collection of individual

density profiles taken from the same panel. Clearly, the layer in question has a half

width of about one km, which is smaller than the vertical scale of tidal variations

discussed above. However, the horizontal extent of the layer is substantial (∼ 80 km

or longer), and the layer was observed to develop and then weaken over a time scale

of about an hour without a significant variation of its altitude. A weaker thin layer

with a smaller horizontal extent can also be observed in Figure 5.3(a) at around

114 km altitude. The latter was detected by the rocket probes and is discussed by
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Figure 5.5 E -region electron density profiles from September 25, 2004, exhibiting
a thin layer at about 120 km height.

Friedrich et al. [2006].

The absence of tidal structures in Figure 5.3(d) from January 15, 2005, may

be a consequence of seasonal variability in tidal dynamics in the region. However,

the UHF ALTAIR scans taken on January 15, 2005, coincided with a period of

enhanced X-ray fluxes. The bottom panel of Figure 5.6 shows a 10-15 dB increase

of the solar X-ray flux between 12.65 to 12.70 LT, which clearly causes the abrupt

electron density changes in the E -region shown in top two panels of the same figure.

The top panel displays density profiles taken in different scans, with the blue profile

representing the E -region densities just before the X-ray flare, and the green profile

the data collected in that scan which immediately followed the flare. There is
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a substantial jump in the densities, particularly at lower altitudes below 100 km,

followed by a gradual relaxation as the X-ray flux returns to lower levels over the

next half hour. E -region density response to the flare is displayed even more clearly

in the middle panel, where different colors correspond to ALTAIR density data taken

from different altitudes (during each of the six scans represented in the top panel).

The electron densities increase at all E -region altitudes in response to the flare,

but the change is most dramatic at lower altitudes closer to D-region, consistent

with earlier studies of D-region response to X-rays [Rastogi et al., 1988]. A detailed

quantitative study of the flare results may require inversion efforts where the forward

model includes the finite Debye length effects ignored in our present analysis.
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CHAPTER 6

DISCUSSION AND
CONCLUSIONS

In this thesis, we have reported on the estimation of ionospheric state parameters

Ne and Te/Ti from IS power data collected with the ALTAIR radar. The data

corresponds to meridional scans of the low-latidude E - and F -region ionosphere

that included a radar viewing direction perpendicular to the geomagnetic field. As

the radar beam went through this orientation, an increment of the received power

was detected; this is a typical feature of the incoherent scatter process at small

magnetic aspect angles. Our goal was to exploit this characteristic of the IS signal

power to estimate meaningful ionospheric parameters.

For this purpose, the power data was modeled using a soft-target radar equa-

tion that accounts for the effects of radar ambiguity function and antenna pattern

(see Chapter 3). Furthermore, the physics of the incoherent scatter process was

considered in terms of the total RCS of the medium that is proportional to the

efficiency factor of electron scattering η. Because our data analysis involved mea-

surements at small magnetic aspect angles, the formulation of η should include the

effects of electron-ion Coulomb collisions that are important in this regime [Sulzer

and González , 1999]. In order to account for these effects, we have used the col-

lisional IS spectral model of Woodman [1967] together with an empirical collision

frequency formula proposed by Woodman [2004]. This procedure has been justified

by the arguments given in Kudeki and Milla [2006]. By numerical integration of the

proposed IS spectrum, a table of η values was built for a given set of ionospheric

parameters.
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Physically meaningful results obtained with ALTAIR data effectively verified the

soft-target radar equation used in the inversion technique. However, the test on the

collisional spectral model and collision frequency formula turned out to be weak.

Based on our calculations, we found that the efficiency factor was not very sensitive

to the actual value of collision frequency νe. In fact, increasing νe by a factor of

three or decreasing it by a factor of ten produced deviations of η smaller than 1%.

Therefore, more stringent tests to this collisional model should be conducted using

IS spectral data taken for small magnetic aspect angles with steerable radar systems

such as ALTAIR.

Additionally, our measurements have proved to be in good agreement with

digisonde estimates performed also at ALTAIR, specifically below the F -region peak.

Note that without taking into account the Te/Ti effect, density measurements could

be underestimated by at most a factor of two. Finally, the regularization tech-

nique used in our inversions has shown to be successful in providing smooth results

and reducing the noise in our estimated profiles. The success is mainly because of

the appropriate choice of the regularization parameter obtained with the L-curve

method.
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APPENDIX A

SOFT-TARGET RADAR
EQUATION

In soft-target radar applications, the backscattered signal voltage detected by a

radar antenna corresponds to the signal scattered from variations in the refractive

index of the probed medium. In the case of an ionospheric plasma, such variations

are the consequence of fluctuations in the distribution of plasma density. Although

instantaneous values of these fluctuations are unpredictable, their statistical behav-

ior is formulated by the theory of incoherent scatter. In this appendix, we will derive

the radar equation presented in Chapter 3 to model the average power collected by

a radar system.

A.1 Derivation of the Radar Equation

The scattered field detected by a radar antenna produces an open-circuit voltage

phasor that can be formulated as

Va(t) =
∫
d~rW (~r, t)ne(~r, t−

r

c
) e−j2kor. (A.1)

This represents the linear and causal response of density fluctuations ne(~r, t) excited

by a radio signal with wavenumber ko and propagation velocity c. The effects of

antenna gain G(r̂) and transmitted pulse envelope f(t) are considered in the system

40



Pulse
Generator e

jω0t
Matched
Filtere

−jω0t

Va(t)ejω0t
f(t)ejω0t

Vr(t)

Transmitter Receiver

Scattering
Process

r

Figure A.1 Typical radar configuration.

weighting factor [Kudeki , 2006]

W (~r, t) ≡ −j IoRrad
re

ko

f(t− 2r

c
)
G(r̂)

r2
. (A.2)

In this expression, Io is the peak of the antenna current distribution, Rrad is the

antenna radiation resistance, and re is the classical electron radius.

As shown in Figure A.1, the voltage Vr(t), detected at the receiver output, is the

convolution of receiver impulse response h(t) and antenna voltage Va(t). Therefore,

we can write that

Vr(t) = h(t) ∗ Va(t) = h(t) ∗
∫
d~rW (~r, t)ne(~r, t−

r

c
) e−j2kor

=
∫
d~r
∫
dτ W (~r, τ)ne(~r, τ −

r

c
)h(t− τ) e−j2kor. (A.3)

In radar applications, matched-filter detection is extensively used. This case will be

analyzed in the next section.
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The squared modulus of receiver voltage (A.3) is expressed as

|Vr(t)|2 = V ∗
r (t)Vr(t) =

∫
d~r
∫
dτ W ∗(~r, τ)n∗e(~r, τ −

r

c
)h∗(t− τ) ej2kor

∫
d~r ′

∫
dτ ′W (~r ′, τ ′)ne(~r

′, τ ′ − r′

c
)h(t− τ ′) e−j2kor′

=
∫
d~r
∫
d~r ′

∫
dτ
∫
dτ ′W ∗(~r, τ)W (~r ′, τ ′)h∗(t− τ)h(t− τ ′)

n∗e(~r, τ −
r

c
)ne(~r

′, τ ′ − r′

c
) e−j2ko(r′−r). (A.4)

Taking the expected value of both sides, we obtain

〈|Vr(t)|2〉 =
∫
d~r
∫
d~r ′

∫
dτ
∫
dτ ′W ∗(~r, τ)W (~r ′, τ ′)h∗(t− τ)h(t− τ ′)

〈n∗e(~r, τ −
r

c
)ne(~r

′, τ ′ − r′

c
)〉 e−j2ko(r′−r). (A.5)

We know that the parameters governing the ionospheric plasma dynamics vary

slowly in time and space. Indeed, it can be observed that they remain about the

same during many radar pulse repetition periods. If the fluctuations ne(~r, t) have

homogeneous and stationary statistics, its space-time correlation will have the form

〈n∗e(~r, τ −
r

c
)ne(~r

′, τ ′ − r′

c
)〉 = Rn(~r ′ − ~r, τ ′ − τ − r′ − r

c
;~r), (A.6)

where function Rn depends only on differences in space and time coordinates.

In addition, it can be verified that correlation Rn is very narrow in space having

significant values only for small distances ~r ′ − ~r with respect to ~r. Applying the

change of variables ~x = ~r ′ − ~r and using the approximation r′ − r ≈ ~x · r̂ for small
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values of ~x, we can obtain that

W ∗(~r, τ)W (~r + ~x, τ ′) ≈ |Io|2R2
rad r

2
e

k2
o

f ∗(τ − 2r

c
) f(τ ′ − 2r

c
)
G2(r̂)

r4
, (A.7)

and then rewrite the variance (A.5) as

〈|Vr(t)|2〉 ≈ |Io|2R2
rad r

2
e

k2
o

∫
d~r
G2(r̂)

r4

∫
dτ
∫
dτ ′

∫
d~xRn(~x, τ ′ − τ ;~r) e−j2kor̂·~x

f ∗(τ − 2r

c
) f(τ ′ − 2r

c
)h∗(t− τ)h(t− τ ′). (A.8)

Note that the approximation ~x·r̂
c
→ 0 is used to simplify the expression.

Let us define the space-time power spectral density (PSD) of density fluctuations

ne(~r, t) as

Φn(~k, ω;~r) ≡
∫
dt
∫
d~xRn(~x, t;~r) ej~k·~x−jωt. (A.9)

Using this definition, we can rewrite the variance of Vr(t) as

〈|Vr(t)|2〉 ≈ |Io|2R2
rad r

2
e

k2
o

∫
d~r
G2(r̂)

r4

∫
dτ
∫
dτ ′

∫ dω

2π
Φn(−2kor̂, ω;~r) ejω(τ ′−τ)

f ∗(τ − 2r

c
) f(τ ′ − 2r

c
)h∗(t− τ)h(t− τ ′)

=
|Io|2R2

rad r
2
e

k2
o

∫
d~r
G2(r̂)

r4

∫ dω

2π
Φn(−2kor̂, ω;~r)

(
∫
dτf(τ − 2r

c
)h(t− τ) ejωτ )∗

∫
dτ ′f(τ ′ − 2r

c
)h(t− τ ′) ejωτ ′

=
|Io|2R2

rad r
2
e

k2
o

∫
d~r
G2(r̂)

r4

∫ dω

2π
Φn(−2kor̂, ω;~r)

|
∫
dτf(τ)h((t− 2r

c
)− τ) ejωτ |2. (A.10)

Finally, combining the fact that d~r = r2 dr dΩ together with the definition of
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effective antenna area Ae(r̂) ≡ λ2
o

4π
G(r̂), we obtain

Pr(t) ≈
∫
dr dΩ r2 Ae(r̂)

r2︸ ︷︷ ︸
Solid
angle

PtG(r̂)

4πr2︸ ︷︷ ︸
Incident

flux

∫ dω

2π
r2
e Φn(−2kor̂, ω;~r)︸ ︷︷ ︸
Cross section

per unit volume,
solid angle,

and frequency

|χfh(t−
2r

c
, ω)|2,

(A.11)

where Pr(t) ≡ 〈|Vr(t)|2〉
8Rrad

is the expected available power at the receiver output and

Pt ≡ 1
2
|Io|2Rrad is the average peak power of the transmitted pulse. We define the

cross ambiguity function as [Blahut , 2004]

χfh(τ, ω) ≡
∫
dt f(t)h(τ − t) ejωt. (A.12)

This two-dimensional system function accounts for the effects of pulse envelope f(t)

and filter impulse response h(t). In addition, we define

σn(~k, ω;~r) ≡ 4π r2
e Φn(~k, ω;~r), (A.13)

as the volumetric radar cross section (RCS) spectrum of the medium. Thus, we can

interpret the expected received power (A.11) as the result of filtering and integrating

σn over frequency, incident flux, solid angle and radar range.

A.2 Matched-Filter and Ambiguity Function

As we have already mentioned, matched-filters are extensively used in radar appli-

cations in order to maximize the SNR of the received signal. Taking the impulse

response of a matched-filter as

h(t) ≡ 1

T
f ∗(−t), (A.14)
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where f(t) is the envelope of the transmitted pulse and T denotes its duration, we

can define the ambiguity function of f(t) as

χ(τ, ω) ≡ 1

T

∫
dt f(t) f ∗(t− τ) ejωt, (A.15)

and rewrite our expression for the received power as

Pr(t) ≈ EtKs

∫
dr dΩ

g2(r̂)

r2

∫ dω

2π
σn(−2kor̂, ω;~r) |χ(t− 2r

c
, ω)|2. (A.16)

Above, Et ≡ Pt T is the total energy of the transmitted pulse and g(r̂) is the

normalized antenna gain. The system calibration constant

Ks ≡
1

T

D2

16πk2
oL

(A.17)

accounts for system losses L, antenna directivity D, and transmitted pulse duration

T . This completes the derivation of the soft-target radar equation presented in

Chapter 3 as a forward model for the power data collected by a radar system.

Note that the expected received power (A.16) is the sum of the RCS function

weighted in frequency and range by the ambiguity function. The width in range

of χ(τ, ω) determines the range resolution of the measurements, while its width

in frequency domain filters the volumetric RCS spectrum σn. How the ambiguity

function affects radar measurements depends directly on the shape of the envelope

of the transmitted pulse.
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APPENDIX B

AMBIGUITY FUNCTION OF
BASIC FUNCTIONS

B.1 Ambiguity Function of a Rectangular Pulse

Let us define the rectangular pulse envelope f(t) = rect(t/T ), where T denotes its

duration. Using the definition of ambiguity function (A.15), we can write

χ(τ, ω) =


1
T

∫ T/2
−T/2+τ e

jωtdt, 0 ≤ τ ≤ T

1
T

∫ T/2+τ
−T/2 ejωtdt, −T ≤ τ < 0.

(B.1)

Evaluating the integrals, we have that

χ(τ, ω) =


ejωτ/2 sin(ωT (1−τ/T )/2)

ωT/2
, 0 ≤ τ ≤ T

ejωτ/2 sin(ωT (1+τ/T )/2)
ωT/2

, −T ≤ τ < 0.
(B.2)

Finally, taking the absolute value of χ(τ, ω) and squaring it, we obtain

|χ(τ, ω)|2 =

∣∣∣∣∣
(

1− |τ |
T

)
sinc(ωT (1− |τ |/T )/2)

∣∣∣∣∣
2

(B.3)

for |τ | ≤ T and zero outside.

As we can appreciate in Figure B.1, the ambiguity function of a rectangular

pulse acts as a low pass filter over the frequency response of the medium at different

ranges r, being its approximate bandwidth 1/2T . On the other hand, using the

Rayleigh criterion1 for range resolution, we can find that this resolution is cT/2,

1In this context, Rayleigh resolution can be defined as the first zero-crossing of the ambiguity
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Figure B.1 Ambiguity function of a rectangular pulse with duration T = 400µs
(∆r = 60 km).

where c is the speed of light.

For example, if we use a 400µs rectangular pulse, the effective bandwidth of

the received signal will be about 1.25 kHz and its resolution ∆r = 60 km. It can

be observed that for ionospheric radar applications operating at frequencies around

400 MHz (e.g., ALTAIR, Arecibo), the typical bandwidth of the medium response

is about 10 kHz (for large magnetic aspect angles). Therefore, if we had used the

pulse of our example in a real measurement, most of the frequency components of

the medium response would have been filtered out by the ambiguity function.

Since the use of long pulses in ionospheric radar applications is necessary due to

the intrinsic weakness of the medium response, some techniques have been devel-

function evaluated at zero frequency.
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oped that improve the bandwidth of the ambiguity function and at the same time

reduce the range resolution of the measurements. Among them, binary or phase

coded pulses are commonly used, and a discussion about them can be found in the

literature, e.g., Levanon [1988].

B.2 Ambiguity Function of a Chirped Pulse

A chirped pulse combines the flat amplitude modulation of a rectangular pulse with

a linear frequency modulation. As we will examine, it improves the range resolution

and expands the bandwidth of its ambiguity function.

The complex envelope of a chirped pulse is given by f(t) = rect(t/T ) ej β
2
t2 ,

where T is the duration of the pulse, β = 2π∆f
T

is the frequency rate, and ∆f is the

frequency span of the chirped. Using f(t) in the definition of ambiguity function,

we can write

χ(τ, ω) =


1
T

∫ T/2
−T/2+τ e

j β
2
(t2−(t−τ)2)ejωtdt, 0 ≤ τ ≤ T

1
T

∫ T/2+τ
−T/2 ej β

2
(t2−(t−τ)2)ejωtdt, −T ≤ τ < 0.

(B.4)

A change of variables leads to

χ(τ, ω) =


1
T
ejωτ/2

∫ (T−τ)/2
−(T−τ)/2 e

j(βτ+ω)tdt, 0 ≤ τ ≤ T

1
T
ejωτ/2

∫ (T+τ)/2
−(T+τ)/2 e

j(βτ+ω)tdt, −T ≤ τ < 0.
(B.5)

Evaluating the integrals, we have that

χ(τ, ω) =


ejωτ/2 sin(T (1−τ/T )(ω+βτ)/2)

T (ω+βτ)/2
, 0 ≤ τ ≤ T

ejωτ/2 sin(T (1+τ/T )(ω+βτ)/2)
T (ω+βτ)/2

, −T ≤ τ < 0.
(B.6)
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Thus, taking the absolute value and squaring χ(τ, ω), we obtain

|χ(τ, ω)|2 =

∣∣∣∣∣
(

1− |τ |
T

)
sinc(T (1− |τ |/T )(ω + βτ)/2)

∣∣∣∣∣
2

(B.7)

for |τ | ≤ T and zero outside.

First, we can notice that the ambiguity function of a chirped pulse reduces to

the case of a rectangular pulse when β = 0, then as β increases the distortion

with respect to the rectangular pulse case becomes more clear. In particular, for

big values of β (i.e., big frequency span ∆f), the ambiguity function will look like

Figure 3.1, and can be interpreted as a continuous bank of narrow filters whose

bandwidths are approximately 1/2T (as in the case of a rectangular pulse), but

whose amplitudes and central frequencies vary linearly with range. By integrating

all these contributions, the reception bandwidth is effectively increased up to half

the frequency span of the chirped pulse.

In the case of high β and following the Rayleigh criterion, we can find that

the range resolution of a chirped pulse is c/2∆f . This is a valid result for narrow

band signals (lower than 1/2T ); however, for higher bandwidths, we have to use

a different criterion to define the range resolution. Following the linear relation

between frequency and delay ω + βτ = 0 that comes from the ambiguity function

formula, we can determine the range resolution using ∆r = Bs
∆f

cT
2

, where Bs denotes

the bandwidth of the signal in Hz.

For example, if we considered a medium response of 10 kHz bandwidth, and used

a chirped pulse of 400µs length and 250 kHz of frequency span, it would be observed

that the ambiguity function of this pulse would preserve all the frequency compo-

nents of the medium response, and that the spatial resolution of the measurements

would be about 2.4 km (16µs).

Since the ambiguity function is an issue in the configuration of radar applications,
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the main goal in the design of radar pulses is to obtain a flat frequency response in

the band of interest with the “minor” compromise in range resolution.
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APPENDIX C

INVERSION RESULTS
CATALOG OF ALTAIR SCANS

Electron density estimates inverted from ALTAIR scans are presented in this ap-

pendix. The scans were taken during the Equis 2 NASA campaign on September

20, 21, and 25, 2004. In addition, “control” data was also collected on January 15,

2005. A total of 45 scans were analyzed and the results are displayed independently

for both F - and E -regions.

F -region density estimates are presented in Figures C.1 - C.45. In each figure,

panel (a) displays the scan data calibrated to equivalent electron density values.

These “densitites” are biased by the effect of unequal temperatures (i.e., Te/Ti > 1).

The unbiased densities, obtained after applying the inversion technique, are shown

in panel (b). In general, the results are smooth except at altitudes corresponding

to the topside F -region because of poor SNR.

E -region density maps are presented in Figures C.46 - C.90. They were obtained

after calibration of the scan data using the assumption of equal temperatures (i.e.,

Te = Ti). Densities are plotted as function of height and ground distance from

ALTAIR. In most of the plots, the effect of Te > Ti (an apparent increment in

density) is appreciable at altitudes above 130 km and a distance around 20 km. At

lower altitudes, there is no effect verifying our assumption of equal temperatures.
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Figure C.46 E -region density map — September 20, 2004 09:30 am - 09:35 am.
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Figure C.47 E -region density map — September 20, 2004 10:20 am - 10:25 am.
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Figure C.48 E -region density map — September 20, 2004 10:28 am - 10:33 am.
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Figure C.49 E -region density map — September 20, 2004 11:02 am - 11:07 am.
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Figure C.50 E -region density map — September 20, 2004 11:09 am - 11:14 am.
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Figure C.51 E -region density map — September 20, 2004 11:16 am - 11:21 am.
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Figure C.52 E -region density map — September 20, 2004 11:23 am - 11:28 am.
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Figure C.53 E -region density map — September 20, 2004 11:37 am - 11:42 am.
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Figure C.54 E -region density map — September 20, 2004 11:44 am - 11:49 am.
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Figure C.55 E -region density map — September 20, 2004 12:20 pm - 12:25 pm.
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Figure C.56 E -region density map — September 20, 2004 12:30 pm - 12:36 pm.
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Figure C.57 E -region density map — September 20, 2004 12:40 pm - 12:45 pm.
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Figure C.58 E -region density map — September 20, 2004 01:20 pm - 01:25 pm.
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Figure C.59 E -region density map — September 20, 2004 01:30 pm - 01:35 pm.
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Figure C.60 E -region density map — September 20, 2004 01:40 pm - 01:45 pm.
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Figure C.61 E -region density map — September 20, 2004 02:20 pm - 02:25 pm.
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Figure C.62 E -region density map — September 20, 2004 02:30 pm - 02:35 pm.
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Figure C.63 E -region density map — September 20, 2004 02:40 pm - 02:45 pm.
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Figure C.64 E -region density map — September 20, 2004 02:50 pm - 02:55 pm.
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Figure C.65 E -region density map — September 20, 2004 03:00 pm - 03:05 pm.
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Figure C.66 E -region density map — September 20, 2004 03:10 pm - 03:15 pm.
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Figure C.67 E -region density map — September 20, 2004 03:20 pm - 03:25 pm.
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Figure C.68 E -region density map — September 21, 2004 12:04 pm - 12:09 pm.
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Figure C.69 E -region density map — September 21, 2004 12:11 pm - 12:16 pm.
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Figure C.70 E -region density map — September 21, 2004 12:20 pm - 12:25 pm.
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Figure C.71 E -region density map — September 21, 2004 12:30 pm - 12:35 pm.
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Figure C.72 E -region density map — September 21, 2004 12:40 pm - 12:45 pm.
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Figure C.73 E -region density map — September 21, 2004 12:50 pm - 12:55 pm.
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Figure C.74 E -region density map — September 21, 2004 01:00 pm - 01:05 pm.
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Figure C.75 E -region density map — September 25, 2004 11:00 am - 11:05 am.
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Figure C.76 E -region density map — September 25, 2004 11:10 am - 11:15 am.
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Figure C.77 E -region density map — September 25, 2004 11:20 am - 11:25 am.
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Figure C.78 E -region density map — September 25, 2004 11:30 am - 11:35 am.
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Figure C.79 E -region density map — September 25, 2004 11:40 am - 11:45 am.
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Figure C.80 E -region density map — September 25, 2004 02:10 pm - 02:15 pm.
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Figure C.81 E -region density map — September 25, 2004 02:20 pm - 02:25 pm.
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Figure C.82 E -region density map — September 25, 2004 02:30 pm - 02:35 pm.
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Figure C.83 E -region density map — September 25, 2004 02:40 pm - 02:45 pm.
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Figure C.84 E -region density map — September 25, 2004 02:50 pm - 02:55 pm.
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Figure C.85 E -region density map — January 15, 2005 12:30 pm - 12:35 pm.
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Figure C.86 E -region density map — January 15, 2005 12:40 pm - 12:45 pm.
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Figure C.87 E -region density map — January 15, 2005 12:50 pm - 12:55 pm.
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Figure C.88 E -region density map — January 15, 2005 01:00 pm - 01:05 pm.
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Figure C.89 E -region density map — January 15, 2005 01:10 pm - 01:15 pm.
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Figure C.90 E -region density map — January 15, 2005 01:20 pm - 01:25 pm.
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