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Scattering of E, M, Waves from Dielectric Density Fluctuations

Ronald ¥, Woodman, Arecibo Observatory, Arecibo, P. R.

Radars are used for remote ﬁrobing of the upper atmosphere, Monstatie
and bi-static configurations have been used, The echoes are obtained from
the scattering of the illuminating wave Py fluctuations in the dielectric
properties of the medium undér study.

The fluctuations in the local dielectric constant of a medium are direct
consequence of fluctuations in the density of the medium or more properly
on the density of that component or components in the medium responsable
for its dielectric behaviour, e.g. electron density in a ionized gas,

"air" density and water vapor in the lower atmosphere, etc,

In the case the medium is in the thermodynamic equilibrium, the
fluctuations ar; reduced to a2 minimum (thermal level). In such a case,
and for a ijonized plasma, we refer to the technique as Incoherent Scatter.
These fluctuations are never at the zero level due to the discret nature
of matter (Summations of delta functions will always produce fluctuations),

Density fluctuations are stétistically-characterized by the density

space-time correlacion function p(r,t, x) define as
p(r,T; x)2 < n{x,t) a{x+ 1, t + 7)> (1)

whege n(x,t) is the microscopic random density of the medium at
position x in space and time t, In (spacially) homogeneoﬁs medium P is

independent of x and p(r,1)2 p(r,T; 5) .

(*) Lecture presented at the M.,P.I. EISCAT School, Jan. 1979, Oberstdorf,
w'G' N
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We shall develop here the functignal relationship that exists
becween the statistical characterization of the signal received in
a radar experiment and the fluctuations in the medlium characterized
oy e(x, T X) + The fluctuations need not to be at the thermal
ievel, so we are not limited to the incoherent scatter problem,

“e should point out that the-usefulness of large radars for the study .
of the upper atmosphere is not limited to incoherent scatter. Proof
of which is.found in the large number of papers produced by the -
Jicamarca Observatory by studying backscatter achoes from E-region,
F-region irregularities and from turbulent fluctuations in the.
ceutral atnosphere. In fact, some smaller radars are built (STARE,
SOUSSY and the TS radars) which depend on t;e enhanced reflectivity
oroduced either by instabilities or turbulence., This could be the
case in EISCAT when observing auroral phenomena or the effects of
artificial hearing. It will also be the case when studying neutral
dynamics using backscatter signais from turbulent fluctuvations,

Said functional relationship can be found in the literature but
it is usually derived under very simplified conditions with assumptions
which are not necessarily valid, The derivation is usually heuristic
and in many cases difficult to assess the range of validity of
the derived'expressions. Such approach is, of course, useful for
didactic purposes and when the purpose of the paper is on other aspects
of the problem., Derived expressions in the literature are usually

derived for a specific technique (out of the many described here by

Tarley) and for specific conditions (e.g., homogeneous media, continuous
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The mpedium under study is illvminated by a e.n, wave of frequency
Vo modulated by an arbitrary complex signal p(t), scattered e.m.
waves are received at a differenc location (or at same as a particular
case), coherently detected, properly filtered and decoded (if necessary).
We are interested iﬁ evaluating the complex autocorrelation of the

signal raceived, 0(t), i.e, ¢
*
C(t,t)S < 0(t) 0 (&t + T)> (2)

in terms of the space and time density correlation of the medium,

The signal O0(t) is a random process, usually nbn—stationary. is fully
characterized by its time autocorrelation function C(t, t)., The dependance
on t can normally be associated with a given ;ange, h, corresponding to-
the delay.

We assume: (1) that there is only primary scattering (first Bern
approximation valid), i.e. the medium .is transparent, the illuminating
field at a2 point X within the mediém is due to the primary illuminating
field and the scattered fialds at X are negligible; (2) the system is
linear, {i.e, if Ol(t) is receivgd for pl(t) and Oz(t) for pz(c) . Then
aOl(t) + B Oz(t) is received for a exitation apl(t) +3 pz(t). The.
linearity of the propagétiog in the medium are guaranﬁy by the 1inéafity
of Maxwell eqdations.

The linearity of the system allows us to evaluate the output
signal as the linear superposition of the contributions of each
differential volume, d3§ with density n(:,t). This differential contribution

can be avaluated in terms of the linear operators depicted in figure 2.
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Here we have modelled the propagation of the transmitter to the
scacttering point by a delay operator with delay Tl(f) and an
azplitude factor Kl(f) which represent the effect of zntenna gain
and other system parameters. The scatterasd signal is proportional

to the local instantaneous (random) deasity n(x, t) of the medium
3

-~

tizes the volume d « The dielectric properties of the medium
the receiver, antemna, and other propagaticn propérties are contained
in a coastant gain (in time) KZ(E)' There is a delay block with
deiay T2(§)' a detector and a filter before we finallylget our gutput
from the differentigl contribution from n(f, t). The filter is
characterized Qy the complex inmput respunsé'h(cj and includes any
decoding scheme, Decoding is a copvolution operation and can be
coasidered as part of the filter,

The evaluation of the delay functions Tl(f)' Tz(f) and the
constant terms Kl(x)_Kz(x) does mot concern us here and are assumed
to be known. The output of the system can then be written as
o(t.§)d3§ - d3§ Idt' K(f) p(t' ~ T(x)) e~ 1¥ T () “(f- t' - Tch)) h(t _Efgi
whefe we h?va already operated om the "signal” with the delay operators
3(t - Tl(fi). a#d §(t -VTZTE)) . Here we have used T(f) - Tl(f) + TZ(E)
for the ;ofal delay and K(f) - Kl(§) . K;(f) . The total signal output

is then o !

ofe) =/ % o(e,x) _ (4)
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Also, the difference in propagation time Tz(x) —Tz(x 4+ r)

is of the order of rc/c for points within a correlated volumne.
Tnis is much smaller than the characteristic time of the decay of
the correiatIOn function unless one is deaiing with relativistic
plasma, Therefora we can ignore this term in the time argument
of the correlation function. In addition, the oscillatory nature of
the exponential, with a wavelength comparable to the wavelength of the
probing wave ,makes the integrant unsensitive to any possible long
scale structure of the correlation function across the surfaces of constant
T, °

Furthermore, the almost linear behaviour of T(x + r) on r for
it} < re allows us to linearly expand T(x + r) in the exponent
around x and write:

‘on(i + 1) = v, T(x) + Yy v rT(x) *r

(7)

= W, T(x) + k(gg) *r

where k(x) = k!(x) - kz(x). and El(ﬁ) and EZ(X) are the local
wave number of the 1ﬁcident and scattered wave, respectively. With

this approximations we can write:

C(T,t) = Jd3x de'dt’ Kz(f) p(t' - T(x)) pr(tt 4+ T - T(x)) °

(8)
h(t - t") B¥(t + 1 - ¢ =t") B (5(5),1'; x)
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For homogenous media and constant k(x) = k , the spatial integral is

independent of p and defines a volume, V, and we have

c(r) = a%? v J Blk,T) 4, (1 = T')ar! (11)

Above equations, if exprassed in the fraquency domain take a even
simpler form where the convolution integral Is transform to a

producf of fraquency functions.

Casa 2, Filter time scale smaller than characteristic time of p .

In this case the integrant is different from zero for szall

values of the argment of h(').'i.e. when

t ~e!

T e -t

Thus, D(E(ﬁ).f:X) can be taken out of the T' integral evaluated

at 7' =t ., We can then write (8) as

C(t,t) = Id3§ Kz(:_g) ’6(5(5).1;15) 5(:—':(:_5));*(: + - T(x) (12)

where ; is defined as

-

plc) -IJ!:_'p(t:')h(t-t') | (13)
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corresponds to the particular delay t of the measurement, Therefore
we will write %Fk,r') to extend the generality,

We can also perform the spatial integral in terms of the variables
s and T. Only Kz(f) is a function of s and we can perform the integral
with respect to this variable. If K2 is a factor which groups all the
dimensional factors in Kz(f) then the spatial integral gives us
KZA(T), where A(T) is a equivalent area defined by the s dependence
of the beam pattern. On most cases of interest A(T) is a slow varing
function of T, slower than the pulse length and can be taken out of

th: integral evaluated at the sampling delay t. Considering above

we write equation (8) as .
c(t,t) = CKZA(t)I dt'dt'dT S(k,r') P (£'-T) P*(t'+r' ~T) h(t-t")h(t+T=1'-t")
t~ ;
= CKZA(t) Jd'r'pt(k,'r') Jdt' h(t-t') BHle-t'+ 'r-r')J dT p(t'-T)p’tt'+ ' -T)
(16)
or: .
C(t,t) = CKZA_(t)J at' pk,T') 4 (T") dhh(r-r')
‘ t PP . (17)

where dpp {T) is the autocorrelation function of the pulse shape and

dhhfr) the autocorrelation function of the filter and decoding system.

Vil;?gtrative Exdmples

In order to gain a better undertanding of the significance of the
formulas derived for case 2 and 3 we have constructed figure 3 and 4
respectively, corresponding to two often used pulse schemas. Case 1

does not need of a illustration since in this case the spectrum of the
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NOTES FOR A CHANGE 1IN PRESENTATION

Equation (5) can be written in a more general and elegant form, The
expression for O (t) in (4) is given explicitly by

' 0 (t) =-//;%§dt' K (2) p (t'—T(f))é'ion(X)ngzﬁt'-ngg))h(t—t') 4a)
making a change of the variable t'" = t'—Tz(x)
0 (t) =/d:f35dt" K(x) p(t"-—-Tl(E))e-iwo T (3‘)h(t—t"-rz(_x)n(§,t") 4b)
we obtain
0 (t) = d3xde’ x(t;t',z} n(i,t') mggt general linear relation-  4c)

ship

An instead of equation 5 we have,

Clt, t) = <O(B)O(t+H)> = /d3x'dt"d3xdt" ' & (t;t',}") X (t + 13 t",ﬁ')

'

<n(x, t)n(x", t")> 5a)

or in terms of the difference variables and t', defined by ET = x+r
and t" = t' + 1'

=*//;3x'd3 r de'de' X (t;;;x') X* (¢t + 13e" + 7', x" 4+ 1) p(r, T';x")
~ o~ -~ ~ - -~ 63)

This expression is very general in scope, is relatively simple, and has
a very simple interpretation. It involves only two functions

X (t;t'x') and p( ). The first is a characteristic of the system and
can be interpreted as the instrument response as a function of time, t,
to the instantaneous presence of a single scatterer at point x' in space
at time t'. It includes the effects of antennas, propagation, receiver,
coding, decoding and filtering. The second is the space-time density
(of scatterers) auto correlation function and charactherizes the fluc--
tuations in the medium. '

The expression can be used as the starting point in determining the
functional relationship for a particular instrument.

For example in the case of spatially homogeneous and time stationary
medium illuminated by a planar wave of constant amplitude and frequency
and where the receiver has a very large bandyidth.

¢ (1) = KvZp(k,1)

where V is the volume defined by the interaction of both antennas.



