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RÉSUMÉ 

 

 Le phénomène El Niño est le mode dominant de la variabilité du climat aux 

échelles de temps interannuelles dans le Pacifique tropical. Il modifie considérablement 

le climat régional dans les pays voisins, dont le Pérou pour lequel les impacts socio-

économiques peuvent être dramatiques. Comprendre et prévoir El Niño reste un enjeu 

prioritaire pour la communauté climatique. Des progrès significatifs dans notre 

compréhension du phénomène El Niño et dans notre capacité à le prédire ont été réalisés 

dans les années 80, en particulier grâce à la mise en place du système d'observation dans 

le Pacifique tropical (programme de TOGA, en particulier, ainsi que l'émergence de 

l'ère des satellites). À la fin du XXe siècle, alors que de nouvelles théories scientifiques 

ont été proposées et testées, les progrès réalisés dans le domaine de la modélisation 

numérique et de l'assimilation de données ont conduit à l'idée que le phénomène El 

Niño pourrait être prévu avec au moins deux ou trois saisons à l'avance. Or, depuis le 

début du 21ième siècle, les manifestations du phénomène El Niño ont réduit cette 

expectative: un nouveau type d'El Niño est a été découvert - identifié par des anomalies 

de température moins intenses et localisées dans le centre du Pacifique équatorial. Ce 

phénomène, connu sous le nom CP El Niño pour El Niño Pacifique Central ou El Niño 

Modoki a placé la communauté scientifique devant un nouveau défi. Cette thèse est une 

contribution à l'effort international actuel pour comprendre la dynamique de ce nouveau 

type d'El Niño, dans le but de proposer des mécanismes expliquant sa présence accrue 

au cours des dernières décennies. 

 

 Plus précisément, l'objectif de cette thèse est d'étudier le rôle des ondes longues 

équatoriales dans le Pacifique tropical sur la dynamique océanique et la 

thermodynamique associées au phénomène El Niño de type Pacifique Central. Cette 

thèse s'intéresse tout d'abord au premier CP El Niño du 21ième siècle, le phénomène El 

Niño 2002/03, à partir des sorties d'un modèle de circulation océanique général. Ensuite, 

nous documentons les   caractéristiques des ondes équatoriales de Kelvin aux 

fréquences Intra Saisonnières (ISKw) sur la période 1990-2011, fournissant une 

statistique de l'activité des ondes ISKw durant l'évolution des événements El Niño de 

type Central Pacifique. Nos résultats montrent que l'onde ISKw subit une forte 

dissipation dans le Pacifique Est, qui est interprétée comme provenant de la dispersion 

des ondes lorsqu'elles rencontrent le front zonal de la stratification dans l'Est du 
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Pacifique (i.e. la pente de la thermocline d'Ouest en Est). Une réflexion partielle de 

l'onde ISKw en onde de Rossby équatoriale de près de 120°W est également identifiée, 

ce qui peut expliquer le confinement dans le Pacifique central des anomalies de 

température de surface associées aux événements El Niño de type Central Pacifique. 

Nous suggérons que la fréquence accrue au cours des dernières années des événements 

CP El Niño peut être associée à l'état froid - de type La Niña - observé dans le Pacifique 

Equatorial depuis les années 90 et les changements dans la variabilité saisonnière de la 

profondeur de la thermocline depuis les années 2000. 
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ABSTRACT 

 

 The El Niño phenomenon is the dominant mode of climate variability at 

interannual timescales in the tropical Pacific. It modifies drastically the regional climate 

in surrounding countries, including Peru for which the socio-economical impacts can be 

dramatic. Understanding and predicting El Niño remains a top-priority issue for the 

climatic community. Large progress in our understanding of El Niño and in our ability 

to predict it has been made since the 80s thanks to the improvement of the observing 

system of the tropical Pacific (TOGA program and emergence of the satellite era). At 

the end of the Twentieth century, whereas new theories were proposed and tested, 

progress in numerical modeling and data assimilation led to the idea that El Niño could 

be predicted with at least 2 or 3 seasons in advance. The observations since the 

beginning of the 21st century have wiped out such expectation: A new type of El Niño, 

known as the Central Pacific El Niño (CP El Niño) or Modoki El Niño has put the 

community in front of a new challenge. This thesis is a contribution to the current 

international effort to understand the dynamics of this new type of El Niño in order to 

propose mechanisms explaining its increased occurrence in recent decades.  

 

More specifically, the objective of the thesis is to study the role of the oceanic 

equatorial waves in the dynamic and thermodynamic along the equatorial Pacific Ocean, 

focusing on the CP El Niño. This thesis first takes a close look at the first CP El Niño of 

the 21st century of this type, i.e. the 2002/03 El Niño, based on an Oceanic General 

Circulation Model. Then it documents the characteristics of the IntraSeasonal Kelvin 

waves (ISKws) over the period 1990-2011, providing a statistics on the ISKws activity 

during the evolution of CP El Niño events. We find that the ISKw experiences a sharp 

dissipation in the eastern Pacific that is interpreted as resulting from the scattering of 

energy associated to the zonal contrast in stratification (i.e. sloping thermocline from 

west to east). Partial reflection of the ISKw as Rossby waves near 120°W is also 

identified, which may explain the confinement of CP El Niño warming in the central 

Pacific. We suggest that the increased occurrence of CP El Niño in recent years may be 

associated to the La Niña-like state since the 90s and changes in the seasonality of the 

thermocline since the 2000s. 
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Chapter 1: Overview 

 

1.1 Introduction (Version française) 

 

1.1.1 Bref historique du phénomène El Niño 

 

À la fin du 19ème siècle, Carranza (1891) reporte pour la première fois les 

caractéristiques d'un événement climatique fort qui a lieu le long de la côte péruvienne 

en 1891. Il décrit un courant inhabituel dirigé vers le Sud, provenant apparemment du 

Golfe de Guayaquil, s'écoulant dans le sens contraire du courant côtier observé 

normalement. Ce courant anormal a perturbé les conditions océaniques et 

atmosphériques, occasionnant des températures de la surface de l'océan plus chaudes 

qu'à l'habitude, ainsi que de fortes précipitations le long de la côte péruvienne à l'origine 

d'inondations dans le Nord du Pérou en avril et mai 1891. Cet événement fut si fort que 

des anomalies de précipitation touche des villes comme Lima [77ºW; 12ºS] et Ica 

[75,7ºW; 14ºS] (Rodriguez, 2001) - villes qui ne reçoivent normalement aucune 

précipitation durant toute l'année. L'extension vers le Sud de cet événement inhabituel 

peut être observée sur la Figure 1.1 qui présente les anomalies interannuelles de la 

température de la surface de la mer (SST) en mars (Figure 1.1a) et avril (Figure 1.1b) en 

1891 dans la région du Pacifique Sud-Est. Les anomalies de SST excèdent 2°C de mars 

à avril en moyenne le long de la côte du Pérou. Cet événement a surtout été décrit sur la 

base de son expression côtière et à cette époque la connexion avec la variabilité 

équatoriale n'était pas comprise. Le premier article scientifique qui mentionne pour la 

première fois "El Niño" le long de la côte du Pérou a été publié deux ans plus tard dans 

le bulletin de la Sociedad Geográfica de Lima, écrit par Carrillo (1892). Dans ce 

document, de nombreuses preuves d'un courant "étrange" observé dans l'océan au large 

du Pérou ont été rapportées. Ce courant, dirigé vers le Sud, a été observé juste après 

Noël et fut baptisé pour l'occasion: La corriente del Niño (le courant d'El Niño). 

 

 Ce fut l'événement El Niño qui s'est produit en 1925, le plus grand événement 

enregistré à l'époque et documenté par un ornithologue (Murphy, 1926) qui éveilla 

l'intérêt de la communauté scientifique internationale autour du phénomène El Niño. 

Tandis que le météorologue H. P. Berlage fut le premier à suggérer qu'El Niño pourrait 
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être lié à la circulation grande échelle dans le Pacifique tropical (Cushman, 2004), la 

première théorie a été proposée par Sir Bjerknes, suite aux travaux antérieurs de Sir 

Walker, expatrié en Inde afin de prévoir la mousson pour augmenter la production de 

coton - matière première importante en Europe à cette époque. Sir Walker a observé que 

les fluctuations de pression entre Tahiti et Darwin étaient en opposition de phase et 

qu'elles variaient beaucoup d'une année à l'autre. Il a utilisé ces données (la différence 

entre les deux) afin de prévoir la mousson indienne, qui est maintenant connue pour être 

associé à l'oscillation australe El Niño (ENSO). Sir Bjerknes fut le premier à laisser 

entendre que l'étrange phénomène qui était observé le long de la côte du Pérou (c.à.d. le 

réchauffement épisodique de la température de la surface de la mer au moment de Noël) 

pourrait être lié aux fluctuations grande échelle identifiées par Sir Walker. Il a poussé le 

concept en suggérant que le contraste zonal en SST le long du Pacifique équatorial était 

étroitement lié à la circulation de Walker, forcée par la différence de pression de surface 

entre Tahiti et Darwin. 

 
Figure 1.1 Anomalies interannuelles de la température de la surface de la mer dans le 

Pacifique Sud-Est pour les mois de Mars (a) et Avril (b) 1891, à partir des sorties de la 

réanalyse SODA (Simple Ocean Data Assimilation, version 2.2.4), calculées à partir de 

la climatologie estimée sur la période 1876 à 1906. L'unité est ºC. 
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1.1.2 Emergence des théories et prévisions du phénomène El Niño 

 

Cette théorie n'expliquait cependant pas la nature oscillatoire d'ENSO: les 

événements El Niño chauds peuvent être suivis par une phase froide (c.a.d. La Niña) et 

reviennent après un certain temps, ce dernier définissant la « périodicité» de 

l'oscillation. Les années 80 et 90 sont une periode prospère pour l'émergence des 

théories d'ENSO, ce qui a été permis en partie grâce aux développements du système 

d'observation dans le Pacifique tropical: in situ (cf. programme TOGA-TAO lancé en 

1985) et satellite (le premier altimètre (GEOSAT) a été lancé en 1985). En particulier, 

l'altimétrie a permis l'observation quasi-synoptique des ondes équatoriales planétaires, 

ce qui a permis de tester les différentes théories basées sur les réflexions des ondes 

équatoriales aux frontières méridionales du bassin Pacifique. Dans ces théories (par 

exemple, celle de l'oscillateur retardé, voir #1.3.2 pour plus de détails), l'effet retardé de 

l'onde réfléchie est le processus par lequel un événement El Niño est contraint à 

s'amortiret ce processus permet d'introduire le concept nécessaire à la nature oscillante 

d'ENSO. 

 

Néanmoins, les dimensions zonales du bassin Pacifique Tropical associées à la 

propagation d'ondes libres ne pouvaient pas fournir une vue cohérente des échelles de 

temps de l'évolution d'ENSO et de sa périodicité. La théorie de recharge-décharge a 

émergé à la fin des années 90, en partie afin de résoudre cette question. Cette théorie 

considère un ajustement rapide qui a lieu à l'échelle du bassin Pacifique tropical. Le 

long de l'équateur, les alizés induisent un transport zonal, mais aussi un transport 

méridional associé à l'effet de la force de Coriolis (transport de Sverdrup). Ce dernier « 

recharge » la bande équatoriale en eaux chaudes lorsque la thermocline est remontée 

(processus de recharge) ou évacue les eaux chaudes de la bande équatoriale (décharge), 

ce qui constitue la rétroaction négative lente et permet au système d'osciller (voir 

schémas de la Figure 1.2). Cette théorie est basée sur l'observation qu'il a un ajustement 

différé entre la SST et le contenu thermique dans le Pacifique équatorial (i.e. Warm 

Water Volume). Cette théorie a fourni le cadre général pour l'étude d'ENSO durant les 

deux dernières décennies. Au moment où j'ai démarré cette thèse, la théorie de la 

recharge-décharge était encore le principal paradigme pour interpréter la variabilité 

interannuelle dans le Pacifique équatorial. Elle fournit des bases théoriques solides pour 

étudier divers aspects de l'ENSO, en particulier le changement de ses propriétés 
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(fréquence, amplitude, prévisibilité) sur de longues périodes de temps. Par exemple, à 

partir des années 80, ENSO a connu une augmentation de son amplitude, qui a été 

attribuée à l'état moyen plus chaud, après le  « shift » climatique de la fin des années 70 

(Yeh et al., 2001). Une augmentation de l'activité ENSO peut être liée à une diminution 

de la stabilité de l'oscillateur, qui peut être diagnostiquée à partir d'observations ou de 

produits de réanalyses et en utilisant ce formalisme (An et Jin, 2001). Ainsi les progrès 

de la modélisation numérique et de l'assimilation de données de la fin du XXe nous ont 

conduits à l'idée que le phénomène El Niño pourrait être prévu avec au moins deux ou 

trois saisons à l'avance. 

 

1.1.3 Un nouveau type d'événement El Niño 

 

Or, depuis le début du 21ième  siècle, les manifestations du phénomène El Niño 

ont réduit ces expectatives. En particulier, depuis les années 2000, le score de 

prédictibilité de la théorie de recharge-décharge s'est significativement réduit, car la 

phase entre la SST dans la région NINO3 [150°W-90°W; 5°S-5°N] et l'indice de 

contenu thermique du bassin (WWV) a significativement diminué (McPhaden, 2012). 

Tout d'abord, il a été suggéré que cela était dû à la modification de la position de la 

région où les anomalies de tension de vent associées à ENSO sont observées. En 

particulier, il a été montré que plus l'anomalie de vent est à l'Ouest, plus le décalage 

entre l'indice NINO3 SST et le mode WWV est marqué (Clarke, 2010; Fedorov, 2010). 

En outre, les processus de dissipation pourraient jouer un rôle important dans la 

diminution du décalage entre NINO3 SST et l'index WWV (Thual et al., 2013). 

Toutefois, il n'est pas certain qu'un tel changement dans les caractéristiques d'ENSO 

observés après 2000 pourrait être interprété à la lumière de la théorie de recharge-

décharge. En fait, un nouveau type d'El Niño, connu sous le  nom de El Niño Pacifique 

Central (CP El Niño, Kug et al., 2009) ou El Niño Modoki (Ashock et al., 2007), 

caractérisé par des anomalies de température moins intenses et localisées dans le centre 

du Pacifique équatorial a placé la communauté scientifique devant un nouveau défi. 

 

 Cette thèse est une contribution aux efforts de la communauté pour comprendre 

ce changement. Elle se concentre sur l'étude de la variabilité équatoriale dans le bassin 

Pacifique au cours du siècle dernier, lorsqu'un seul type d'événement El Niño était 

observé. Ces nouveaux événements El Niño ont un centre d'action localisé dans le 
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Pacifique central, comparé aux événements El Niño Pacifique Est ou Cold Tongue El 

Niño qui ont des impacts plus graves pour le Pérou. 

 

Pour résumer le positionnement de cette thèse dans l'histoire de la recherche 

consacrée au phénomène El Niño, la Figure 1.2 présente un schéma de la chronologie 

de la recherche de la communauté ENSO au cours du XXe siècle.  

 

 
Figure 1.2 Chronologie de la recherche sur ENSO depuis le début du XXe siècle, 

illustrée à partir d'une série temporelle de la SST moyennée dans la région NINO3 

(150°W-90°W; 5°S-5°N) à partir des données ERSST (Extended Reconstructed Sea 

Surface Temperature, Smith et al., 2008) v3b. L'unité est ° C. D'aprés Dewitte et al. 

(2014). 

 

1.1.4 Motivations et objectifs de cette thèse 

 

Il est maintenant reconnu qu'ENSO implique divers type de variabilité à des 

échelles de temps distinctes: de l'intrasaisonnier à l'interannuel. Un intérêt particulier a 

été porté à la variabilité atmosphérique intrasaisonnière dans le Pacifique tropical car 

elle a été observée avant le développement des événements El Niño récents et elle peut 

être impliquée dans la rectification d'ENSO (Kessler et Kleeman, 2000). Cette 

variabilité intra-saisonnière est en particulier composée de l'Oscillation Madden Julian 

(MJO, Madden and Julian, 1994) et les coups de vent d'ouest (Westerly Wind Bursts) 

dont les échelles de temps de variabilité s'étendent de 10 à 60 jours. Étonnamment, 
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l'onde de Kelvin IntraSaisonnière (ISKw) a un spectre de variabilité beaucoup plus large 

allant de (50 jours)-1 jusqu'à la fréquence semi-annuelle, avec un pic d'énergie marqué 

dans la bande de fréquence (90-120 jours)-1 (Cravatte et al., 2003, Dewitte et al., 

2008a). Une étude récente (Guschina and Dewitte, 2012) suggère par ailleurs que la 

relation entre ENSO et la variabilité intrasaisonnière atmosphérique dans le Pacifique 

pourrait être distincte suivant le type d'El Nio. Il semble donc important d'étudier les 

caractéristiques de l'onde ISKw et sont rôle sur le développement et la décroissance des 

événements CP El Niño, considérant de plus que l'onde ISKw a un impact sur la 

dispersion des prévisions d'ENSO (Wang et al., 2011) et que les systèmes de prédiction 

présentent une capacité de prévision réduite sur la période récente (Hu et al., 2012; Xue 

et al., 2013). 

 

D'autre part, il est également connu qu'une partie de l'énergie de l'onde de Kelvin 

équatoriale qui se propage le long de l'équateur à travers tout le Pacifique se propage 

vers les pôles le long de la côte du continent Sud-Américain, lorsque l'onde de Kelvin 

atteint la frontière Est du Pacifique. Le long de la côte péruvienne, l'onde de Kelvin de 

downwelling advecte des eaux chaudes équatoriales vers le Sud (surtout pendant les 

événements El Niño intenses) et approfondit également la thermocline, ce qui peut 

entraîner une augmentation de la SST associée à une diminution de l'advection ou du 

mélange vertical. La Figure 1.3 illustre le phénomène de propagation depuis l'Ouest du 

Pacifique vers l'Est pour l'événement de 2002. En ce qui concerne la relation avec 

l'écosystème marin, l'onde de Kelvin de downwelling diminue l'efficacité de l'upwelling 

côtier, en termes d'enrichissement en nutriments (maintenant à la surface des eaux 

chaudes, faibles en nutriments; cf. Barber and Chavez, 1983). Les événements chauds 

associés à l'onde de Kelvin de downwelling incitent les anchois à se concentrer près de 

la côte et à se réfugier plus en sub-surface, et semblent influencer la stratégie 

d'exploitation des navires de pêche (Bertrand et al., 2008). L'augmentation de la SST 

dans le Nord du Pérou en l'été austral, en raison de l'impact de l'onde de Kelvin, peut 

également créer une instabilité atmosphérique qui engendre des précipitations le long 

des côtes péruviennes et des inondations dans la région de Piura [80,6°W; 5,3°S] 

(Takahashi, 2004). Les implications sociétales de la dynamique de l'onde de Kelvin le 

long de la côte du Pérou sont donc aussi une motivation à ce travail. 
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Figure 1.3 Sur la gauche, les séries temporelle des anomalies de profondeur de la 

thermocline (en mètres) le long du Pacifique équatorial estimées à partir des profils de 

température TAO situés à 180°E (a) , 155°W (b) , 125°W (c) et 95°W (d). Sur la droite 

(e), anomalies interannuelles de la SST (en °C, par rapport à la climatologie 2000-2013) 

pour le 3 Avril 2002. D'aprés Mosquera (2014). 

 

L'objectif général de cette thèse est de mieux comprendre la variabilité 

interannuelle dans le Pacifique équatorial depuis 2000, compte tenu de l'évolution 

observée des caractéristiques de la dynamique associée à ENSO à depuis cette date. 

(McPhaden et al., 2011). En particulier depuis 2000, le Pacifique équatorial n'a connu 

que des événements El Niño de type Pacifique Central. Les raisons en reste inconnues. 

Cette thèse s’inscrit dans l’effort de la communauté internationale d’en comprendre les 

raisons. Elle s’intéresse en particulier à la dynamique ondulatoire et aux échelles de 

temps intrasaisonnières. Le chapitre 1 rappelle les théories actuelles d'ENSO, et 

synthétise l’état des connaissances sur la dynamique des événements CP El Niño. Il 

aborde aussi l’état des connaissances sur les processus agissant sur les caractéristiques 

de propagation des ondes de Kelvin équatoriales. Il est suivi par un examen détaillé d'un 

événement El Niño Pacifique Central, l'événement El Niño 2002/03, le premier CP El 



 18 

Niño du 21e siècle (chapitre 2). Dans cette étude, nous étudions les processus dans la 

couche de mélange associés aux ondes longues équatoriales et nous examinons si un tel 

événement satisfait la théorie de recharge-décharge. Puis, dans le chapitre 3, cette thèse 

aborde les échelles de temps intrasaisonnières, en documentant l'activité de l'onde ISKw 

au cours des événements CP El Niño des deux dernières décennies, et en étudiant les 

processus associés à la dissipation de l'onde ISKw. Enfin, considérant qu'El Niño est 

étroitement liée au cycle saisonnier, nous documentons les changements dans les 

caractéristiques du cycle saisonnier long de l'équateur avant et après 2000 (chapitre 4). 

Pour tous les chapitres, la méthodologie adoptée est basée sur l'analyse combinée de 

données (in situ et satellite) et de sorties de modèles, du modèle linéaire (Mosquera, 

2009; Mosquera et al., 2010) aux modèles océaniques de circulation générale (OGCM).  
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1.2 Introduction (English version) 

 

1.2.1 A brief history of El Niño phenomenon 

 

At the end of 19th century, Carranza (1891) described for the first time the 

characteristics of a strong climatic event that took place along the Peruvian coast in 

1891. He depicted an abnormal southward current apparently originating from the 

Guayaquil Gulf, and that was opposite to the southerly current. This abnormal current 

disrupted the oceanic and atmospheric climatological conditions, resulting in warmer 

than usual ocean conditions and heavy precipitations along the Peruvian coast and, as a 

consequence, flooding in the Northern edge of Peru in April and May of 1891. This 

event was so strong that precipitation anomalies reached cities such as Lima [77ºW, 

12ºS] and Ica [75.7ºW, 14ºS] (Rodriguez, 2001) - cities that usually have no 

precipitation all year around. The southward extension of this unusual event can be 

appreciated from Figure 1.1bis that displays the Sea Surface Temperature (SST) 

interannual anomaly in March (Figure 1.1bis-a) and April (Figure 1.1bis-b) of 1891 

over the South Eastern Pacific region and highlights that the SST anomaly increased by 

~2°C from March to April on average along the coast of Peru. This event was mostly 

described based on its coastal expression and it was not clear at that time, how such 

event was connected to the equatorial variability. The first document that ever mentions 

“El Niño” along the coast of Peru was published two years later in the bulletin of the 

Sociedad Geográfica de Lima, written by Carrillo (1892), in which he reported the 

various evidences of a “strange” southward current observed in the ocean off Peru just 

after Christmas: La corriente del Niño (El Niño current). 

 

It was the El Niño that occurred in 1925, the largest one registered at the time 

and documented by an ornithologist (Murphy, 1926) that first enticed the concern of the 

international scientific community on the El Niño phenomenon. Whereas the 

meteorologist H. P. Berlage was the first to suggest that El Niño could be linked to the 

large scale circulation in the tropical Pacific (Cushman, 2004), the first theory was 

proposed by Sir Bjerknes, following earlier works by Sir Walker who was sent to India 

to forecast the monsoon in order to improve the cotton production- an important raw 

material for Europe at that time. Sir Walker observed that the fluctuations of pressure at 

Tahiti and Darwin were opposite and they were varying a lot from one year to the other. 
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He used these data (the difference between both) to forecast the Indian monsoon that is 

now known to be associated with the El Niño Southern Oscillation (ENSO). Sir 

Bjerknes was the first to suggest that, the unusual phenomenon which was occurring 

along the coast of Peru (the episodic warming of sea water at Christmas time) could be 

related to the large scale fluctuations identified by Sir Walker. He spurred the concept 

that the zonal contrast in SST across the equatorial Pacific is tightly linked to the so-

called Walker circulation driven by the difference in sea level pressure between Tahiti 

and Darwin. 

 
 

Figure 1.1bis SST interannual anomalies in the South Eastern Pacific for March (a) and 

April (b) 1891 from the outputs of the SODA (Simple Ocean Data Assimilation) 

reanalysis (version 2.2.4) calculated using a climatology estimated over the period 

expending from 1876 to 1906. Unit is ºC. 

 

1.2.2 El Niño theories and forecasts 

 

What was not explained by this theory is the oscillatory nature of ENSO: warm 

El Niño events can be followed by a cold phase (i.e. La Niña) and comes back after 
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some time, the later defining its “periodicity”. The 80s and 90s were the decades of 

intense development in the theory of ENSO, which was allowed in part thanks to the 

development of the observing system in the tropical Pacific, both in situ (TOGA-TAO 

program launched in 1985) and from space (the first altimeter (GEOSAT) was launched 

in 1985). In particular, altimetry allowed for the quasi-synoptic observation of planetary 

equatorial waves, which permitted testing theories based on the reflections of equatorial 

waves onto the Pacific meridional boundaries. In these theories (for instance, the so-

called delayed action oscillator, see #1.3.2 for more details), the delayed effect of the 

reflected wave is the process by which an El Niño event is suppressed, providing a 

concept for its oscillating nature. 

 

Even if, at the time, the observation of long equatorial waves permitted to 

understand its role on the oscillatory process of El Niño, the basin scale adjustment 

associated with the free propagating waves could not provide a consistent view of the 

timescales of ENSO evolution and periodicity. The recharge-discharge theory emerged 

in the late 90s in part in order to resolve such issue. The recharge-discharge oscillator 

considers a fast adjustment that takes place at the scale of the tropical Pacific basin. 

Along the equator, the trade winds induced a zonal transport but also a meridional 

transport due to the effect of the Coriolis force (the so-called Sverdrup transport). The 

latter replenishes the equatorial band in warm waters when the thermocline has risen 

(recharge process) or evacuates the warm waters from the equatorial band (discharge), 

which provides the slow negative feedback for the system to oscillate (see details in 

Section 1.3). The theory is based on the observation that there is a delayed adjustment 

between the SST and the heat content over the equatorial Pacific (the so-called warm 

water volume). This theory has provided the most general framework for studying 

ENSO for the last two decades. At the time when I started this thesis, the recharge-

discharge oscillator was still the main paradigm for interpreting the interannual 

variability in the equatorial Pacific. The recharge-discharge oscillator provides a solid 

theoretical basement for studying various aspects of ENSO, in particular its changes in 

properties (frequency, amplitude, predictability) over long-timescales. For instance, 

from the 80s, ENSO experienced an increase in its amplitude, which has been attributed 

to the warmer mean state after the climate shift of the late 70s. An increase in ENSO 

activity may be related to a decrease in the stability of the oscillator, which can be 

diagnosed from observations or Reanalysis products based on this formalism (An and 
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Jin, 2001). Hence, along with improvements in numerical modeling and data 

assimilation, at the end of the XXe, we came to the idea that El Niño could be predicted 

with at least 2 or 3 seasons in advance. 

 

1.2.3 A new type of El Niño 

 

However, the observations since the beginning of the 21st century have wiped 

out this expectation. In particular, it has been observed that since the 2000s, the 

predictive value of the recharge-discharge oscillator has been limited since the lag 

between the NINO3 SST [150°W-90°W; 5°S-5°N] and the WWV index has decreased 

significantly (McPhaden, 2012). First, this has been suggested to be due to changes in 

the location of the center of ENSO wind stress anomalies. In particular, it can be shown 

that the further to the west the wind stress forcing, the smaller the lag between NINO3 

SST and the WWV mode (Clarke, 2010; Fedorov, 2010). Also, dissipation processes 

could play a significant part in explaining the lag between the NINO3 SST and WWV 

mode (Thual et al., 2013). However, it was not clear if such change in ENSO 

characteristics observed after 2000 could be fully interpreted in the light of the 

recharge-discharge theory. In fact, a new type of El Niño, known as the Central Pacific 

El Niño (CP El Niño, Kug et al., 2009) or Modoki El Niño (Ashock et al., 2007), 

characterized by weaker SST anomalies located in the central Pacific was described, 

which, since then, has put the community in front of a new challenge (Capotondi et al., 

2015). 

 

This thesis is a contribution to the efforts of the ENSO community for 

understanding such change. It focuses on the investigation of the equatorial variability 

in the Pacific over the last century, when only El Niño of one type has taken place. 

Those new El Niño events have a center of action in the central Pacific conversely to the 

Eastern Pacific or Cold Tongue El Niño that has the most severe impacts for Peru. 

 

As a summary of where the thesis stands within the history of El Niño research, 

the Figure 1.2bis provides a schematic of the chronology of ENSO research over the 

Twentieth century. 
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Figure 1.2bis Chronology of ENSO research since the beginning of the XXe century, 

illustrated from a timeseries of the SST averaged in the NINO3 box (150°W-90°W; 

5°S-5°N) from Extended Reconstructed Sea Surface Temperature (ERSST) v3b (Smith 

et al., 2008). Unit is °C. (After Dewitte et al. (2014)) 

 

1.2.4 Motivations and objectives of the thesis 

 

It is now well known that ENSO involves a variety of variability timescales: 

from intraseasonal to interannual. The intraseasonal atmospheric variability in the 

tropical Pacific has a particular interest because it has been observed prior to the 

development of recent El Niño events and possibly involved in the rectification of the 

ENSO (Kessler and Kleeman, 2000). This intraseasonal atmospheric variability is in 

particular composed by the Madden and Julian oscillation (Madden and Julian, 1994) 

and the Westerly Wind Bursts (stochastic in nature) that are associated to periods of 

variability ranging from 10 to 60 days. Surprisingly, the IntraSeasonal Kelvin wave 

(ISKw) has a much wider spectrum of variability ranging from (50 days)-1 to the semi-

annual frequency with a particular energy peak in the (90 -120 days)-1 frequency band 

(Dewitte et al., 2008a). A recent study (Gushchina and Dewitte, 2012) also indicates 
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that the relationship between ENSO and the intraseaonal atmospheric variability could 

be distinct among the two types of El Niño. It appears important to document the 

characteristics of the IEKws and its relationship with the CP El Niño development and 

decay, considering that the ISKw is influential on the spread of ENSO forecasts (Wang 

et al., 2011) and that prediction systems exhibit a distinct forecast skill depending on the 

El Niño type (Hu et al., 2012; Xue et al., 2013). 

 

On the other hand, it is also known that the Kelvin wave, when reaching the 

eastern edge of the Pacific Ocean, keeps moving poleward along the coast of the South-

American continent. Along the Peruvian coast, the downwelling Kelvin wave can 

advect southward warm waters from Ecuador (mostly during strong El Niño events) and 

also deepens the thermocline, which may result in increasing the SST through vertical 

advection and/or mixing. Figure 1.3bis illustrates the eastward propagation of 

thermocline disturbances along the equator during the 2002 El Niño and the resulting 

SST anomaly along the coast of Peru. Regarding the relationship with the marine 

ecosystem, the downwelling Kelvin wave induces a reduced coastal upwelling and so a 

decreased nutrient enrichment (bringing to the surface oceanic warm and low nutrient 

waters; see Barber and Chavez, 1983). In particular, a warming event due to a 

downwelling Kelvin wave causes generally the anchovies to concentrate close to the 

coast and to migrate to deeper depths, which has been also suggested to influence the 

fishing vessels exploration’s strategy (Bertrand et al., 2008). The increase of SST along 

the northern region of Peru in Austral summer, due to the impact of a Kelvin wave, also 

create an atmospheric instability that produces rains along the coasts of Peru and floods 

in the Piura region (Takahashi, 2004). The societal implications of the Kelvin wave 

dynamics along the coast of Peru are thus also motivating this work. 

 

The general objective of this thesis is to better understand the interannual 

variability in the equatorial Pacific since 2000 considering the likely shift in ENSO 

dynamics at that period (McPhaden et al., 2011; McPhaden, 2012). In particular since 

2000, the equatorial Pacific has experienced only Central Pacific El Niño events. The 

reason for this remains unclear. More specifically the thesis focuses on the equatorial 

dynamics with a particular interest on the intraseasonal timescales. In the rest of this 

chapter, more details about the state of art of ENSO theories, the CP El Niño 

characteristics and the Kelvin wave dynamics are provided. It is followed by a close 
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look at a peculiar Central Pacific El Niño event, the 2002/03 El Niño phenomenon - the 

first CP El Niño of the 21st century (Chapter 2). In this study, we investigate the mixed-

layer processes associated with the long equatorial waves and we question whether such 

an event fits with the Recharge-Discharge theory. Then, in Chapter 3, this thesis 

addresses the intraseasonal timescales documenting the ISKw activity during CP El 

Niño events and investigating the processes associated with the dissipation of the ISKw. 

Finally, considering that El Niño is tightly linked to the seasonal cycle, we document 

the changes in characteristics of the seasonal cycle along the equator from before and 

after 2000 (Chapter 4). The approach for all chapters is based on the combined analysis 

of data (in situ and satellite) and model outputs, from a linear model (Mosquera, 2009; 

Mosquera et al., 2010) to Oceanic General Circulation Models (OGCM). 
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Figure 1.3bis On the left, time series of the thermocline depth (meters) anomaly along 

the equatorial Pacific estimated from TAO temperature profiles located in 180°E (a), 

155°W (b), 125°W (c) and 95°W (d). On the right (e), the SST interannual anomaly (°C, 

relative to the 2000-2013 climatology) from Reynolds et al. (2002) is displayed for the 

3rd of April 2002. Source: Mosquera (2014). 
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1.3 ENSO theories 

 

1.3.1 Bjerknes theory 

 

Whereas the meteorologist H. P. Berlage was the first to propose that El Niño 

could be linked to the large scale circulation in the tropical Pacific (Cushman, 2004), 

the first theory was proposed by Sir Bjerknes, following earlier works by Sir Walker 

that was sent to India to forecast the monsoon in order to improve the cotton production, 

an important raw material for Europe at that time. Sir Walker had observed that the 

fluctuations of pressure at Tahiti and Darwin were opposite and they were varying a lot 

from one year to the other. He used these data (the difference between both) to forecast 

the Indian monsoon that is now known to be related to ENSO. Sir Bjerknes (1969) was 

the first to propose that the east-west contrast in the equatorial ocean temperature during 

El Niño, in a warmer and colder eastern and western Pacific, respectively, could in turn 

generate a reduced atmospheric pressure in the east and an increased one in the west. 

This zonal contrast in pressure would result in winds from west to east, against normal 

atmospheric circulation (east to west) that Bjerknes baptized with the name of Walker 

circulation. These westerly winds favor further warming of the eastern Pacific, 

increasing the initial heating. This amplification process is now known as "Bjerknes 

feedback process" and is the basic theory that explains how an ENSO event grows in 

magnitude (see Figure 1.4). 

 

1.3.2 The delayed oscillator 

 

Even thought Bjerknes provided the first theory of El Niño, his theory could not 

explain the oscillatory nature of El Niño, which results from the fact that an El Niño 

event reverse to La Niña conditions and vice-versa. The delayed oscillator theory 

(Suarez and Schopf 1988; Battisti and Hirst, 1989) was an interesting concept that 

includes in its dynamic the long equatorial waves, Kelvin and Rossby, as the ingredients 

that allows the oscillatory property of El Niño. It is important to mention that the role of 

the long equatorial waves in the dynamics of the equatorial Pacific had been introduced 

in the 70’s by Wyrtki (1975), McCreary (1976), Moore and Philander (1977) and Moore 

(1968).  
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Figure 1.4 Schematic of normal and El Niño conditions in the equatorial Pacific (Figure 

1 of McPhaden et al., 1998). 

 

In general, the Delayed Oscillator Theory indicates that ENSO is an oscillatory 

system with an interaction between the atmosphere and ocean through the projection of 

eastward wind stress anomaly onto long equatorial oceanic waves. An eastward wind 

anomaly (westerly), generated by SST anomalies east of the dateline, drives a 

downwelling Kelvin wave that contributes to increase the SST anomalies in the eastern 

Pacific. The original eastward wind anomaly also forces a Rossby wave that propagates 

westward and is then reflected as an upwelling Kelvin wave at the western boundary. 

This Kelvin wave moves to the east and contributes with a negative feedback to the 
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coupled system. This process generates the alternation between El Niño and La Niña. 

Figure 1.5 shows a schematic of this theory.  

With the beginning of the satellite era dedicated to observing the earth surface, 

strong progresses were made in tropical dynamics. In particular, altimeters likes 

GEOdetic SATellite (GEOSAT) or more recent ones like TOPEX/POSEIDON and 

JASON series allowed for the investigation of long equatorial waves. Pioneered works 

in that field (Menkes et al., 1995ab; Boulanger and Menkes, 1995; Perigaud and 

Dewitte, 1996) led to a quantitative step in our understanding of the ENSO dynamics 

and testing paradigms (e.g. the delayed action oscillator). It takes about 12 months for a 

wave to go back and forth as Rossby wave from east to west, and as a reflected Kelvin 

wave from west to east. Meanwhile the period between El Niño and La Niña is 24 

months. This was an inconsistency of the Delayed Oscillator Theory that encouraged 

developing other concepts.    

 

 

 
 

Figure 1.5 Schematic diagram of the delayed oscillator for ENSO. (After Wang and 

Picaut (2004)) 
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1.3.3  Discharge and recharge oscillator theory 

 

 In front of the deficiency of the Delayed Oscillator, a new concept, named the 

Discharge and Recharge oscillator, was introduced (Jin, 1996; 1997). This model 

considers the importance of the heat content inside the Equatorial Pacific in the 

oscillatory process of ENSO. Clarke (2008) provided a comprehensive description of 

this theory and establishes an El Niño condition with a positive SST anomaly plus a 

depressed thermocline in the eastern Pacific (see Figure 1.6 I). The deep convection 

associated with the SST anomaly pattern induces eastward winds, which results in two 

consequences on the ocean: 1) eastward winds tilt the thermocline to the east increasing 

the heat content in the Eastern Pacific; and 2) they produce a Sverdrup poleward 

transport, allowing the evacuation of stored heat from the equatorial band. The latter is 

considered as the Discharged phase of the model that reduces the thermocline depth to 

values under the mean state (negative anomaly, Figure 1.6 II). This new thermocline 

depth influences the decreasing of the SST anomaly. The negative values of SST 

anomaly intensify with the presence of westward zonal currents anomalies that push the 

equatorial system to a Cool Phase (Figure 1.6 III). Finally, this new state induces 

westward zonal wind anomalies that transport warm water to the equatorial region. As a 

consequence, the system evolves to a Recharge phase (Figure 1.6 IV). 

 

The fundamental mechanism for the oscillation is the delay between the 

adjustment of SST anomalies and the heat content of the entire basin (named WWV for 

Warm Water Volume). Note that the adjustment of the ocean in this model can be 

characterized through the temporal evolution of two zonal thermocline modes: a) “tilt” 

mode corresponding to the tipping (or tilting) of the thermocline around a pivot (located 

around 160°), and b) a WWV mode that corresponds to the heat accumulated in the 

equatorial band and that corresponds to a mode having its maximum (minimum) 

amplitude in the central Pacific. Clarke (2010) shows, in particular, that at interannual 

timescales, these modes incorporate the propagation of long equatorial Kelvin and 

Rossby waves. Thus, it may also explain the mechanism of recharge/discharge through 

the slow evolution of the residue (the WWV) from the propagation of the long 

equatorial waves, similar to the Delayed Oscillator Theory.  
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Figure 1.6 Schematic diagram of the four phases of the Recharge and Discharge 

Oscillator: (I) the warm phase, (II) the warm to cold transition, (III) The cold phase, and 

(IV) the cold to warm transition phase (from: Meinen and McPhaden, 2000). 

 

1.4  The Central Pacific El Niño (CP El Niño) 

 

The first El Niño of the 21th century took place in 2002/03 and has been 

categorized by the scientific community as a Central Pacific El Niño (CP El Niño) or 

Modoki El Niño. CP El Niño consists in a warming of the Sea Surface Temperature in 

the Central Pacific that is larger than the one occurring in the eastern Pacific at the peak 

phase of the event (see Figure 1.7), namely in December-January-February (DJF) 

(Ashok et al., 2007; Kug et al., 2009; Yeh et al., 2009). The occurrence of CP El Niño 

has increased in the recent decades (Lee and McPhaden, 2010; Yeh et al., 2009) and the 

last ten years has witnessed only El Niño events of this type, which has drawn the 

interest of the community in its dynamics and predictability (Ashok et al., 2007; 

Capotondi et al., 2015). Various hypotheses have been proposed to explain the 

emergence of such type of El Niño events since the 90s: First, changes in background 

state have been invoked which can result either from natural variability or 

anthropogenic activity. For instance, IPCC-class models predict an increased in 

stratification (i.e. shoaling thermocline depth in the central and western Pacific), which 

could modified the way the wind stress forcing projects onto to the ocean dynamics 

(Yeh et al., 2009). However the observations suggest that the thermocline in the 

western-central Pacific has deepened, which could be due to the residual effect of the 
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increased occurrence of CP El Niño (McPhaden et al., 2011). Other studies have 

suggested that non-linear processes could be involved due to La-Niña like conditions 

after 1990 (Xiang et al., 2013). The debate so far has been mostly on whether or not CP 

El Niño dynamics fits with the recharge-discharge theory (Jin, 1997). Kug et al. (2009) 

based on the NCEP Reanalysis product conclude that the discharge process of the 

equatorial heat content associated with the CP El Niño is not efficient due to the spatial 

structure of SST anomaly. They also show from composite analysis that the zonal 

advective feedback (i.e. zonal advection of mean SST by anomalous zonal currents) 

plays a crucial role in the development of a decaying SST anomaly associated with the 

CP El Niño, while the thermocline feedback is a key process during the EP El Niño. 

The decay phase of the CP El Niño is in their view controlled by thermal damping. 

Despite this contrasted feature in the dynamics of the CP and EP events, the 

classification of the El Niño into two types may still be oversimplified. In fact Kug et al. 

(2009) introduced three types of El Niño, i.e., CP, EP, and a mixed type, which 

corresponds to SST anomalies peaking in the NINO34 region [5°S-5°N; 170-120°W]. 

For instance, the last El Niño to date that took place in 2009-2010 can be categorized as 

a CP El Niño (Kim et al. 2011) but its ocean dynamical behavior resembles the EP El 

Niño. Yu et al. (2011) also propose to define CP El Niño and mixed-type El Niño based 

on subsurface indices that are more appropriate to capture the specificities of the events 

and account for the larger diversity of the El Niño types in nature than what is generally 

simulated by models (Yu and Kim, 2010; Kug et al., 2010; Dewitte et al., 2012). 

Takahashi et al. (2011) somehow reconciles these studies proposing to classify the El 

Niño event according to their privileged regimes defined in their study from the first 

two PC (Principal Component) time series of the SST anomalies in the tropical Pacific. 

In particular, the mixed-type El Niño of Kug et al. (2009) fits perfectly with the C 

regime of Takahashi et al. (2011) in terms of its spatial pattern, which suggests that 

within a regime, El Niño event can have in fact a different dynamics. A dynamically-

based classification of the El Niño event is probably required, which implies 

documenting the balance between processes controlling the rate of SST changes in the 

equatorial Pacific during the evolution of these types of El Niño events.  
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Figure 1.7 SST anomalies (Reynolds et al., 2002) for the month of December for five 

El Niño events since 1997. Pictures were created using the IRI Data Library 

(http://iridl.ldeo.columbia.edu/) 

 

1.5 ENSO and the Kelvin wave 

 

 As it was mentioned in the previous section, the oceanic Kelvin has an important 

role in the development of El Niño. This disturbance can be forced by the zonal winds 

anomalies in the Equatorial Pacific, or by the reflection of Rossby waves on the western 

edge of the Pacific. Kelvin wave has the property of moving eastward with a typical 

theoretical speed of 2-3 meters per second (equivalent speed of the first baroclinic 

mode). This means, for example, that if a Kelvin wave is formed in the central 
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equatorial Pacific (around dateline), this will take between 1.5 month and two months to 

reach the South American coast (see Figure 1.8). 

 
Figure 1.8 Evolution of an equatorial Kelvin wave simulated with a linear oceanic 

model (Mosquera, 2009) through the Equatorial Pacific. The model was forced during 

30 days with a positive zonal wind anomaly (with a magnitude of 9 ms-1 as its maximal 

intensity in day 15). Sea level anomaly is displayed in colors and surface current 

anomalies are overplotted with black arrows. Source: Mosquera (2014). 
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Concerning its impact on state of the equatorial Pacific, Kelvin waves could be 

divided in two types: 1) Downwelling Kelvin wave, which is characterized by positive 

subsurface temperature anomaly, a deeper thermocline, sea level rise, and anomalies of 

currents from west to east, and 2) Upwelling Kelvin wave, with opposite characteristics. 

 

As it was mentioned, Kelvin waves influence the Sea Surface Temperature 

through various processes. Anomalous currents associated with the wave may cause 

displacement of the cold or warm surface waters. While this effect can take place along 

the whole equatorial Pacific, it is prominent in the western region, where a downwelling 

or upwelling wave can advect the edge of the "warm pool" eastward or westward, 

respectively (see Figure 1.9b and 1.9d). Also, the Kelvin wave can deepen or rise the 

thermocline (see Figure 1.9c), affecting the process of upwelling of cold water, 

producing an increase or decrease of the SST, respectively (Figure 1.9d), mostly in 

regions where the thermocline is shallow and/or the vertical stratification is marked. 

 

Kelvin wave activity can also take place at a wide range of frequencies, from 

intraseasonal to interannual timescales. Most studies have focused on the interannual 

Kelvin wave because it is clearly observed from altimetry (Boulanger and Menkes, 

1995; Perigaud and Dewitte, 1996; Boulanger and Fu, 1996) and is involved in strong 

El Niño events like the 1997/98 El Niño (Boulanger and Fu, 1996; Dewitte et al., 2002). 

The intraseasonal Kelvin wave has been observed as resulting from westerly wind 

events (WWBs) prior to the development of El Niño, in particular during strong events 

(Lengaigne et al., 2002). The intraseasonal Kelvin wave is in fact associated with the 

intraseasonal atmospheric variability that spans a wide range of frequencies and 

phenomenon. The later is composed of the Madden-Julian Oscillation (MJO), the 

Convectively Coupled Equatorial Waves (CCEW), Westerly Wind Burst (WWB) and 

Easterly Wind Surges (EWS). MJO is a source of variability with periods between 30 

and 90 days in the tropical atmosphere. This oscillation is considered as a large-scale 

coupled process between atmospheric circulation and deep convection. All the disrupted 

variables in this process propagate to the east with a speed around 5 m s-1 (Zhang, 

2005). MJO has been considered as a key factor to the onset of the 1997-1998 El Niño 

through episodes of westerlies that triggered downwelling Intraseasonal Kelvin waves 

(ISKw). 
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Figure 1.9 Impact of downwelling (left) and upwelling (right) Kelvin wave on January 

2002 and September 2008, respectively, over: (a) Sea level, (b) zonal currents and 

28.5°C isotherm from Reynolds OISST with thick (thin) blue line representing the total 

(climatology) SST, (c) temperature and 20°C isotherm depth with solid (dashed) black 

line representing the total (climatology) values, and (d) SST from Reynolds OISST. 

Source: Mosquera (2014) 
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The CCEW may be considered as having a ‘‘stochastic’’ character relative to the 

slow oceanic processes. This kind of atmospheric waves results from the interaction 

between convection and the atmospheric dynamics in the tropical Pacific. Theoretically, 

CCEW, which can be observed from Ongoing Long wave Radiation, are associated to 

atmospheric Kelvin and Rossby waves with an equivalent depth around 12-50 meters 

(see Wheeler and Kiladis (1999) for details). Like the MJO, their activity has a marked 

seasonal cycle, and through their imprint on wind stress can act on the ocean dynamics. 

 

WWB can form under favorable conditions (i.e. When MJO activity is enhanced 

(Puy et al., 2015)) and consists in a westerly gust in the equatorial Pacific that has a 

period around 5-20 days and an intensity of at least 7 m.s-1 (Harrison and Vecchi, 1997). 

In addition, WWB activity is associated with the onset of El Niño through the formation 

of downwelling Kelvin waves (Latif et al., 1988; Lengaigne et al., 2004, Luther et al., 

1983; Perigaud and Cassou, 2000).  

 

Recently EWS have been identified and documented (Chiodi and Harrison, 

2015). It is a wind stress event with amplitude between 6 and 7 m s-1 and with a 

temporal scale of 6 and 7 days. EWS has an important impact in the dynamic and 

thermodynamic of the Tropical Pacific and is related with the onset of cold tongue 

cooling in La Niña event (Chiodi and Harrison, 2015). 

 

Intraseasonal atmospheric variability is tightly linked to ENSO. There is in 

particular a seasonal relationship associated to strong Eastern Pacific El Niño, with 

WWBs forcing ISKw prior to the development of the event (Bergman et al., 2001; 

McPhaden et al., 2006). In particular the 1997/98 El Niño was associated with three 

pulses of ISKw prior to its development (Dewitte et al., 2003) which may have 

triggered the initial warming in the central Pacific leading to the growth of the SST 

anomalies (Lengaigne et al., 2004). The 1997/98 El Niño is rather peculiar because the 

peak activity of the ISKw took place ~6 months prior the El Niño peak (Ramos et al., 

2008), which reflects the strong seasonal dependence of the MJO/ENSO relationship 

(i.e. MJO peak variance being in May-June prior to the ENSO peak in Nov.-Dec.) 

described in former studies (Hendon et al., 2007; McPhaden et al., 2006). Recent 

studies (Gushchina and Dewitte, 2012) have suggested that this seasonal dependence of 
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the MJO/ENSO relationship could be changed over the last decades due to the 

predominance of Central Pacific El Niño events. 

 

 1.6 Processes impacting the Kelvin wave in the equatorial Pacific. 

 

As we will see in Chapter 3, CP El Niño events are tightly linked to the ISKw 

activity, which may explain its persistence and its seasonal evolution. The fact that CP 

El Niño events are not associated with a large SST anomaly in the eastern Pacific also 

suggests that the ISKw does not impact efficiently the SST through the thermocline 

feedback despite a shallow mean thermocline. The ISKw actually experience dissipation 

as it propagates eastwards. There is a variety of processes of dissipation through which 

the characteristics of ISKw (flux, phase speed, amplitude and vertical structure) can be 

altered in its displacement to the Eastern Pacific.  

 

The tilt of the thermocline around 120ºW can changes the ISKw’s amplitude, 

phase speed, vertical and meridional structure as it reaches the eastern Pacific due the 

difference of the vertical structure of ISKw from West to East (Dewitte et al., 1999). 

Also, the thermocline tilt, from the theoretical point of view, can produce a significant 

dispersion through its impact on stratification resulting in scattering of energy 

(Busalacchi and Cane, 1988; Giese and Harrison, 1990). The mixing produced by the 

Tropical Instability Waves (TIW; Luther and Johnson, 1990) in the eastern Pacific 

(where the thermocline is shallow and close to the mixed layer) affects the 

characteristics of ISKw through changes in the vertical stratification. 

 

The physical mechanism responsible for changing the Kelvin wave characteristic 

that will be discussed in this thesis is the so-called modal dispersion mechanism 

(Busalacchi and Cane, 1988; Giese, 1989; Giese and Harrison, 1990; Dewitte et al., 

1999). Modal dispersion occurs when the equatorial Kelvin wave experience a change 

in vertical structure (due to a change in vertical stratification). In this case, there is a 

leak of energy from the gravest baroclinic modes to the higher-order modes, and vice 

versa. Due to the fact that the mean thermocline varies at seasonal to interannual 

timescales, there is the possibility that the ISKw interacts with the mean thermocline 

through modal dispersion leading to an energy cascade. The modal dispersion can also 

act on the amplitude of the high-order baroclinic modes Kelvin wave, which can 
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influence the coastal circulation in Ecuador and Peru. In particular depending on the 

energy distribution on each baroclinic mode, the equatorial Kelvin wave can either be 

coastally trapped or can radiate off-shore as Rossby wave north of the critical latitude 

(Clarke and Shi, 1991; Dewitte et al., 2008b).  
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Chapter 2: The 2002/03 El Niño: Equatorial waves sequence 

and their impact on Sea Surface Temperature  
 

2.1 Overview 

 

In 2002, a strong equatorial Kelvin wave was triggered in Austral Summer 

producing an alert in the international agencies responsible for monitoring the global 

climate. The scenario was indeed very similar to 1997, when an extraordinary El Niño 

developed. However, according to current definitions, this event is now considered as a 

Central Pacific El Niño (CP El Niño) (Yeh et al., 2009; Takahashi et al., 2011) and did 

not develop as a strong Eastern Pacific El Niño. Along the equator, the 2002/03 El Niño 

is characterized by a comparable warming of the NINO3 (150°W-90°W; 5°S-5°N) and 

NINO4 (150°E-150°W; 5°S-5°N) regions of the order of 1°C. However, while during 

the developing phase, the NINO3 index is above the NINO4 index, at the peak phase 

(December-January-February season) the warming in the western Pacific is slightly 

larger, which implies its Central Pacific-type following Yeh et al. (2009). This event has 

been well observed and documented (McPhaden, 2004). There has been however very 

few studies that took a close look at its dynamics and thermodynamics. In this chapter, 

an OGCM (Ocean General Circulation Model) simulation is used to carry out a heat 

budget of the evolution of this particular El Niño event, highlighting the contribution of 

locally and remotely forced variability to the advection terms. The proposed analysis is 

aimed at providing material for the interpretation of the evolution of this event in the 

light of current ENSO theories, and in particular the recharge-discharge mechanism 

(Jin, 1997). 

 

This chapter contains a paper published in Journal of Geophysical Research-

Ocean that focuses on the 2002/03 El Niño event (Mosquera-Vásquez et al., 2013) and 

investigates the sequence of equatorial waves and their impact on zonal and vertical 

advection processes. In order to test the robustness of our results, the investigation of 

the first CP El Niño of the XXIst century is followed by complementary analyses 

(Section 2.3), which can be considered as an extension of Mosquera-Vásquez et al. 

(2013) and that investigate the dynamics and thermodynamics of other El Niño events 

over the period 1989-2011. 
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2.2 Article published in Journal Geophysical Research- Oceans  

 

The 2002/2003 E Niño: Equatorial wave sequence and their impact on sea surface 

temperature 

Kobi A. Mosquera-Vásquez, Boris Dewitte and Serena Illig 

 
Abstract 

 
The recent decades have experienced changes in the characteristics of the El Niño 
phenomenon, with in particular an increased occurrence of so-called Modoki or Central 
Pacific El Niños. Here the 2002/2003 El Niño, characterized as a Central Pacific El 
Niño, is studied from an Ocean General Circulation Model simulation. The focus is on 
the sequence of equatorial waves and their impact on zonal and vertical advection. The 
wave amplitude according to the most energetic baroclinic modes are first estimated, 
which allows inferring the sequence of the intraseasonal equatorial Kelvin (IKW) and 
Rossby (IRW) waves. It is shown that energetic downwelling IKWs, forced in the 
western-central Pacific, crossed the equatorial Pacific. Reflections of IKWs into IRWs 
onto the zonally varying thermocline and eastern boundary are also observed. A 
simplified heat budget of the surface layer is then carried out to infer the dominant 
processes at work during the evolution of this event focusing on the wave-induced 
advection terms. The results indicate that the warming phase (April–November 2002) is 
mainly controlled by zonal advection of mean temperature (accounted for by IKWs and 
locally wind-driven current) and by vertical advection in the eastern Pacific. The 
cooling phase (December 2002 to April 2003) is dominated by a reduction in solar 
radiation and the IRW-induced zonal advection of mean temperature respectively in the 
central and eastern equatorial Pacific. The recharge-discharge process is also showed to 
be at work with the recharge (discharge) process operating mainly through the second 
(first) baroclinic mode. 
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2.3 Thermodynamics associated to the El Niño phenomenon over 1990 - 2011  

 

2.3.1 Introduction 

 

This complementary analysis is an extension of the results published in 

Mosquera-Vásquez et al. (2013). The heat balance advection terms within the fixed 

depth layer (h=50m) are estimated during six El Niño events that occurred between 

1989 and 2011: 1991/1992, 1994/1995, 1997/1998, 2004/2005 and 2009/2010. Note 

that the 2002/2003 El Niño is also considered in this analysis. This analysis focuses on 

the interannual timescales and can be viewed as a consistency check with previous 

studies (Kug et al., 2009; Xiang et al., 2013). In particular an estimate of the 

thermodynamical processes within the mixed-layer is provided for the seven CP El 

Niños that were present since 1989. An oceanic analysis carried out by MERCATOR 

(T323 configuration), with 50 vertical levels (~50% of them are located in the first 100 

m) and forced by ERA Interim surface fluxes is used. The results indicate that the 

intensity of the InterAnnual Kelvin wave (IAKw) has decreased since 1997/1998 El 

Niño phenomenon and, as a consequence, its impact on the Sea Surface Temperature 

(SST) was reduced with slighter zonal advection feedback and thermocline feedback 

processes in the central and eastern Pacific, respectively. The interannual zonal wind in 

the western Pacific has been weak since the last 2002/2003 El Niño which is probably 

related to the permanent “La Niña state” that maintains a cooling (warming) tendency in 

the upper 100 (between 100 and 300) meters in the central eastern Pacific (western 

Pacific) as illustrated in Figure 2.1. Finally, the results indicate that in the central and 

eastern Pacific other physical processes (mixing and entrainment), not resolved by our 

simple heat budget model, become important in the warming phase of El Niño for the 

last three events. 

 

2.3.2 Data and methodologies 

 

 Daily SST and 20°C isotherm depth (hereafter thermocline) anomalies from the 

Tropical Atmosphere Ocean (TAO) project moorings at 10 positions [147°E, 156°E, 

165°E, 180, 170°W, 155°W, 140°W, 125°W, 110°W and 95°W] along the equatorial 

wave guide, are used to validate the interannual variability of the T323 reanalysis over 

the period 2000-2011. The data were downloaded from TAO’s home page 
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(http://www.pmel.noaa.gov/tao/). More details about this in situ data can be found in 

McPhaden et al. (2001). 

 

 
Figure 2.1 Linear trend in temperature in the first 360 meters (period 1989-2011) along 

the equator. Units are °C year-1. Upper plots were estimated based on TAO data: on the 

left (right) using the raw data (interpolated version). Linear trend in the bottom left 

(right) panel is calculated from GODAS (T323) product. 

 

The oceanic model outputs used in this complementary work are from a global 

Ocean General Circulation Model (OGCM) (http://www.mercator-ocean.fr/) and were 

provided by MERCATOR. This configuration, labeled as T323, is an eddy-permitting ¼ 

° resolution model, that solves the primitive equations using the Océan PArallélisé 

(OPA) model [Madec et al., 1998] that has been developed at the Laboratoire 

d’Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN, 

Paris, France). The model was forced with 3-hour and daily forcing (corrected 

precipitation and radiative fluxes only) from ERA-Interim. The experiment was 

initialized on January 1989 and ran until December 2011. 
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In order to calculate the Kelvin wave amplitude for the most energetic baroclinic 

modes (m= 1, 2 and 3), a similar methodology to that described in Dewitte et al. [2003] 

was used. It consists in projecting the variability on the vertical (baroclinic) and 

horizontal (Kelvin and Rossby) modes as obtained from the vertical mode 

decomposition of the mean stratification over the period 1989–2011. Usually wave 

amplitude is considered as its contribution to sea level or zonal current anomalies. Here, 

to compare with observed thermocline fluctuations as derived from the TAO data, we 

consider the Kelvin and Rossby wave contributions to thermocline anomalies following 

Dewitte [2000], namely considering the vertical isotherm displacements at the depth of 

the mean thermocline under the hydrostatic approximation. The details of the method 

can be found in Dewitte [2000]. 

 

Following Mosquera-Vásquez et al. (2013) we use a simplified mixed-layer 

model that considers the mixing and entrainment processes as a residual. The model 

further separates wave-induced horizontal advection terms from those associated with a 

wind-driven friction layer. The temperature equation writes as follows: 
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    (2.1) 

where all the terms included in Equation (2.1) have been averaged from the surface to 

the depth h (h = 50 m). Subscript C and A in some variables represent climatology and 

anomaly, respectively. The variables T, ),,( wvu  and F are the temperature, velocity 

(zonal, meridional and vertical) and surface energy fluxes, respectively. Subscript K, R 

and r in zonal currents indicates the contribution of Kelvin, Rossby and the residual 

consisting in the difference between the total anomalous currents and the sum of Kelvin 

and Rossby current contribution (i.e. ur=uA-(uK+uR)). The surface heat fluxes anomaly is 



 57 

estimated following Wang and McPhaden (1999), namely 
hC
QQ

F
p

P
A

0

0

ρ
+

= , where Q0 is 

the sum of anomalies of shortwave radiation (QSW), longwave radiation (QLW), latent 

heat (QL) and sensible heat (QS) (i.e. SLLWSW QQQQQ +++=0 ), while QP is the 

outgoing shortwave fluxes that escapes from the bottom of the mixed layer: 
h

SWP eQQ γ−⋅⋅−= 45.0 . Cp and ρ0 are the heat capacity (Cp =3940 J kg-1 °C-1) and the 

density (ρ0=1022.4 kg m-3) of the seawater. γ--1 = 25 m is the attenuation length scale. 

Finally, R is the residual of the budget that includes unresolved physical processes in the 

model, such as vertical diffusion or entrainment. 

 

2.2.3 Results 

 

First, the model outputs (especially temperature and 20°C isotherm depth) are 

validated against in situ data (TAO) and an ocean reanalysis product (GODAS). The 

analysis of the long term trend in the model over the period 1989-2011 portrays a dipole 

pattern in the zonal and vertical axes, similarly to TAO and GODAS products (see 

Figure 2.1). On one hand, there is a negative tendency in the central and eastern Pacific 

in the upper 100 meters (T323 is weaker than TAO and GODAS), most likely 

associated with La Niña state observed in the last decade. On the other hand, a positive 

trend in the western Pacific (between 100 and 300 meters) is also represented correctly 

by T323 according with the GODAS product. Concerning the interannual variability, 

the model is compared to the SST and thermocline depth anomaly from TAO over the 

period 2000-2011 (interval of time that does not consider the very strong 1997/1998 El 

Niño in order to emphasize the intraseasonal timescales in the statistics). Results are 

displayed in Figure 2.2. The thermocline depth interannual variability is in agreement 

with the observation, with a correlation between model and TAO data that remains 

larger than 0.8, while the Root Mean Square error (RMSe) is lower than around 9 m. 

For SST interannual anomalies, the correlation between model and observations shows 

a maximum (~0.8) close to the dateline and then decrease towards the East where is 

reaches a value of 0.5. The peak in RMSe between model and observed SST interannual 

anomalies is located in the eastern Pacific and reaches 1.2 °C. Despite such bias, the 

model skill is consistent with other models that do have any data assimilation. The use 

of a free run is here motivated by the conservation of energy, which ensures that the 
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residual does not results from compensating errors associated with the assimilation 

process. 

 
Figure 2.2 Validation of the T323 for the period 2000-2011 (interannual scale) for the 

thermocline (a) and SST (b). RMS for TAO (T323) is represented by opened (closed) 

circles and RMS-error (correlation) is displayed with thin (thick) line. Correlation scale 

is located on the right of each panel. Open squares, in the upper and lower edge of each 

panel, indicate the place of the equatorial mooring buoys of TAO project. 

 

The heat budget analysis is performed for the following seven El Niño events: 

1991/1992 (91EN92), 1994/1995 (94EN95), 1997/1998 (97EN98), 2002/2003 

(02EN03), 2006/2007 (06EN07) and 2009/2010 (09EN10). This selection was 

performed based on the results of a wavelets analysis (using Paul wavelet function) of 

the zonal averaged [180-80°W] rate of temperature term at interannual timescales 

averaged within the mixed layer (∂TA/∂t) and along the equator band. The analysis is 

displayed in Figure 2.3. The selected El Niño events exhibit a significant energy peak 

of the wavelet power in the frequency band between 0.5 and 2 year-1 (see Figure2.3d). 

Note that, this analysis indicate, except for the 97EN98 and 09EN10, the wavelet power 
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tends to peak around the period of ~ 1 year  (see Figure2.3c), suggesting that these El 

Niño events could be interpreted as a modulation of the seasonal cycle.   

 

 
Figure 2.3 Wavelets power spectrum (using Paul wavelet function) applied to the 

spatial mean (180°E-80°W) of tTA ∂∂ / . Panel (a) is the time series of tTA ∂∂ /  (in 

°C.month-1), (b) is the power spectrum, (c) is the mean of the power wavelet spectrum 

for the entire period  (blue line) and for the period that does not include the 1996-2000 

chunck (red line); (d) Scaled-average spectrum within the periods 0.5 years and 2 years . 

 

Figure 2.4 shows the Hovmöller diagram of the SST anomaly (black contours 

with solid (dashed) line representing positive (negative) values), and Interannual Kelvin 

wave (IAKw) activity over the thermocline (colors) for the selected seven El Niño 

events. The figure shows that the intensity and frequency of the IAKw before 2000 are 

stronger than after 2000. Also, Figure 2.4, emphasizes that the maximum value of the 

SST anomaly is not located at the same period of the year: for instance the 91EN92 has 

its maximum SST anomaly value between January – February, whereas 97EN98 peaks 

in November-December.  
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Figure 2.4 Hovmöller diagrams of the SST anomaly (contours) and the activity of the 

Interannual Kelvin waves (IAKw) over the thermocline (colors) along the equatorial 

Pacific for seven El Niño events.  

 

 In order to evaluate the dispersion of the physical processes involved in the 

seven selected El Niño events, we first identified the warming and cooling phases in 

each El Niño using the tendency term of the monthly SST interannual anomaly ∂TA/∂t 

in N3eq (150°-90°W, equatorial line) (region where this term has its maximum 

variability). The warming and cooling phases are used to adjust the Hovmöller diagrams 

of Figure 2.5. The motivation in this section is to provide an objective way to compare 

the characteristics of the time evolution of the El Niño events (e.g. duration of the 

warming and cooling phases), considering that they do not have the same climatological 

evolution. In the Figure 2.5, the SST anomaly is displayed using black lines and 

<∂TA/∂t is shaded with colors. Then, the different fields were averaged in 3 boxes: 

-60					-50					-40						-30					-20							-10							10							20								30						40									50							60	 
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N4eq (160°E-150°W, equatorial line), N34eq (170°-120°W, equatorial line) and N3eq 

for the onset of the warming phase and for each event. 

 
 

Figure 2.5 Hovmöller diagrams of the tendency of the SST anomaly (∂TA/∂t , in colors) 

and SST anomaly (black contour) for seven El Niño events along the equatorial Pacific. 

To compare the warming and cooling phase of each event, the temporal scale of each 

diagram has been adjusted in base of the information indicated in Table 1. The scale of 

the tendency is located on the bottom. Horizontal dark lines indicate and separate the 

warming and cooling phase. 

 

In the warming phase (see Figure 2.6, 2.7 and 2.8), the most important terms 

which play a significant part in changing the SST anomaly in the three equatorial 

regions (N3eq, N34eq and N4eq) are: the zonal (vertical) advection of the 

climatological SST by the anomalous zonal (vertical) currents, the vertical advection of 

the SST anomaly by climatological vertical current, the short wave radiation, the latent 

flux and the residual term.  
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 In general, the rate of change in the SST anomaly (°C.month-1) in N3eq is larger 

than in N34eq, and both rates are larger than in N4eq. The extraordinary 97EN98 El 

Niño event shows the largest tendency in N3eq and N34eq regions (~0.5 and 0.4 

°C.months-1, respectively), but in N4eq it shows comparable rate of change than 

94EN95, 06EN07 and 09EN10 El Niño events. The 04EN05 has the most modest 

tendency in all the equatorial regions (around 0.1 °C.months-1). The 91EN92, 94EN95, 

02EN03, 06EN07 and 09EN10, in N3eq and N34eq, have similar rate of change ~0.25 

°C.months-1 (see Figure 2.6, 2.7 and 2.8). 

 

 
Figure 2.6 Seven-bar plots for each term of Equation (2.1) and, in the red square, 

thermocline (meters), zonal wind (m/s) and divergence (m/s/degree) anomaly. Each bar 

indicates each individual selected El Niño event in N3eq in the warming phase. From 

left to right, a bar indicates El Niño events: 1991/1992, 1994/1995, 1997/1998, 

2002/2003, 2004/2005, 2006/2007 and 2009/2010. Filled (no filled) bar means warming 

(cooling) contribution (°C month-1) in the terms of equation (1), while for the variables 

inside the red square the bars symbolizes positive (negative) anomaly. 
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 The zonal advection of the climatological SST due to the zonal current anomaly 

(zonal advective feedback), in the three El Niño regions, is an important physical 

process in the first four El Niño phenomena analyzed in this work (91EN92, 94EN95, 

97EN98 and 02EN03). The influence of the interannual long equatorial waves is 

important in the three El Niño regions, but with more intensity in N3eq and N34eq, 

where Kelvin (uK∂TC/∂x) and Rossby (uR∂TC/∂x) waves contributions to the zonal 

advection terms leads to a warming and cooling respectively. The wind tress anomalies 

in the N3eq and N34eq regions associated to these waves can be observed in  in 

Figure2.7 and Figure 2.8, respectively. On the other hand, ur∂TC/∂x, the zonal 

advection associated to the residual currents (i.e. associated with the wind energy that is 

not projected onto the wave dynamics) is more  important in the central and western 

Pacific. Finally, the last three El Niño events appears to be less influenced (compared 

with the first four El Niño) by the interannual long equatorial waves and the residual 

zonal current anomaly. 

 

 
Figure 2.7 Similar to Figure 2.6, but for N34eq region. 
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 Again, in the first four El Niño events the wA∂TC/∂z term has a significant role in 

the warming phase, with a maximum value in N3eq in 97EN98. wA∂TC/∂z does not have 

a signitificant contribution to the SST anomalies during the others three El Niño. 

 

 The so-called “thermocline feedback” (wC∂TA/∂z) term (related with IAKw), as it 

is expected, is more important in the central and eastern Pacific. The results show that 

thermocline feedback has an important impact over N3eq in 91EN92 associated with 

the downwelling IAKw driven by the strong zonal wind anomaly (compared with the 

97EN98) in the western Pacific (see Figure 2.8). It is possible to speculate that there is 

a negative tendency of this term in N3eq from 91EN92 to 06EN07 in N3eq, probably 

related with the decreased activity in IAKw in the last decade (see Figure 2.4 to see 

activity of the IAKw over the thermocline). Also, over N4eq (Figure 2.8) the zonal wind 

anomaly is strong only in the first four El Niño.  

 

 As it is expected, the impact of the short wave radiation (-QSW/(ρCpH)) is 

reduced due the increase of the convection in N4eq that is associated with the increase 

in the SST anomaly. Six of the seven El Niño have this characteristic, except the 

06EN07 that has a positive value. Moreover, the latent heat fluxes (-QL/(ρCpH)) in 

N34eq and N3eq, also has negative values that is a consequence of increased low level 

wind convergence in that regions. In N3.4eq (N3eq) the maximum values is observed in 

02EN03 (91EN92 and 97EN98).   

 

 The residual term (R), which contains unresolved terms by our mixed-layer 

model (entrainment and vertical diffusion), does not exhibit a disctintive pattern . In 

N4eq (N3.4eq - N3eq), the positive value is a characteristic of 91EN92, 94EN95, 

02EN03 and 09EN10 (94EN95, 97EN98, 06EN07 and 09EN10 – 97EN98, 06EN07 and 

09EN10). The other El Niños have negative tendency. 

 

 Concerning the non-linear terms, the ur∂TA/∂x has a cooling effect in the 

warming phase, mainly, for the first four El Niño phenomena over N4eq. The term 

uK∂TA/∂x in N3.4eq and N3eq has a positive effect almost in all El Niño events, except 

in 97EN98. 
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 This analysis also highlights the changes in the intensity of IAKw after 02EN03, 

which are driven by zonal wind anomaly in the western Pacific. The latter has showed 

also an abrupt change in intensity after 02EN03 (see Zonal Wind in Figure 2.8). 

 
 

 
Figure 2.8 Similar to Figure 2.6, but for N4eq region. 

 

As a summary, these results indicate that the intensity of the IAKw has 

decreased since the 1997/1998 El Niño event and, as a consequence, its impact on the 

SST was reduced with slighter zonal advection feedback and thermocline feedback 

processes in the central and eastern Pacific, respectively. The interannual zonal wind in 

the western Pacific has been weak after the 2002/2003 El Niño which is probably 

related to the permanent “La Niña state” that maintain a cooling (warming) state 

tendency in the upper 100 (between 100 and 300) meters in the central eastern Pacific 

(western Pacific). Finally, the results indicate that in the central and eastern Pacific 

other physical processes (mixing and entrainment), not resolved by our simple heat 

budget model, become important in the warming phase of El Niño for the last three 

events. 
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Chapter 3: The Central Pacific El Niño Intraseasonal Kelvin 

wave 

 

3.1 Overview 

 

This chapter focuses on the study of the IntraSeasonal Kelvin wave (ISKw) in 

the equatorial Pacific. The characteristics of the ISKw is documented and interpreted 

over the 1989-2011 period, based on observations, simulation with a linear model 

(Mosquera, 2009) and the outputs of an Ocean General Circulation Model (OGCM). 

The wave activity during the Central Pacific (CP) El Niño events is contrasted with the 

extraordinary El Niño of 1997/1998. One of the most important results is that ISKw 

activity is enhanced in Austral Summer (Spring) in the central Pacific (west of ~120°W) 

during CP El Niño events. Experimentation with the linear model indicates that the 

Austral Summer peak is wind-forced, while the Austral Spring peak is not and 

consequently results from non-linear processes. In addition, a strong dissipation of the 

ISKws is observed east of 120°W which cannot be accounted for by a linear model 

using a Rayleigh friction. A vertical and horizontal mode decomposition of the OGCM 

simulation further confirms the sharp changes in characteristics of the ISKws as well as 

the reflection of the latter into first-meridional Rossby wave at the longitude where the 

maximum zonal gradient of the thermocline is found (~120°W). The analysis suggests 

that the confinement of CP El Niño warming in the central Pacific may result from the 

reinforcement of the zonal gradient in stratification associated with the cold La Niña-

like conditions since the 90s, favoring the scattering of energy of the ISKws in the 

eastern Pacific. 

 

This chapter contains the paper by Mosquera-Vásquez et al. published in Journal 

of Geophysical Research in 2014. 
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3.2 Article published in Journal of Geophysical Research - Oceans 

 

The Central Pacific El Niño Intraseasonal Kelvin Waves 

Kobi A. Mosquera-Vásquez, Boris Dewitte and Serena Illig 

Abstract 

In this study, we document and interpret the characteristics of the IntraSeasonal Kelvin 
wave (ISKw) in the Pacific over the 1989–2011 period, based on observations, a linear 
model, and the outputs of an Ocean General Circulation Model (OGCM). We focus on 
the wave activity during the Central Pacific (CP) El Niño events contrasting with the 
extraordinary El Niño of 1997/1998. We find that the ISKw activity is enhanced in 
Austral summer (spring) in the central Pacific (west of ~120ºW) during CP El Niño 
events. The linear model experiment indicates that the Austral summer peak is wind-
forced, while the Austral spring peak is not and consequently results from nonlinear 
processes. In addition, a strong dissipation of the ISKws is observed east of 120ºW 
which cannot be accounted for by a linear model using a Rayleigh friction. A vertical 
and horizontal mode decomposition of the OGCM simulation further confirms the sharp 
changes in characteristics of the ISKws as well as the reflection of the latter into first-
meridional Rossby wave at the longitude where the maximum zonal gradient of the 
thermocline is found (~120ºW). Our analysis suggests that the confinement of CP El 
Niño warming in the central Pacific may result from the reinforcement of the zonal 
gradient in stratification associated with the La Niña-like conditions since the late of the 
1990s, leading to scattering of the energy of the ISKws in the eastern Pacific. 
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Chapter 4: On the change in thermocline seasonal variability 
along the equatorial Pacific from before and after 2000 
 

4.1 Overview 

 

The previous chapter has suggested that the strong dissipation of the ISKws in 

the eastern equatorial Pacific could explain the confinement of warm SST anomalies in 

the central Pacific during CP El Niño events. Because there is evidence of increased 

occurrence of CP El Niño events since the 90s (Lee and McPhaden, 2011), there has 

been a debate whether or not changes in mean state could be responsible for this. From 

the perspective of this thesis, such changes would have to favor the scattering of energy 

of the ISKws. A change in the mean slope of thermocline has been observed from 

before and after 2000 (McPhaden et al., 2011), which has the potential to impact the 

ISKws characteristics. However the change in the mean thermocline depth is weak 

(~5m). Here instead on investigating mean state variations, changes in the seasonality of 

the thermocline depth are investigated, considering there is a seasonal phase locking of 

the ISKws activity (cf. Chapter 3). Based on in situ observations (TAO array) and a 

Reanalysis product (GODAS), the seasonal variability of the thermocline depth is 

analyzed and interpreted over the period 2000-2011 (P2) and compared with the period 

1988-1996 (P1). The results are interpreted in the light of linear model experiments that 

provide estimation of the contribution of Kelvin and Rossby wave to the observed 

changes in seasonality of the thermocline depth. The methodology is similar to Yu and 

McPhaden (1999) that focused on the 1988-1996 period. Significant changes in 

seasonality are found between the two periods, which consists in an enhanced Austral 

summer shallowing of the thermocline after 2000. The chapter is organized as a paper 

and consists in a draft document to be submitted to Journal of Geophysical Research – 

Oceans. Supplementary materials are organized as an Appendix A. 
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4.2 Draft article to be submitted to Journal of Geophysical Research - Oceans 

 

On the change in seasonal cycle in the equatorial Pacific from before and after 

2000 

 

Abstract 

 

The equatorial Pacific has experienced a shift in its mean state since 2000, which has 

been suggested to result from the residual effect of ENSO property changes. Here we 

show that the seasonal cycle of the thermocline has also changed (both in magnitude 

and phase) which is associated with the wind stress forcing. In particular the seasonal 

cycle of thermocline exhibits a westward propagation pattern after 2000, which was not 

observed before 2000. The differences between the periods before and after 2000 can be 

interpreted as an enhanced upwelling Kelvin wave response due to the absence of wind 

convergence (divergence) in the far western Pacific after 2000. The enhanced seasonal 

shallowing of the thermocline in the eastern Pacific during Austral summer intensifies 

the zonal thermocline contrast, which is suggested to either damp the intraseasonal 

Kelvin wave during El Niño developments or induce an anomalous cooling through 

mean vertical advection of anomalous temperature. 
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Abstract 18 

 19 

The equatorial Pacific has experienced a shift in its mean state since 2000, which has 20 

been suggested to result from the residual effect of ENSO property changes. Here we 21 

show that the seasonal cycle of the thermocline has also changed (both in magnitude 22 

and phase) which is associated with the wind stress forcing. In particular the seasonal 23 

cycle of thermocline exhibits a westward propagation pattern after 2000, which was not 24 

observed before 2000. The differences between the periods before and after 2000 can be 25 

interpreted as an enhanced upwelling Kelvin wave response due to the absence of wind 26 

convergence (divergence) in the far western Pacific after 2000. The enhanced seasonal 27 

shallowing of the thermocline in the eastern Pacific during Austral summer intensifies 28 

the zonal thermocline contrast, which is suggested to either damp the intraseasonal 29 

Kelvin wave during El Niño developments or induce an anomalous cooling through 30 

mean vertical advection of anomalous temperature. 31 

 32 

 33 
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1 Introduction 34 

 35 

It is now recognized that El Niño has changed properties over the last 5 decades. 36 

In particular, there has been an increased occurrence of Central Pacific El Niño events 37 

(Yeh et al., 2009; Lee and McPhaden, 2010): since the beginning of the 21st century 38 

only Central Pacific El Niño events (hereafter CP El Niño) have taken place. The reason 39 

for that remains unclear although some aspects of change in mean states could be 40 

involved. For instance Luo et al. (2012) showed that the Walker circulation increased 41 

from 2000, which is associated with the La-Niña mean state observed in recent decades 42 

(Xiang et al., 2013). The change towards a cooler mean state can be related to the 43 

enhancement of non-linear processes for the low-level circulation that could explain 44 

why CP El Niño events have been more frequent in recent decades (Xiang et al., 2013). 45 

Recently Mosquera-Vásquez et al. (2014) suggested that characteristics of the mean 46 

thermocline could be also a key player. In particular, the intraseasonal Kelvin wave 47 

activity during CP El Niño events is strongly dissipated East of 120°W and model 48 

results suggest that such dissipation is associated with scattering of energy onto the 49 

zonal density gradient in the eastern Pacific. Whereas most recent studies have focused 50 

on change in mean state after 2000 in order to explain changes in ENSO properties 51 

(Thual et al., 2013; Luebbecke et al., 2014; Wen et al., 2014), to the authors’ 52 

knowledge, none have investigated changes in the seasonal cycle, although the latter 53 

interacts with ENSO and may explain its irregularity by producing deterministic chaos 54 

through a two-way interaction (Chang et al., 1994, 1995; ; Tziperman et al., 1994, 1995; 55 

Jin, 1997; Wang and Fang, 1996; Wang et al.,1999; Timmermann et al., 2003). Another 56 

view is that, because ENSO is seasonally-phase locked (Rasmusson and Carpenter, 57 

1982; Galanti and Tziperman, 2000; An and Wang, 2001), the ENSO (amplitude and 58 
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asymmetry) modulation can rectify on the seasonal cycle and produce changes in it. An 59 

and Choi (2009) suggest in particular that the changes in the seasonality of the 60 

asymmetry of ENSO may modify the amplitude of the annual and semi-annual cycles of 61 

the tropical eastern Pacific SST via a nonlinear process. A change in the ENSO 62 

asymmetry took place from the 2000s (Boucharel et al., 2011), which has an imprint on 63 

the equatorial wave dynamics (Dewitte et al., 2012). It mostly consists in a sharp 64 

reduction of the ENSO positive asymmetry from before and after 2000 as illustrated by 65 

the Figure 1, which shows the climatological skewness of the NINO3 region for two 66 

periods. Figure 1 indicates that the changes are more pronounced during Austral 67 

summer, i.e. when El Niño peaks. 68 

 69 

 As a first step towards a better understanding of the mechanisms that leads to 70 

ENSO properties changes after 2000, the thorough investigation of observed changes in 71 

the seasonal cycle of the equatorial circulation is required, which this paper contributes 72 

to. Our focus is on the seasonal changes in the thermocline and surface winds due to the 73 

availability of data over a sufficiently long record to assess changes in seasonality at 74 

decadal timescales. We also analyse oceanic and atmospheric Reanalysis products and 75 

carry out model experiments in order to provide a dynamical interpretation of the 76 

changes in seasonality.  77 

 78 

 The paper is organized as follows: data and methodology are described in 79 

Section 2. The results are presented in Section 3 and the section 4 is a discussion 80 

followed by concluding remarks.  81 

 82 

2. Data and method 83 
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 84 

 For each data set, two periods are considered to derive the seasonal cycle: 1988-85 

1996 (P1) and 2000-2011 (P2). The 1997-1998 El Niño is not considered in the 86 

statistics due to exceptional amplitude. The monthly mean is calculated and a 1-2-1 87 

filter is applied to filter out the remaining intra-seasonal variability. At last, the mean 88 

seasonal cycle is derived. P1 covers nine years, which has been shown appropriate for 89 

accounting for the seasonal variability. Yu and McPhaden (1999) in particular compared 90 

the climatologies estimated from different products over this period and found a good 91 

agreement between them. The period P2 covers twelve years due to the low density of 92 

in in situ data collection in the equatorial Pacific from 2012 (see Takahashi et al. 93 

(2014)), preventing in particular to estimate properly the 20°C isotherm depth in the 94 

eastern equatorial Pacific in 2013-2014. Despite such limitation, we showed that our 95 

estimate of the seasonal variability over P2 from observations is comparable to estimate 96 

from Reanalysis products over 2000-2014 (not shown). Similar analysis was applied to 97 

period of nine years and the results are similar (not shown). 98 

 99 

2.1 Winds and 20°C isotherm depth from TAO 100 

 101 

TAO (Tropical Atmosphere Ocean Project) is the cornerstone of the now defunct 102 

TOGA project. With around 70 mooring buoys, deployed in the tropical Pacific since 103 

the 80s, the ocean in this region has been monitored with high temporal resolution. The 104 

variables used in this work are: 20°C isotherm depth (hereafter thermocline depth) and 105 

zonal (u) and meridional (v) winds. Variables were downloaded from the TAO 106 

homepage and interpolated between 2ºS and 2ºN in order to fill gaps in the equatorial 107 
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wave guide. Zonal and meridional wind at a daily resolution are used to estimated the 108 

zonal pseudo stress (U) using the following formula: . 109 

 110 

2.2 GODAS Reanalysis 111 

 112 

 The GODAS (Global Ocean Data Assimilation System) is a model developed to 113 

initialize a numerical coupled model at National Environmental Prediction Center 114 

(NCEP) used to operational ENSO prediction. The current version of GODAS has 40 115 

vertical levels with a 10 m resolution in the upper twenty meters and extends 116 

meridionally from 75°S to 65°N. GODAS is forced by the momentum flux, heat flux 117 

and fresh water flux from the NCEP atmospheric Reanalysis 2 (R2). The oceanic model 118 

assimilates SST from Reynolds Optimal Interpolation product (OISST, Reynolds et al., 119 

2002), temperature vertical profiles from TAO project (see Section 2.2.1) and 120 

expendable bathy thermographs (XBT) observations from NODC World Ocean 121 

Database 1998 (information before 1990) and Global Temperature-Salinity Profile 122 

Project (after 1990). The current version does not assimilate satellite sea level 123 

information but has a comparative sea level diagnostic. More information could be 124 

found in Behringer and Xue (2004). 125 

 126 

 Like for TAO data, GODAS temperature is used to derive the seasonal cycles of 127 

thermocline depth over P1 and P2. As mention above, we also use an extended P2 128 

period (2000-2014) allowed by the availability of the data until November 2014 in order 129 

to test the sensitivity of the results to the period over which the climatology is 130 

calculated. It is expected that GODAS, due to the assimilation of TAO data, compare 131 
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wells with the TAO data, although differences can emerge due to the assimilation 132 

process.  133 

 134 

GODAS is also used to derive information needed to tune a Multi-modal linear 135 

oceanic model (see below) that is used for interpreting the results. In particular a 136 

vertical mode decomposition of the GODAS mean stratification over both periods is 137 

performed in order to derive the wave parameters required for the linear model. The 138 

analysis also allows estimating the baroclinic mode contributions to thermocline 139 

variability and zonal current in GODAS (See Dewitte et al. (1999) for the details of the 140 

method). 141 

  142 

Wind at 10 meters from NCEP-DOE Reanalysis 2 (R2; Kanamitsu et al., 2002), 143 

which is the surface momentum fluxes for GODAS model, is used to compare with the 144 

TAO data. Climatological wind stress is obtained from monthly mean data to be 145 

employed to force the linear model experiments (see Section 2.5). 146 

  147 

2.3  Multi-modal linear ocean model (MMLOM) and derivation of long 148 

equatorial waves 149 

 150 

For the interpretation of the results, following Yu and McPhaden (1999), a linear 151 

oceanic model is used. The model is described in Mosquera-Vásquez et al. (2014) 152 

where it is used in a single mode version. Here three baroclinic modes are used, which 153 

characteristics (cn , Hn) are derived from a vertical mode decomposition of the mean 154 

stratification from GODAS. (cn , Hn) are respectively the phase speed and the equivalent 155 

depth for the nth baroclinic modes. The model outputs are further decomposed in 156 
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Kelvin and first meridional Rossby waves for each mode, which can be compared to the 157 

decomposition of GODAS. The friction rn has the form 12
1 )months 30()/( −= nn ccr . 158 

 Two seasonal simulations are carried out that corresponds to the different 159 

periods P1 and P2. The model is run for ten years to ensure that we are in steady state at 160 

climatological time scale and only the last year is analyzed. 161 

 162 

3 Results 163 

 164 

Thermocline depth 165 

 166 

The Figure 2 (bottom panels) shows the seasonal variability (represented in two 167 

consecutive years in order to emphasize the complete variation) of the thermocline 168 

depth from TAO for P1 and P2. The fluctuations of the thermocline depth exhibits 169 

contrasted difference between the two periods. For P1, the variations indicate that the 170 

Upwelling Phase (UP) is concentrated mainly between March and September with a 171 

maximum value in May-June, which corresponds to period when trade winds intensify 172 

seasonally (see Figure 5a). The location of the upwelling centers (where the thermocline 173 

becomes shallow) are at 155°W and 125°W. Between October and February, the 174 

thermocline deepens with a maximum depth around November at the same location of 175 

the UP. The central and eastern Pacific are in phase, evidencing no propagation of the 176 

seasonal cycle. These results, in general, are consistent to those found by Yu and 177 

McPhaden (1999) using the same information to characterize the seasonal variability in 178 

the equatorial Pacific region. On the other hand, for P2, the variations in thermocline 179 

depth are indicative of a westward propagation, with the UP starting in Austral summer 180 

in the east and evolving to the west until winter. The eastern (western) Pacific in P2 has 181 
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a prominent semi-annual (annual) oscillation compared with P1. Interestingly the 182 

difference between P2 and P1 (Figure 2c) evidences an eastward propagating seasonal 183 

variability in the central Pacific with a peak variability in the eastern Pacific more 184 

pronounced for the UP and DP. This results in particular in a shallower thermocline 185 

(5m) in the eastern Pacific during P2 compared to P1 (Figure 2c). On the other hand, 186 

the mean thermocline is deeper (10m) in the central Pacific during P2 (Figure 2d), 187 

which has been suggested to result from the rectified effect of CP El Niño events 188 

(McPhaden et al., 2011). 189 

 190 

 To further document the change in seasonality in thermocline depth, the 191 

amplitude and phase of the annual and semiannual oscillations are derived from both 192 

periods using a Harmonic Regression Model (for details of the methodology, refer to 193 

Emery and Thomson, 2001) for each period. The Figure 3 shows the results. They 194 

indicate that, after 2000 the magnitude of the annual cycle has been reduced along the 195 

equatorial Pacific to the east and to the west of 140°W. The maximum value of around 196 

12 m during P1 is decreased to 7 m during P2. In the case of the semi-annual cycle, the 197 

magnitude in P2 increases (decreases) at 125°W (central and western Pacific). The 198 

phase has changed from before and after 2000: during P1, the phase is indicative of a 199 

seasonal cycle propagating eastward, contrary to during P2 when the phase indicates a 200 

slow westward propagation from the far eastern Pacific (see Figure 3f). 201 

 202 

 Due to uncertainty associated with variations in data density (in particular in the 203 

eastern equatorial Pacific), GODAS is also analyzed, which somehow provides a 204 

consistency check of the above results. The Figure 4 indicates that annual and semi-205 

annual cycles of thermocline depth in GODAS is comparable to the one of TAO, with 206 
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in particular the annual cycle in P1 (P2) showing a fast eastward (slow westward) 207 

propagation (Figure 4a, c), while the semi-annual cycle has an eastward propagating 208 

pattern (Figure 4b, d). In Figure 4e, it is clear that the magnitude of the 1st harmonic 209 

has been reduced in most of the equatorial Pacific region, except to the west of the 210 

dateline, where the magnitude during P2 is greater than during P1. The phase of the 1st 211 

harmonic also shows differences between P1 and P2, revealing opposite movements: 212 

eastward and westward during P1 and P2, respectively (Figure 4f). 213 

 214 

Wind stress 215 

 216 

 Thermocline variability in the equatorial at seasonal timescales is to a large 217 

extent due to the adjustment to momentum flux in the equatorial Pacific (Xie and 218 

Philander, 1994; Yu and McPhaden, 1999). To elucidate the causes of the observed 219 

changes in the thermocline seasonal variability, the changes in the seasonal cycle of 220 

zonal pseudo stress (UU) is thus documented. The Figure 5 displays the results of the 221 

harmonic regression model applied to UU estimated from TAO winds. The amplitude of 222 

the annual cycle is larger during P2 than during P1 and evidences a clear westward 223 

propagation that extends to the west more during P2 than during P1 (Figure 5a and 224 

Figure 5c). This is clearly evidenced in the amplitude (Figure 5e) and phase (Figure 225 

5f). On the other hand, the semi-annual cycle does not exhibit significant changes from 226 

P1 to P2, except in the far western Pacific where the phase indicates a slower westward 227 

propagation than in the central Pacific during P2 (Figures 5bdef). 228 

 229 

 The analysis of the NCEP-DOE wind stress reveals comparable features (Figure 230 

6), that is, the amplitude (Figure 6e) and phase (Figure 6f) of the annual cycle has a 231 
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marked westward propagating signal during P2 that extends over the entire equatorial 232 

Pacific region, whereas during P1, the westward propagation is no longer taking place 233 

around the dateline.    234 

 235 

Dynamical interpretation 236 

 237 

In this section we investigate to which extent the changes in seasonally 238 

described above can be interpreted in terms of the dynamical response to wind stress 239 

forcing. The vertical mode decomposition of GODAS as well as results of linear model 240 

experiments are used. The linear model is tuned based on the parameters derived from 241 

the GODAS vertical mode decomposition. The latter is performed at each grid point 242 

along the equator, which provides wave parameters of the first three baroclinic modes 243 

(n=1, 2, and 3) as a function of longitude. They are then averaged between 170ºW- 244 

120ºW (see Table 1 for values) and prescribed into the linear model. The linear model 245 

outputs that are analyzed here consist in the summed-up contribution of the Kelvin 246 

wave contribution to sea level anomalies for the three baroclinic modes (HK) and the 247 

summed-up contributions of the first and third meridional mode Rossby wave 248 

contribution to sea level anomalies for the three baroclinic modes (HR).  249 

 250 

The Figure 7 displays the results of the harmonic analysis applied to the linear 251 

model outputs. The focus is on the annual harmonic considering that the semi-annual 252 

cycle has a much lower amplitude. The results reveals that the changes in the 253 

seasonality of the thermocline can be interpreted to a large extent as a dynamical linear 254 

response to the changes in the seasonal wind stress. In particular the sea level anomalies 255 

simulated by the model after 2000 propagate westward, which is not observed before 256 
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2000. The prominent westward propagation during P2 is due to the change in the Kelvin 257 

wave response to the wind stress as indicated by the meridional decomposition.  During 258 

P1, there is an annual upwelling Kelvin wave forced in the western Pacific during April-259 

June that propagates freely eastward and reaches the eastern Pacific in August-October 260 

where it intensifies. This free annual Kelvin wave is no longer present during P2, which 261 

emphasizes the annual Rossby wave and so the westward propagation along the equator. 262 

The Kelvin wave response during P2 consists in a westward propagation indicating that 263 

it is mostly wind forced. Even though the magnitudes are similar in both periods (1st and 264 

2nd harmonic, see Figure 7g), the phases of the annual cycle are not (see Figure 7i). 265 

Regarding the Rossby wave, the phase is identical in both periods (westward 266 

propagation, Figure 7c and 7f). However the amplitude is significantly larger during P2  267 

to the west of 150ºW (Figure 7h). Similar features are obtained from the vertical mode 268 

decomposition of GODAS (not shown). The difference in the annual Kelvin wave 269 

response between both periods explains to a large extent the difference in thermocline 270 

depth observed in TAO. 271 

 272 

4. Summary and Discussion 273 

 274 

Due to the tied relationship between the ENSO and seasonal cycle, the low 275 

frequency modulation of the later is worth investigating for understanding ENSO 276 

property changes. Here the focus is on changes in the seasonality of thermocline depth 277 

from before and after 2000 considering that a change in ENSO dynamics has been 278 

observed around 2000 (McPhaden et al., 2011). The analysis is based on in situ data 279 

(TAO), the NCEP reanalysis and a linear model simulation. It reveals significant 280 

changes in the characteristics of the seasonal variability of the thermocline depth. In 281 
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particular, whereas the seasonal cycle of thermocline depth is stationary before 2000, it 282 

exhibits a westward propagation similar to SST after 2000. This is interpreted as a 283 

changes in the forcing of seasonal Kelvin and Rossby waves: After 2000, the seasonal 284 

Kelvin wave is locally forced by the westward propagating wind stress, whereas before 285 

2000, the Kelvin was is forced in the far western Pacific and then propagates freely 286 

towards the eastern Pacific where it is intensified. As a result, the change in seasonality 287 

of the thermocline depth consists in an apparent Kelvin wave response leading to a 288 

shallowing (deepening) of the thermocline in Austral Spring-Summer (Fall-Winter) in 289 

the far eastern Pacific. Another striking difference between the two periods is the 290 

amplification of the semi-annual cycle in the eastern Pacific after 2000. The latter 291 

explains the change in asymmetry of the seasonal cycle in the eastern Pacific from 292 

positive to negative.    293 

 294 

Where changes in the seasonality of thermocline depth in the eastern Pacific 295 

may not impact significantly the seasonal SST because the latter is mostly driven by the 296 

meridional winds (Xie, 1994), it can alter the ENSO dynamics in two ways: 1) First, 297 

since a shallowing of the thermocline is observed after 2000 during Autral Summer, it 298 

may induce an anomalous cooling through vertical advection of mean temperature 299 

during the development phase of ENSO, damping the Bjerknes feedback and so the 300 

growth rate of the ENSO mode. 2) Second, the enhanced shallowing of the thermocline 301 

in Austral winter is propitious for the scattering of energy of the Kelvin wave due to the 302 

enhanced zonal contrast of the thermocline and the proximity of the thermocline to the 303 

mixed-layer (inducing a more diffuse thermocline). Such process has been suggested to 304 

be at work onto the intraseasonal equatorial Kelvin wave during CP El Niño events 305 

(Mosquera-Vásquez et al., 2014). Whether or not such process would be at work and 306 
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enhanced after 2000 needs to be further investigated. At this stage it is interesting to 307 

note that the seasonal changes in thermocline depth described in the paper have not been 308 

observed over the last 5 decades. The Figure 8 displays the cross-correlation between 309 

the seasonal cycle of thermocline depth calculated over 10-year running windows from 310 

1958 to 2008 (SODA) over different regions along the equator. It clearly shows that 311 

changes in seasonality are the most prominent in the far eastern Pacific and for the 312 

period after 2000. Further studies are necessary in order to better understand the 313 

mechanisms associated with such seasonal changes and how they could affect ENSO 314 

dynamics. 315 

 316 

317 
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Table Captions 447 

 448 

Table 1. Parameters used in the MMLOM for each baroclinic mode (columns) averaged 449 

between 170º - 120ºW. 450 

451 
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 452 

 453 

 454 

 Baroclinic modes 

 m=1 m=2 m=3 

cn (m s-1) 2.77 1.62 1.06 

Hn (m) 313 257 864 

1/rn  (months) 30 23 18 

 455 

Table 1. Parameters used in the MMLOM for each baroclinic mode (columns) averaged 456 

between 170ºW- 120ºW.  457 

 458 
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Figures Captions  459 

 460 

Figure 1. Climatology skewness of the El Niño 3 index for the periods 1981-1999 461 

(black line) and 2000-2014 (red line) based in the version 3 of ERSST product 462 

(http://www.cpc.ncep.noaa.gov/).  463 

 464 

Figure 2. Seasonal variability of the observed (TAO) thermocline in the period P1 (a) y 465 

P2 (b). Units are meter. The panel (c) shows the difference between the two periods (P2 466 

minus P1). In the three upper panels the grey shading indicates negative values. The 467 

panel (d) displays the mean thermocline depth over P1 (black solid line) and P2 (red 468 

solid line) and the difference between P2 and P1 (black dashed line with an axis on the 469 

right). Open squares located in the upper and lower axes of each panel indicate the 470 

location of the mooring buoys.    471 

 472 

Figure 3. Annual and semi-annual harmonics of the thermocline depth from TAO along 473 

the equator during P1 (panels (a) and (b)) and during P2 (panels (c) and (d)). The 474 

bottom panels display the magnitude (e) (scaled by the maximum value) and phase (f) 475 

during P1 (black) and P2 (red). The 1st (2nd) harmonic is represented with a thick (thin) 476 

line. Open squares located in the upper and lower axes of each panel indicate the 477 

location of the mooring buoys.  478 

 479 

Figure 4. Similar to Figure 3 but for GODAS. The period P2 is here 2000-2014 480 

 481 

Figure 5. Similar to Figure 3 but for pseudo stress (m2s-2) estimated from TAO winds. 482 
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Figure 6. Similar than Figure 3 but for pseudo stress (m2s-2) estimated from NCEP-483 

DOE winds. 484 

 485 

Figure 7. The 1st harmonic seasonal SLH simulation results from MMLOM for period 486 

P1 (first row) and P2 (second row). The first (second, third) column of the first two 487 

rows displays the sum of HK and HR (HK, HR). The last four panels (j, h, i and j) 488 

display harmonic analysis results for HK and HR: panels (g) an (h) indicate the 489 

magnitude of HK and HR, respectively; panel (i) and (j) represent the phase. Thick 490 

(thin) line indicates 1st (2nd) harmonic and black (red) line represents P1 (P2). 491 

 492 

Figure 8. Cross-correlation between the seasonal cycles of thermocline depth calculated 493 

over 10-year running windows between 1950 to 2008 along the equator. Data are from 494 

SODA: (a) Whole Pacific region, (b) Western Pacific, (d) Central Pacific and (d) 495 

Eastern Pacific. 496 

  497 
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 500 

 501 
Figure 1. Climatological skewness of the El Niño 3 index for the periods 1981-1999 502 

(black line) and 2000-2014 (red line) based in the version 3 of ERSST product 503 

(http://www.cpc.ncep.noaa.gov/).  504 

 505 

 506 
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 507 

 508 
Figure 2. Seasonal variability of the observed (TAO) thermocline in the period P1 (a) y 509 

P2 (b). Units are meter. The panel (c) shows the difference between the two periods (P2 510 

minus P1). In the three upper panels the grey shading indicates negative values. The 511 

panel (d) displays the mean thermocline depth over P1 (black solid line) and P2 (red 512 

solid line) and the difference between P2 and P1 (black dashed line with an axis on the 513 

right). Open squares located in the upper and lower axes of each panel indicate the 514 

location of the mooring buoys.    515 

 516 

 517 
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 518 
Figure 3. Annual and semi-annual harmonics of the thermocline depth from TAO along 519 

the equator during P1 (panels (a) and (b)) and during P2 (panels (c) and (d)). The 520 

bottom panels display the magnitude (e) (scaled by the maximum value) and phase (f) 521 

during P1 (black) and P2 (red). The 1st (2nd) harmonic is represented with a thick (thin) 522 

line. Open squares located in the upper and lower axes of each panel indicate the 523 

location of the mooring buoys.  524 

 525 

 526 
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 527 
Figure 4. Similar to Figure 3 but for GODAS. The period P2 is here 2000-2014. 528 

 529 

 530 

 531 

 532 
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 533 
Figure 5. Similar to Figure 3 but for pseudo stress (m2s-2) estimated from TAO winds. 534 

 535 

 536 
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 537 
Figure 6. Similar than Figure 3 but for pseudo stress (m2s-2) estimated from NCEP-538 

DOE winds. 539 

 540 

 541 

 542 
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 543 

 544 

 545 
Figure 7. The 1st harmonic seasonal SLH simulation results from MMLOM for period 546 

P1 (first row) and P2 (second row). The first (second, third) column of the first two 547 

rows displays the sum of HK and HR (HK, HR). The last four panels (j, h, i and j) 548 

display harmonic analysis results for HK and HR: panels (g) an (h) indicate the 549 

magnitude of HK and HR, respectively; panel (i) and (j) represent the phase. Thick 550 

(thin) line indicates 1st (2nd) harmonic and black (red) line represents P1 (P2). 551 

 552 
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 553 
 554 

Figure 8 Cross-correlation between the seasonal cycles of thermocline depth calculated 555 

over 10-year running windows between 1950 to 2008 along the equator. Data are from 556 

SODA: (a) Whole Pacific region, (b) Western Pacific, (d) Central Pacific and (d) 557 

Eastern Pacific.  558 
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Chapter 5: Conclusions and perspectives 

 
(English Version) 

 

 In this thesis, the oceanic intraseasonal variability during Central Pacific El Niño 

(CP El Niño) events is investigated with emphasis on the long equatorial wave 

dynamics. Whereas Mosquera-Vásquez et al. (2013) focuses on a single event (the 

2002/03 El Niño), Mosquera-Vásquez et al. (2014) provides a more generalized view of 

the intraseasonal Kelvin wave (ISKw) activity during the development and evolution of 

CP El Niño events that took place from 1990. The most significant and new finding is 

that ISKws during CP El Niño events experiences a drastic dissipation in the Eastern 

Pacific that is interpreted as resulting from modal dispersion due to the zonally varying 

stratification (sloping thermocline). Since during CP El Niño events, there is a weak Sea 

Surface Temperature (SST) variability in the eastern equatorial Pacific, it suggests that 

this strong eastward dissipation of the ISKws could be responsible for the CP El Niño 

spatial structure, i.e. a zonal seesaw of SST anomaly, positive in the central Pacific and 

negative (near zero) in the eastern Pacific. If the ISKw did not dissipate, it would be 

effective in inducing SST anomaly in the eastern Pacific because the thermocline 

feedback is effective there (due to the shallow thermocline). It could therefore explain 

why CP El Niño does not develop as an Eastern Pacific El Niño once they are initiated: 

the dissipation of the ISKws does not allow the warming in the eastern Pacific through 

the thermocline feedback and as a consequence does not contribute to a local Bjerknes 

feedback there, prone to increase the growth rate of ENSO instability (Takahashi and 

Dewitte, 2015).  

 

This thesis also suggests that there have been changes in the circulation in the 

equatorial Pacific that have enhanced the dissipation of long equatorial waves in recent 

years since CP El Niño have occurred more frequently since the 90s (Lee and 

McPhaden, 2011). The equatorial Pacific has a La Niña-like state since the 90s (Xiang 

et al., 2013), which has the potential to increase the zonal contrast in vertical 

stratification (Thual et al., 2013). So our findings are consistent with the idea that 

change in mean state could influence the dissipation process of the ISKws. A recent 

observational study has suggested that changes in mean state could be a response of the 
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increased occurrence in CP El Niño through a rectification process (McPhaden et al., 

2011), whereas modeling studies suggest that a two-way feedback between change in 

mean state and CP El Niño could exist leading to a decadal variability of the ENSO 

properties (Choi et al., 2011; 2012). In line with these studies, this thesis has thus 

explored decadal changes in the seasonal cycle, considering that the ISKw activity has a 

marked seasonality during CP El Niño events. The focus is on the change in the 

seasonal cycle of the thermocline depth from before and after 2000s. The results, which 

are based on in situ data (TAO), the NCEP reanalysis and a linear model simulation, 

show that there exist significant changes in the seasonality of the thermocline depth 

from before and after 2000. This has been interpreted as partly resulting from changes 

in the forcing of the seasonal Kelvin and Rossby waves along the equatorial Pacific. 

Another striking difference between the two periods is the amplification of the semi-

annual cycle in the eastern Pacific after 2000. The latter explains the change in 

asymmetry of the seasonal cycle in the eastern Pacific from positive to negative. These 

results are consistent with the hypothesis that ISKws would be more dissipated over the 

recent decade during Austral Summer, implying an inhibition of the thermocline 

feedback in the eastern Pacific. Although we show that these changes in thermocline 

slope can be explained to a large extent through equatorial wave dynamics, there is a 

local amplification of these changes in the eastern Pacific, which could be explained by 

other processes. These includes mixing associated with Tropical Instability Waves that 

could erode the stratification near the shallow thermocline in the east, or buoyancy 

fluxes associated with nonlocal mixing within the mixed-layer when non-solar heat 

fluxes are larger than the solar flux that penetrates the surface layer and would 

destabilized locally the fluid (Large et al., 1994). Model simulations can provide 

material for the understanding of such process. Along the evolution of this thesis, a 

ROMS (Regional Oceanic Model System) configuration of the equatorial Pacific (15ºS-

15ºN) was implemented (see Appendix B) with the perspective to carry out a heat 

budget analysis of the surface layer. This is a direction for future work. The model 

could be further coupled to an atmospheric model to elucidate to which extent there can 

be an air-sea positive feedback associated with the mixing process. Note that there has 

been indication that the ISKws could be coupled to the low-level circulation during the 

Madden Julian Oscillation activity (Hendon et al., 1998; Roundy and Kravitz, 2009). 

This is a process that cannot be diagnosed from a forced model, so the coupled model 

would be ideal to tackle this issue. Such a model could also have a value for seasonal 
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prediction at basin scale and at regional scale (along the Peruvian coast) and serve as a 

seasonal prediction system for Peru.  

 

This thesis also calls for a better understanding of the mechanisms associated 

with the propagation of the ISKws along the South America coast and for the 

investigation how the latter impacts the circulation and SST. A recent study has 

suggested that the ISKw was weakly influential on SST along the coast of Peru, 

although the ISKws was propagating efficiently along the thermocline (Illig et al., 

2014). Although this study is peculiar to the 2000-2008 period, it highlights the likely 

role of local stratification in influencing the oceanic teleconnection off Peru. An 

observational platform off Peru could be set up to investigate this, which the author of 

this thesis is keen on contributing to within a national and international context 

(Takahashi et al., 2014). 

 

At the time this thesis was written, a warm event developed along the Peruvian 

coast in 2014 (See Figure 5.1). This warm event has again challenged our 

understanding of El Niño since it did not develop as expected: It was anticipated to lead 

to an El Niño event as strong as the 1997/98 El Niño but it was not at basin scale 

(Menkes et al., 2014). This event was still significant for Peru, leading to warm 

anomalies along the coast. Such event remains unexplained1 and it is likely to mobilize 

the ENSO community for a few years in order to propose a mechanism by which this 

event vanished at a moment when ENSO scientists thought it would lead to a strong 

eastern Pacific El Niño. Again, around 9th of March 2015, a huge MJO signal was 

followed by wind stress anomalies that are expected to force intense downwelling 

ISKws (see Figure 5.1). The ENSO community is again pending how this event will 

develop.  

 

 Based on the work presented in this thesis, its author is willing to participate to 

such effort in the coming years. Since the afore-mentioned proposed processes 

potentially leading to the amplification or erosion of the zonal contrast in stratification 

(and thus to the dissipation of the ISKws in the eastern Pacific) has not been 

                                                
2 Dr. Mike McPhaden is having a poster at the EGU 2015 entitled “Who Killed the Big 2014-15 El 
Niño?”
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investigated yet, there is still plenty work to be done. This should guide the author’s 

research in the next years at Instituto Geofísico del Perú  (IGP) considering the socio-

economical consequences associated with coastal warmings (not just El Niño events) 

along the coast of Peru.  

 

 
Figure 5.1 Höwmöller diagram along the equatorial region of the zonal wind stress 
anomaly from ASCAT (a); thermocline depth anomaly from TAO (b), and ARGO 
drifters (c); and sea level anomaly from JASON-2 (d), (e) the thermocline depth 
anomaly, calculated with a linear oceanic model that was forced by ASCAT winds, is 
displayed. For prediction purpose, the linear model is forced with (taux, tauy) = (0, 0) 
when ASCAT data are no longer available. 
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(Version française) 

 

 Dans cette thèse, la variabilité intra-saisonnière océanique durant les événements 

El Niño de type Pacifique Central (CP El Niño) est étudiée en mettant l'accent sur la 

dynamique des ondes longues équatoriales. Tandis que Mosquera-Vásquez et al. (2013) 

se concentre sur un événement particulier (El Niño 2002/03), Mosquera-Vásquez et al. 

(2014) présente une vue plus générale de l'activité IntraSaisonnière de l'onde de Kelvin 

(ISKw) pendant le développement et l'évolution des événements CP El Niño qui ont eu 

lieu à partir de 1990. Le résultat le plus important et original de cette thèse est que 

durant les événements CP El Niño, l'onde ISKw subit une forte dissipation dans le 

Pacifique Est. Celle ci est interprétée comme résultant de la dispersion modale en raison 

de la variation zonale de la stratification (i.e. la remontée de la thermocline d'Ouest en 

Est). Puisque lors des événements CP El Niño, la variabilité de la température de la 

surface de la mer (SST) est faible dans l'Est du Pacifique équatorial, cela suggère que 

cette forte dissipation des ISKws pourrait être responsable de la structure spatiale des 

événements CP El Niño, i.e. un dipole zonal de l'anomalie de SST, positive dans le 

Pacifique central et négative (proche de zéro) dans le Pacifique oriental. Si l'onde ISKw 

ne se dissipait pas, elle pourrait induire des anomalies de SST dans le Pacifique Est, car 

le processus de thermocline feedback est efficace dans cette région (en raison de la 

thermocline peu profonde). Cela pourrait donc expliquer pourquoi l'événement El Niño 

de type Central Pacifique ne se développe pas comme un événement El Niño Pacifique 

Est une fois l'événement initié: la dissipation des ISKws ne permet pas le réchauffement 

dans le Pacifique Est par le thermocline feedback et par conséquent ne permet pas de 

déclencher la retro-alimentation locale de Bjerknes (« Bjerknes feedback »), qui conduit 

à la croissance de l'instabilité ENSO pendant les événements forts (Takahashi et 

Dewitte, 2015, soumis). 

 Cette thèse suggère également qu'il ya eu des changements de la circulation dans 

le Pacifique équatorial qui ont intensifié la dissipation des ondes longues équatoriales au 

cours des dernières années, puisque les événements CP El Niño ont été plus fréquents 

depuis les années 90 (Lee et McPhaden, 2011). Le Pacifique équatorial est dans un état 

froid - de type La Niña - depuis les années 90 (Xiang et al., 2013), ce qui a le potentiel 

d'augmenter le contraste zonal de la stratification verticale (Thual et al., 2013). Ainsi, 

nos résultats sont cohérents avec l'idée qu'un changement d'état moyen pourrait 
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influencer le processus de dissipation des ISKws. Une étude observationnelle récente 

(McPhaden et al., 2011) a suggéré que le changement de l'état moyen du Pacifique 

équatorial pourrait expliquer la fréquence accrue des événements CP El Niño à travers 

un processus de rectification, alors que les études de modélisation suggèrent qu'une 

rétroaction entre le changement de l'état moyen et l'occurrence des CP El Niño pourrait 

exister, conduisant à une variabilité décennale des propriétés ENSO (Choi et al., 2011 ; 

2012). Dans ce contexte, cette thèse a donc exploré les changements décennaux du 

cycle saisonnier, estimant que l'activité de l'onde ISKw a une saisonnalité marquée au 

cours des événements CP El Niño. L'accent a été mis sur le changement du cycle 

saisonnier de la profondeur de la thermocline avant et après 2000. Les résultats, qui sont 

basés sur des données in situ (TAO), la réanalyse NCEP et une simulation d'un modèle 

linéaire, montrent qu'il existe d'importants changements dans la saisonnalité de la 

profondeur de la thermocline avant et après 2000. Cela a été interprété comme résultant 

en partie de changements dans le forçage des ondes de Kelvin et de Rossby 

saisonnières, le long du Pacifique équatorial. Une autre différence frappante entre les 

deux périodes est l'amplification du cycle semi-annuel dans le Pacifique Est après 2000. 

Ce dernier explique le changement de l'asymétrie du cycle saisonnier dans le Pacifique 

Est, passant de positif à négatif. Ces résultats sont cohérents avec l'hypothèse que l'onde 

ISKw se dissiperait davantage au cours de la dernière décennie durant l'été austral, ce 

qui implique une inhibition du processus de thermocline feedback dans le Pacifique Est. 

Bien que nous montrions que ces changements de pente de la thermocline peuvent être 

expliqués dans une large mesure par la dynamique des ondes équatoriales, il y a une 

amplification locale de ces changements dans le Pacifique Est, qui pourrait être 

expliquée par d'autres processus. Par exemple, le mélange associé aux ondes 

d'instabilité tropicales pourrait éroder la stratification dans l'Est, où la thermocline est 

peu profonde. Aussi, les flux de flottabilité associés au mélange non local dans la 

couche de mélange qui est activé lorsque les flux non solaires sont plus important que le 

flux solaire qui pénètre dans la couche de surface et auraient ainsi tendance à 

déstabiliser localement le fluide (Large et al., 1994). Les simulations numériques sont 

utiles pour la compréhension de ces processus. Au cours de cette thèse, une 

configuration du Pacifique équatorial (15ºS-15ºN) à partir du modèle régional ROMS 

(Regional Oceanic Model System) a été mise en place (voir Annexe B), dans le but de 

réaliser une analyse du budget de chaleur de la couche de surface. C'est une perspective 

pour les travaux futurs. En outre, le modèle peut être couplé à un modèle atmosphérique 
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régional pour étudier dans quelle mesure il peut y avoir une rétroaction positive air-mer 

associée aux processus de mélange. Il est à noter que les ondes ISKws pourraient être 

couplées à la circulation atmosphérique de surface pendant les pic d’activité de la MJO 

(Madden-Julian Oscillation (Hendon et al., 1998; Roundy et Kravitz, 2009). C'est un 

processus qui ne peut pas être diagnostiqué à partir de simulations forcées, et par 

conséquent un modèle couplé océan-atmosphère serait un outil idéal pour aborder cette 

question. Un tel modèle pourrait également être très utile pour la prévision saisonnière à 

l'échelle du bassin et à l'échelle régionale (le long de la côte péruvienne) et servir 

comme système de prévision saisonnière pour le Pérou. 

 

 Cette thèse appelle également à une meilleure compréhension des mécanismes 

liés à la propagation des ondes ISKws le long de la côte Sud-Américaine et à étudier 

comment ces dernières modifient la circulation océanique régionale et de SST. Une 

étude récente a suggéré que l'impact de l'onde ISKw était faible sur la variabilité de la 

SST le long de la côte du Pérou, bien que l'onde ISKw se propage efficacement le long 

de la thermocline (Illig et al., 2014). Bien que cette étude soit propre à la période 2000-

2008, elle met en évidence le rôle probable de la stratification locale sur les 

caractéristiques de la téléconnection océanique le long des côtes du Pérou. Une plate-

forme d'observation au large du Pérou pourrait être mise en place pour étudier cela, et 

l'auteur de cette thèse est désireux de contribuer à cet effort dans un contexte national et 

international favorable (Takahashi et al., 2014). 

 

 Au moment où cette thèse a été écrite, un événement chaud s'est développé le 

long de la côte péruvienne en 2014 (Voir Figure 5.1). Cet événement chaud a de 

nouveau mis au défit notre savoir sur le phénomène El Niño, car il ne s'est pas 

développé comme prévu: On attendait un événement El Niño aussi fort que l'événement 

El Niño de 1997/98, mais il disparu à l'échelle du bassin (Menkes et al., 2014). 

Néanmoins, cet événement a été important pour le Pérou, avec des anomalies chaudes le 

long de la côte. Un tel événement demeure inexpliqué2 et il est susceptible de mobiliser 

la communauté ENSO pour quelques années afin de proposer un mécanisme qui 

explique pourquoi cet événement s'est affaibli au moment où les scientifiques 

spécialistes d'ENSO pensaient que les conditions allaient conduire à un fort événement 

                                                
2 Dr. Mike McPhaden présente un poster à l'EGU 2015 intitulé “Who Killed the Big 2014-15 El Niño?”
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de type Pacifique Est. A nouveau, vers le 9 Mars 2015, un énorme signal MJO a été 

suivi par des anomalies de tension du vent de surface qui théoriquement vont forcer 

d'intense ondes ISKws de downwelling (Voir Figure 5.1). La communauté ENSO est à 

nouveau dans l'attente de savoir comment cet événement va se développer. 

 

 A partir du travail présenté dans cette thèse, son auteur est disposé à participer à 

un tel effort dans les années à venir. Puisque les processus énoncés précédemment, qui 

peuvent conduire à l'amplification ou à l'érosion du contraste zonal de la stratification 

(et donc à la dissipation des ondes ISKws dans le Pacifique Est) n'ont pas encore été 

étudiés, il y a encore beaucoup de travail à faire. Cela devrait guider la recherche de 

l'auteur dans les prochaines années à l'Instituto Geofísico del Perú (IGP) dont une des 

missions est l'étude et la prévision du phénomène El Niño. 
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Appendix A: Supplementary material for Chapter 4 

 

This appendix contains complementary material to verify that the changes in the 
seasonality of the wind stress forcing, sea level and zonal currents from before and after 
2000 are consistent among products. Statistical tests are performed to estimate the 
significance of the changes (Figure A.2 – A.6). Different data sets are used: TAO, 
NCEP-DOE Reanalysis, ERA-Interim Reanalysis and GODAS Reanalysis. The oceanic 
products (GODAS Reanalysis) help in the interpretation of the observed changes along 
the equatorial Pacific. 

To derive statistical significance of the difference between climatology in P1 
and P2 the following methodology is followed: 

 
 To reach a formal Climatological Monthly Mean (CMM), each variable is 
processed to obtain confidence interval (90%) for each month. For this, an analysis of 
Student t-distribution is implemented assuming that each year is independent. As a 
consequence the following equation is used to estimate the interval of confidence of the 
real mean (µ): 
 

ζµ ±= x             (A.1) 
 
where x  is the mean of each month in each time series (P1 or P2) and ζ is expressed as: 

105.0
−

=
N
stζ          (A.2) 

 
with s as a standard deviation, N the number of samples (number of years, with the 
exclusion of TAO data, where N means the available monthly information) and t0.05 is 
the value of t statistic for which only 0.05 (5 %) of the values of t would be expected to 
be greater. 
 

After that, a statistical test for Difference of Mean is used to get the significance 
difference between CMM 1988-1996 and CMM 2000-2009 from many datasets. 



 127 

 

	

 

Figure A.1 Number of data (in colour) for each month to calculate the Climate Monthly 
Mean (CMM) from TAO’s pseudostress (m2 s-2). (a) And (b) indicate the period 1988-
1996 and 2000-2009, respectively. Crosses are the position for each mooring buoys and 

circles around them display that there is enough information to calculate the CMM. 
White contours display the CMM. 
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Figure A.2 Pseudo-stress (m2 s-2) analysis from TAO data along the equator where 

mooring buoys location are marked with open squares on the x-axis, and crosses along 
the figures. (a) and (b) show the climatologic pseudo-stress (m2 s-2) for the period 1988-

1996 and 2000-2009, respectively. In both panels, white lines are the climatologic 
variability, expressed in two years, and black contours and gray scales are the ζ 

parameter of equation (A.2), that means the (+/-) 90% confidence limit. (c) Is the 
difference (in gray scale an black contours) between both climatologic wind stress, 

whereas red fill circles indicate the points where the significance difference are 
important in 90% after a Student’s t-distribution test. 
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Figure A.3 As in Figure A.2 but for pseudo-stress from the NCEP-DOE reanalysis. 
Colors in (c) indicate where the differences are significant. 
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Figure A.4 As in Figure A.2 but for pseudostress from the ERA-Interim reanalysis.  
Colors in (c) indicate where the differences are significant. 
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Figure A.5 As in Figure A.2 but for the sea level (cm) from GODAS. Colors in (c) 
indicate where the differences are significant. 
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Figure A.6 As in Figure A.2 but for the zonal currents (cm s-1) from GODAS. Colors in 

(c) indicate where the differences are significant. 
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Figure A.7 RMS of the baroclinic mode contribution to the climatological zonal 
currents (ZC) from GODAS for P1: (a) mode 1, (b) mode 2, (c) mode 3 and (d) 

summed-up modes 4 to 10. The first three baroclinic modes accounts for the equatorial 
wave dynamics, while the sum of the higher-order modes accounts for the Ekman layer 

dynamics. In (a) the highest variability of the ZC is located in the central western 
Pacific with a maximum value of 15 m s-1 around the dateline and to the north of the 

equatorial line. The peak variability of the second mode (b) is found around the dateline 
with a value of 10 m s-1. On the other hand, the third mode variability peaks in the 

eastern Pacific. 
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Figure A.8 This figure is similar to Figure A.7 but for P2. Compare to P2, we observe 
an eastward shift of the variability for the second baroclinic mode. 



 135 

 
 
 
 
 
 
 
 

 
 

Figure A.9 Seasonal variability of the 20°C isotherm depth (meters) for P1 (a) and P2 
(b), and for the difference between P2 and P1 (c). In this figure the position of each 

mooring buoys is represented by an open square located in the upper and lower axis of 
each graphics. Negative values (gray scale) indicate an elevation and positive values 

indicate a shallowing of the thermocline. 
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Figure A.10 Similar to Figure A.9, but for GODAS. 
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Appendix B: Numerical simulation with the Regional Ocean Model 

System (ROMS) over the period 2000-2010.  
 

B.1 Overview 

 

This Appendix describes the efforts done in the implementation of an OGCM 

(ROMS) over the equatorial Pacific (15°S and 15°N) and its validation. The model is 

aimed at providing a tool for sensitivity experiments to wind forcing and stratification 

characteristics. It could also be used for the operational forecast of the equatorial Kelvin 

wave, something that already exist based on a linear model at IGP.  The model uses 

boundary and initial conditions from SODA and forcing from ERA-I. Twelve 

experiments were performed with the main objective to represent correctly the mean 

thermocline depth. Basically, the increase of vertical levels in the upper ocean, opened 

and closed boundaries in the western Pacific and increase of intensity of mean zonal 

winds were tested. As mentioned above this configuration will be useful for research, in 

particular for diagnostic the thermodynamic and dynamic of the equatorial Pacific 

during El Niño events, with emphasis on the far eastern Pacific. This tool shall also 

contribute to the monthly analysis of the ENFEN (Estudio Nacional del Fenómeno El 

Niño) Technical Committee in Perú (www.imarpe.gob.pe), governmental entity in 

charge of the diagnosis and prediction of El Niño in base of international and national 

information (data in situ and numerical models). 

 

B.2 Data 

 

 The information used in this work covers the period 2000-2008 and each 

calculation is based 5-day averaged outputs (pentads). The mean state is determined by 

the mean of the original time series; the seasonal variability is defined as a multi-annual 

monthly mean obtained from the result of the original time series minus the mean state; 

and, finally, the interannual time series is calculated by subtracting the sum of the mean 

state and seasonal variability to the original time series.  

 

 In this appendix, daily in situ data (temperature and zonal currents) along the 

equatorial Pacific, obtained from the Tropical Atmospheric and Oceanic Project (TAO), 
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is used for validating the model configuration. For temperature, ten mooring buoys 

(147ºE, 156ºC,165ºC, 180º, 170ºW, 155ºW, 140ºW, 125ºW, 110ºW and 95ºW) are 

selected and for ADCP (Acoustic Doppler Current Profiler) only five are used (147ºE, 

165ªE, 170ºW, 140ªW and 110ºW).  

  

 Daily sea surface temperature, estimated by the Tropical Rainfall Measuring 

Mission (TRMM) Microwave Imager (TMI, Wentz et al., 2000) was obtained from the 

Remote Sensing System’s home page (http://www.ssmi.com/). The most important 

characteristic of this instrument is the ability to estimate the SST, even in the presence 

of clouds. Only the data along the equator  are used for the validation. 

 

 The outputs from ORCA0.25_LIM that was provided by the  MERCATOR 

project (a French consortium: IRD, CNES, CNRS, IFREMER, SHOM, the Meo-France 

weather service) is also used for compairson purpose. The ORCA0.25_LIM 

configuration uses the oceanic model named OPA 8.1 (Océan PArallélisé) developed 

by Madec et al (1998) at the Laboratoire d’Océanographie DYnamique et de 

Climatologie (LODYC). The horizontal resolution is 0.25° and there is 31 vertical 

levels.  Details of this MERCATOR configuration is described in Garric et al. (2008). 

The simulation was also used in the paper presented in Chapter 2. 

 

 The version 2.1.6 of the Simple Ocean Data Assimilation (SODA) product is 

used in this work. This product used the ocean model POP 2.1 (Parallel Ocean Program, 

Smith et al., (1992)) that was forced by European Center for Medium Range Weather 

Forecasts ERA-40 reanalysis and QSCAT for the period 1958-2008 and assimilated 

information of temperature and salinity from the World Ocean Database 2009 

(WOD09). Temperature and zonal currents, every five days, are used in ROMS as initial 

and boundary conditions for the experiments. The SODA data are also used for the 

comparison between the different products. Details of the characteristic of this model 

can be found in Carton et al. (2000) and Carton and Giese (2008). 

 

B.3 The Regional Oceanic Model System (ROMS)  and the tropical Pacific 

configurations 
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The Regional Ocean Modelling System (ROMS; Shchepetkin and McWilliams, 2005) 

solves the hydrostatic primitive equations with a free-surface explicit scheme, and 

stretched, terrain-following sigma coordinates. Subgrid-scale vertical mixing is 

parameterized using the KPP boundary layer scheme (Large et al., 1994). Bathymetry 

from ETOPO has been interpolated on to the model grid, smoothed as in Penven et al. 

(2005) in order to reduce pressure gradient errors and modified at the open boundaries 

to match with bottom topography from the boundary forcing of the SODA outputs. The 

horizontal resolution is 1/4 degree. 

 

Two groups of experiments are considered: Group 1 which considers changes in 

the model domain, the number of vertical levels and the climatological wind speed to 

force the model; and Group 2 that gather sensitivity experiments to ocean boundary 

forcing (i.e. climatological boundary conditions or interannual boundary conditions) and 

the boundary conditions at the western boundary (i.e. with and without a closed western 

boundary).  The experiments in each group are denominated TROP_PAC (TP) plus the 

number of the experiment (for example, experiment 7 is TP07). The Tables B.1 and B.2 

summarizes the characteristics of each experiments. 

 

B.3.1 Group 1 

 

 This set of experiments is aimed at assessing the sensitivity to the vertical 

resolution of the model. 32 to 54 sigma layers are consisdered.   Two positions of the 

western boundary are also tested: 170° and 135°E; the existence or not of the Galápagos 

islands; and finally a change, by a factor 1.1, of the zonal wind speed are tested in order 

to improve the realism of the thermocline slope. In total eight experiments of 13 years 

(3 years of spin up repeating the year 2000 three times and 9 years corresponding to the 

2000-2008 period) each were done  (see Table B.1). 

 

 Mean State 

  

 The best experiment in Group 1 is TP07, which has 54 vertical levels, with a 

domain having the zonal (meridional) extension between 135°E to 70°W (15°S to 

15°N). Additionally, the Galapagos Islands are included although there is not much 

influence of this topographical aspect. In TP08 (that is similar to TP07), the intensity of 
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the wind forcing is increased in 1.1, which was implemented after a comparative 

analysis of the 20°C isotherm depth between TP07 and TAO in order to improve the 

thermocline depth. The results indicate that the TP08 is the most skillful in simulating 

the caracteristics of the mean thermocline (depth and “strength”) However, the 24°C 

isotherm depth in the Eastern Pacific is too close to the surface, inducing a cool bias in 

the model. Due to this cool bias, the TP07 configuration is favored for the addition tests. 

  

Table B.1 Experiments from Group 1 

 

Experiments Zonal 

extension 

Vertical levels Zonal wind 

speed (ERAI) 

Period 

TROP_PAC01 135°E to 70°W 32 U,V 2000-2001 

TROP_PAC02 135°E to 70°W 32 U,V 2000-2001 

TROP_PAC03 135°E to 70°W 32 U,V 2000-2001 

TROP_PAC04 170°E to 70°W 54 U,V 2000-2001 

TROP_PAC07 135°E to 70°W 54 U,V 2000-2001 

TROP_PAC08 135°E to 70°W 54 1.1*U,V 2000-2001 

 

 The mean thermocline depth of the different simulations of Group 1 is presented 

in  Figure B.1, which indicates that the zonal structure of  the thermocline (including its 

the vertical gradient with the thermocline, see 16, 20 and 24°C isotherms) simulated by 

TP07 is realistic (TAO data in black line). TP07 has a best representation of the 16°C 

isotherm depth compared to MERCATOR, which simulates a too warm state at such 

depth. The difference between products is further illustrated by the Figure B.1b that 

shows, for the four products, the difference between 20°C isotherm depth and 16°C 

isotherm depth (negative values) and between 20°C isotherm depth and 24°C isotherm 

depth (positive values). It is clear from Figure B.1b that MERCATOR has the largest 

bias with the products, whereas TP07 is comparable to SODA. Figure B.1c, that 

displays the difference between 16 and 24°C isotherm depth, diagnoses the realism of 

the vertical stratification along the equator that is a key parameter for the wave 

dynamics. The results indicates that TP07 has a slightly too diffuse thermocline in the 
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central and eastern Pacific. Despite such bias, it is rather realistic, close to what is 

obtained from SODA. 

  
Figure B.1 Isotherms depths (ISOd) for TAO (black thick line), TP07 (blue thick line), 

SODA (red line) and MERCATOR (green line) products. (a) Mean state of ISOd for 

16°C, 20°C and 24°C for each product. (b) Difference between ISOd: lines over zero 

level are the difference between 20°C ISOd and 24°C ISOd, on the other hand, lines 

under zero level are the difference between 20°C ISOd and 16°C ISOd for each product. 

Finally, (c) difference between 16°C ISOd and 24°C ISOd. 

 

 Regarding SST, (upper panel of Figure B.2), TP07 is, in general, around -0.7°C 

cooler than TMI with a reduce error in the far eastern pacific (blue dashed line). The 

agreement in terms of SST for TP07 is close to the MERCATOR product (green dashed 

line) but still not as good as SODA (red dashed line). It is important to mention that, in 

detail, the SODA product underestimates (overestimates) the mean SST in the western 

and eastern (central) Pacific by around -0.3 (0.3) °C. 
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Figure B.2 Mean state of sea surface temperature (SST) and zonal currents (ZC) along 

the equatorial Pacific line. At the top (a) the SST is plotted for TMI (black line), TP07 

(blue line), SODA (red line) and MERCATOR (green line). In the same panel, three 

difference of the SST: between TP07 and TMI (blue dashed line), SODA and TMI (red 

dashed line) and, finally, MERCATOR and TMI (green dashed line). The axis of this 

product is on the right. In the middle (b), five panels, that represent five position along 

the equatorial line, display the mean state of ZC for TAO (dark line), TP07 (blue line), 

SODA (red line) and MERCATOR (green line). The vertical dashed line represents the 

position for ZC equal zero. At the end of the figure, the five panels on the bottom show 

the difference of ZC: TP07-TAO (blue line), SODA-TAO (red line) and MERCATOR-

TAO (red line). 

 

 Regarding zonal currents along the equator (see the five panels of the second and 

third rows in Figure B.2), TP07 is quite realistic, although the core of the Equatorial 
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Undercurrent (EUC) is deeper than in TAO (black line), MERCATOR (green line) and 

SODA (red line), especially at 140°W and 110°W and in the western Pacific edge 

(147ºE) the TP07 simulation has an eastward position. The five panels in the third row 

display the difference between TAO and each product. Despite the fact that TP07 has 

the poorest agreement with observation in the eastern Pacific, its skills in simulation the 

vertical structure of the zonal current along the equator is comparable to MERCATOR 

and SODA in the upper 150 m. 

 

Interannual variability 

 

 The interannual SST anomaly from TP07 is compared to TMI . The results are 

provided in Figure B.3 in which the upper panels indicate the statistical results of the 

validation and the two Hövmuller diagrams are for TMI (left) and TP07 (right). The 

correlation between TP07 and TMI (black thick line) is better than between 

MERCATOR and TMI (blue thick line) but still below the one between SODA and 

TMI (red thick line). As MERCATOR and SODA, the maximum correlation (around 

0.83) is located between 170°E and 160°W and decreases eastward and westward with a 

minimum value of 0.5. TP07 exhibits a little less variability than TAO in the Eastern 

Pacific, which leads to a larger RMS difference than the other products there. These 

statistics are indicative that TP07 simulates realistically the sequence of warm and cool 

events over  the period 2000-2008, as illustrated by the Figure B.3. 

 

The Sea Level Height (SLH) was also analyzed: TP07 and TPJ has a correlation 

of around 0.8 along the equator (Figure B.4). The RMS in both products has similar 

distribution with a maximum in the Central Pacific. On the other hand, the RMS 

difference has a maximum in the Easter Pacific (~6 cm) and a minimum around 160°E 

(~0.4). This results are quite similar than other OGCMs. 
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Figure B.3 Statistical results of the interannual SST (2000-2008) validation between 

TMI and TP07 are plotted in the upper panels. The Root Mean Square (RMS) is 

represented with a dashed line in both products (a) and (b), correlation is plotted in the 

upper top panel with thick black line and RMS difference is represented by a thin black 

line in the upper right panel. The thick blue (red) line represents the correlation between 

TMI product and MERCATOR (SODA). Longitude vs Time diagrams of the SST 

anomaly from TMI (left) and TP07 (right) is displayed in the bottom two panels, 

respectively.  
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Figure B.4 Similar than Figure B.3, but for SSH  

 

B.3.2 Group 2 

 

 The Group 2 builds upon the results obtained from Group 1 and is aimed at 

testing the sensitivity to the boundary conditions.  Climatological conditions for  

temperature and currents from SODA are used in the Northern, Southern and Western 

boundary. Additionally, in some experiments a closed western boundary was used. This 

configuration would allow using the model in operational mode using only available 

atmospheric fluxes. However there would be limitations associated to the possible 

change of the oceanic circulation near the boundaries at low freqeuncy timescales. . A 

summary of the characteristics of these experiments is provided in Table B.2. 

 

 The results of these simulations indicate that, over the period of interest (2000-

2008) there is hardly no difference between TP07 and the experiments of Group 2. This 

can be interpreted by the fact that the 2000-2008 period experiences only CP El Niño 

events for which the contribution of the reflected Rossby wave at the western boundary 
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is weak. The influence of the circulation at the meridional boundary is also weak in the 

equatorial band over such a short period of time, which is expected.  

 

Table B.2 Experiments of Group 2 

 

Experiment  Period Atmospheric forcing 

(ERAI) 

Oceanic boundary 

conditions (SODA) 

TROP_PAC09 2000-2008 4-day fluxes 5-day SODA Clim. (N-S-W) 

TROP_PAC10 2000-2008 4-day fluxes 5-day SODA Clim. (N-S) 

TROP_PAC11 2000-2011 Daily fluxes 5-day SODA Clim. (N-S) 
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