Exploring the correlation between ionospheric scintillation and GNSS positioning error near the magnetic equator using machine learning techniques

G. Fajardo¹, E. Pacheco ¹
¹ Jicamarca Radio Observatory, Geophysical Institute of Peru

Abstract
Ionospheric scintillations are a common phenomenon in the equatorial ionosphere. This phenomenon directly affects the position estimated by GNSS receivers degrading the quality of the radio signals; however, the quantification of the positioning error contributed by the ionosphere over the Peruvian sector has not been studied in detail. In this work, algorithms are being implemented that will allow us to identify and classify amplitude scintillation (S4) levels, we have worked with data from the Huancayo Observatory for the period December 2016-February 2017 obtained from LISN, this data has been plotted to analyze the spatial and temporal occurrence, and to analyze the occurrence of S4 as a function of other space weather variables obtained from OMNI2. The machine learning algorithms were decision tree, Support Vector Machine (SVM), Neuronal Network (NN). Decision tree was implemented as a filtering method, support vector machine for clustering and neuronal network to generate time series in forecasting. This paper shows the initial part of an investigation that aims to correlate qualitatively and quantitatively the occurrence of amplitude scintillations (S4) with errors in the position estimation of GNSS receivers, once the correlation between S4 and position error has been quantified, it may be possible to predict the error by predicting S4.

Objectives
Processing of S4 data from Huancayo Observatory in the last solar cycle.
Use of machine learning methods to classify the level of amplitude scintillation (S4).
Use of machine learning as a new method of statistical analysis.

Methodology
In this paper, we are using scintillation data and position approximations of a GNSS receiver from the Huancayo Observatory for the local summer December 2016 - February 2017. We analyzed the behavior of space weather variables, scintillation and the position estimation for the same periods of time.
The decision tree method has been used as a new method to establish limits for data cleaning, so we used the Decision tree method with different penalty criteria and with space weather variables as inputs (features) and as output (label) 4 levels of scintillation. In this way, we can visually observe which variables are affecting the decision and make a more timely decision in a large amount of data. This is useful because each station has different parameters, references differ establishing thresholds to filter data, which can make them discard information that can be exploited. Spatial projections were used to determine whether there were scintillation patterns in latitude, longitude, elevation or azimuth, that the first method (Decision tree) could not detect, and also to visually observe the dispersion of the position estimates and their actual effect. The Support Vector Machine method was tested as a clustering method for scintillation. Four previous levels were established to classify the intensity of scintillation and these levels of scintillation were set as the label (output of the algorithm).

Future Work
- Currently in the work we are analyzing the correlation between S4 and Positioning Error (Position Error LV) to extrapolate an error given the values of space weather variables.
- We want to analyze multivariate methods such as Long-Short Term Memory (LSTM) for error forecasting and compare it with the method described above.

Conclusions
- The development of Machine and Deep learning methods, the improvement in the computational capacity and the great amount of accumulated data, especially from the last solar cycle, invite us to analyze these data with techniques not used before. This work presents tests for algorithms, obtaining favorable results, used in a new dataset obtained from LISN and OMNI2 data, which we expect and will be shared for use. In addition, using these techniques we are exploring the correlation and quantification of ionospheric error in the approximations of position of GNSS receivers, which at the time of the study, still does not present a determinant correlation, however the data is still under analysis.

References

Acknowledgments
We gratefully acknowledge the thesis program of the Geophysical Institute of Peru and the Jicamarca Radio Observatory staff for their support. We also thank Cesar Valladares, Cesar De La Jara for the LISN data.

For further information
Contact: george.fajardo@r-jrp.gob.pe