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Abstract. An expression is derived for the anomalous diffusion coefficient associ-

ated with collisional interchange turbulence in the equatorial F region ionosphere.
Waves with w < v, € €; are considered. The calculation makes use of the
renormalization group method, following closely that of Kichatinov [1985]. The
calculation is applied to the problem of plasma waves in the equatorial F region
ionosphere generated by the ionospheric interchange instability. Approximations
appropriate for the geometry of that problem are incorporated into the calculation.
Using a model spectrum of the irregularities based on in situ satellite observations,

we calculate that the anomalous diffusion seen by large-scale plasma waves can be

5 orders of magnitude larger than the ambipolar diffusion coefficient.

1. Introduction

In this paper, we investigate the nonlinear coupling
that takes place between small- and large-scale waves
in an unstable ionospheric plasma. It is well known
that mode coupling is a means of producing a spectrum
of small-scale plasma irregularities from large-scale, lin-
early unstable waves in the ionospheric E and F re-
gions. Coherent scatter radar routinely make use of
these irregularities to probe the ionosphere in all lati-
tude regimes (see reviews by Fejer and Kelley [1980],
Riggin et al. [1986], Yamamoto et al. [1991], Haldoupis
[1989], and Sahr and Fejer [1996]). However, the ef-
fect of wave coupling on the large-scale waves and the
background flow is not so clear. It is often neglected,
the assumption being that once created, the small-scale
irregularities become passive tracers of the flow.

Whereas the large-scale ionospheric waves driven by
plasma instabilities are frequently highly coherent, the
small-scale waves excited by nonlinear mode coupling
are typically incoherent or turbulent, and the turbu-
lence created at small scales may cause the appearance
of (anomalous) dissipation. An example of such a phe-
nomenon was described by Ronchi et al. [1990], who
showed how small-scale gradient drift wave turbulence
in the equatorial electrojet could account for the anoma-
lously high electron mobility necessary to explain the
shape of the electrojet current profile. Another exam-
ple was provided by Gary [1980], who calculated the
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anomalous resistivity associated with the presence of
drift wave turbulence.

In this paper, we evaluate the anomalous dissipation
in a magnetized ionospheric plasma driven by small-
and intermediate-scale density fluctuations using the
renormalization group method. Our derivation follows
that of Kichatinov [1985] (and references therein), who
gave a formulation for magnetohydrodynamics and cal-
culated the dissipation coefficients for velocity and mag-
netic field fluctuations. Our calculation is based on a
single-fluid electrostatic model and leads to an expres-
sion for the anomalous diffusion of plasma, density.

The renormalization group method permits the anal-
ysis of nonlinear dynamical systems where perturbation
theory is ordinarily inapplicable. Its strategy involves
dividing wavenumber space into thin spherical shells,
with the presumption that the shells are only occupied
out to a finite radius. The dominance of dissipation in
the largest of the shells being considered permits the use
of perturbation theory there. The method calls for the
calculation of the enhanced dissipation due to the en-
semble of turbulent wave modes occupying the largest
shell. This additional dissipation is seen by the next
smaller neighboring shell, which has now been made
sufficiently dissipative to permit the use of perturba-
tion theory there. The method is bootstrapping, with
the entire spectrum of turbulence ultimately entering
into the ensemble averaging. A differential equation
can be derived to express the increase of the anomalous
diffusivity per increase in unit wavevector space enter-
ing into the ensemble. The solution to the differential
equation gives the total anomalous dissipation acting
upon wave modes lying outside the ensemble.
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Using the renormalization group method, we derive
below an estimate for the anomalous diffusivity in a
two-dimensional ion-neutral collision dominated plasma
and apply the result to the case of plasma irregularities
in the equatorial F region ionosphere. It will be shown
that small- and intermediate-scale plasma waves associ-
ated with bottomside spread F scattering layers may in-
hibit the growth of large-scale plasma waves with wave-
lengths up to about 100 km. Longer-wavelength waves
are already inhibited by finite gradient length scale ef-
fects.

Strictly speaking, the renormalization group method
applies to turbulent flows. While ionospheric irregu-
larities in the collisional regime cannot be considered
turbulent in the Kolmogorov sense, equatorial spread F
is a complex statistical flow to which the method is as-
sumed to apply. The small-scale flow will be referred to
as turbulent throughout this paper so that the language
can be consistent with previous work.

2. Diffusivity Calculation

Here we derive an expression for the anomalous dif-
fusivity in a magnetized ionospheric plasma undergoing
a broadband (but band limited) statistical flow starting
from the single fluid continuity equation in two dimen-
sions:

on

—+v-Vn =

D2
5 Vn

(1)
(2)

where v is the guiding center velocity for electrons and
ions and b is a unit vector in the direction of the geo-
magnetic field. Let us separate the field quantities into
large-scale background components and random small-
scale fluctuations

bx Ve¢/B

v =

No + om,

(3)
(4)

where the angle brackets denote an average over the
small spatial scales (with k > k', where k' is the small-
est wavenumber at which perturbation theory can be
directly applied). Averaging the continuity equation
over small scales likewise produces a diffusion equation
for large scales

one
5 (5)

The goal of this calculation is to assess the impact of the
quadratic term on the right side of (5) which represents
the effect of the fluctuations on the large-scale flow. We
will ultimately show that this term takes the form of
an additional diffusion term with a diffusion coefficient
that depends on the statistics of the fluctuations.

The smoothed continuity equation above can be sub-
tracted from (1) to yield an equation for the small-scale,
fluctuating components of the flow

n = (n> = No

v = vo+bv, (V) =v,

+vo-Vn, = DV?n,—(6v-Vén)
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don _ DV?%6n + 6v - Vén — (6v-Vén) =

ot
—6v-Vn, — v, -Vén (6)

The left side of (6) has the form of a continuity equation
for the small-scale fluctuations. The right side appar-
ently represents perturbations to the fluctuating flow
field produced by interactions with the mean (large-
scale) flow. This identification motivates the separation
of the fluctuation field quantities into two parts: fields
associated with the “base turbulence” (described by (6)
with zero right side) and perturbations arising from the
mean-flow interaction. The base turbulence is decou-
pled from the large-scale flow. We designate these base
turbulence and perturbation components of the fluctu-
ations with the superscripts 0 and 1, respectively.

n® +nt

v0+v1

on = (7)
ov = (8)

The ordering is such that the perturbation quantities
have small amplitudes but are concentrated at the small-
est scales being considered.

We neglect the terms in (6) that are quadratic in the
fluctuating field quantities or that are quadratic and
involve perturbations. We also neglect the partial time
derivative by comparison to the Dk?n! term, assuming
that the perturbations are dominated by dissipation.
This leaves an equation for the perturbed plasma den-
sity

Dk*n! = i/dqvo(k— Q) - q n.(q)

+ z‘/dqvo(k—q)-qn‘)(q) (9)

in terms of the base turbulence and the large-scale flow.
It is written here in the Fourier domain, where products
appear as convolution integrals over two-dimensional
wavevector space. We implicitly take D here to be a
linear operator.

In order to write (9) in closed form, we require a
relationship between the plasma density and velocity.
This is provided by the condition that the plasma re-
main charge neutral, or that the current density remain
nondivergent. In the collisional regime of the F region
ionosphere, the primary current is the ion Pedersen cur-
rent, given by J = ne(vi, /% B)E. (Here vy, and (2; are
the ion-neutral collision frequency and the ion gyrofre-
quency, respectively.) Setting the divergence of this
current to zero and linearizing about the background
plasma density N, and a background zonal electric field
E, % yields the desired expression for the plasma suscep-
tibility.
ik Eo
¢ N,

which gives
n' (k) (11)

= b [ 4aM(p.a) [2°(®)ne(a) + o) (a)]

v = %Ex k¢ (10
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in terms of the auxiliary wave vector p = k — q and the
three-wave coupling coefficient M [Kintner and Seyler,
1985].

What remains is to substitute (11) into (5) to assess
the impact of the small-scale fluctuations on the large-
scale low. We are only interested in terms which in-
volve perturbations, since the base turbulence is decou-
pled from the large-scale flow. However, we will neglect
terms that are quadratic in the perturbations. There-
fore

(6v-Vén)y = (vi-vn®) 4+ (v0.-Vnl) (13)
The two terms on the right side of (13) can be shown
to make identical contributions, owing to the symmet-
ric construction of the M operator and the relation-
ship between velocity and density perturbations. Using
the same coupling coefficient shorthand that led to the
derivation of (11), it can further be shown that

(VO Vnl) = - / dkdp M(p, )M (~p, k)

2

, n0(p)[2)n. (k)e ™
D ™ e (k)

in which p+q = k form another wave triplet and where
we have assumed that the various wave modes making
up the base turbulence are statistically uncorrelated, so
that (n°(p)n’(q)) = (|n(p)[*)é(p + q).

At this point, the integral in (14) can be simpli-
fied with an assumption regarding the form of n,, the
large-scale density distribution. Since we are ultimately
concerned with calculating the anomalous dissipation
seen by horizontally propagating large-scale ionospheric
plasma waves, n, will make the greatest contribution
to the integral when k = kZ. Furthermore, since k is
a wave vector of the large-scale flow and p and q are
wavevectors of the small-scale fluctuations, we expect
the most significant contributions for p ~ ¢ > k. Un-
der these circumstances, the product of the coupling
coefficients in (14) can be approximated by

E,
MpaM-pl) ~ - (555

2p2
) p—;k2 (14)

where additional terms that vanish under the p inte-
gration have been neglected. The inherent anisotropy
in the problem can be understood by considering that
the plasma waves in question are transverse, so that ver-
tically propagating fluctuations will tend to cause the
greatest dissipation of the horizontal density gradients
set up by horizontally propagating large-scale waves.
(The fact that waves with wavevectors set at right an-
gles couple the most strongly is a consequence of the
form of the mode coupling coefficient M and has been
discussed by Zargham and Seyler [1987].) With the
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k dependence of the coupling coefficients explicitly ex-
tracted, the inverse Fourier transform in (14) may new
be performed, resulting in a term that is the Laplacian
of the large-scale density field.

With a change of variables from p to k, equation (13)
can now be written in the form of a diffusion operator on
the large-scale density field n,. The diffusion coefficient
is expressed as an integral over wavenumbers with k >
k'. Tt will be insightful to break down the integration
space into a series of wavenumber shells, denoted below

by Ak.
E, \’k? |n(k)l2
(6v - Vén) = -/ dk(BN> Vi (15)
so that

( Eo \* K2 n(k)[*

BN0> k2 Dk2

Since the fluctuations are assumed to be band limited,
there is some largest wavenumber shell Ak making a
contribution to the integral above. The differential in-
crease to the integral made by that shell per unit area
of wave vector space is denoted 8D /OAk. D in the inte-
grand in this case would just be the ambipolar diffusion
coefficient. However, the fluctuations in the wavenum-
ber shell immediately inside the first would be affected
by the increased diffusion coefficient just inferred, and
so on down to the smallest wavenumber shell associated
with the fluctuations. Equation (15) therefore implies
a differential equation for D(Ak), which can be readily
solved. The total anomalous diffusion coefficient aris-
ing from fluctuations with wavenumbers greater than k
may then be written as

-2 ) [ s

This appears as the diffusion coefficient in the original
continuity equation for the large-scale flow (5), assumed
to be contained entirely in the sphere of wavenumbers
with k£ < k. D(o00) above is a boundary condition equal
to the ambipolar diffusion coefficient.

dD/dAk

+ D*(o0

3. Application: Equatorial Spread F'

Let us apply this result to the problem of plasma
irregularities in the equatorial F region ionosphere as-
sociated with equatorial spread F. Such irregularities
are known to take on scale sizes between centimeters
and hundreds of kilometers [Kelley, 1989]. Much of our
knowledge about these irregularities has come from co-
herent scatter radar observations made at the magnetic
equator, notably at the Jicamarca Radio Observatory
near Lima, Perd. Woodman and La Hoz [1976] identi-
fied four types of radar backscatter morphologies that
occur during spread F conditions, two of which being
bottomside spread F and topside radar plumes. The for-
mer is a reference to layers of intermediate-scale plasma
structuring observed mainly on the bottomside of the
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F layer, and the latter to large-scale plasma depletions
that penetrate well into the topside ionosphere. Both
of these phenomena are associated with the ionospheric
interchange instability, which has been investigated in
numerous computational studies [Zalesak and Ossakow,
1980; Keskinen et al., 1980; Zargham and Seyler, 1989).
Both are observed by VHF and UHF coherent scatter
radar, indicating that the underlying plasma instabil-
ities are intense enough to drive small-scale, linearly
stable plasma waves that give rise to coherent radar
scatter.

Bottomside spread F produces a spectrum of plasma
waves with horizontal scale sizes seldom much larger
than the horizontal dimension of the scattering volume
of the Jicamarca radar, which is effectively 10-20 km at
F region heights. (The phase fronts of plasma waves
in bottomside layers can sometimes be resolved dis-
tinctly in radar scattered power time histories, although
usually they cannot.) Bottomside layers seem to be a
manifestation of the collisional interchange instability
operating at intermediate scale sizes, where the linear
growth rate of the instability is greatest [Zargham and
Seyler, 1987]. In contrast, topside radar plumes are
very large-scale phenomena, with horizontal scale sizes
of several hundred kilometers.

We wish to estimate the effect of intermediate- and
small-scale (10 km > A > 100 m and A < 100 m)
waves in bottomside spread F upon large-scale (A > 10
km) plasma instabilities. Computer fluid simulations of
the ionospheric interchange instability suggest that the
growth of large-scale waves is inhibited to some degree
by the presence of preexisting intermediate-scale bot-
tomside waves. When the intermediate-scale waves are
allowed to grow from initial broadband seed noise, large-
scale waves that would otherwise tend to grow do not.
(S. Zargham, personal communication, 1990.) Recent
experimental observations made at Jicamarca confirm
that large-scale radar plumes seldom occur once bot-
tomside spread F has developed [Hysell and Burcham,
1998]. These findings can, in part, be explained by the fact
that the intermediate-scale waves efficiently dissipate the
background vertical plasma density gradient necessary to
drive the interchange instability. However, anomalous
diffusivity, generated by the small- and intermediate-scale
waves and seen by the large-scale waves, may also play a
role. '

Figure 1 shows plasma density data taken by the re-
- tarding potential analyzer aboard the AE-E satellite
during a pass through bottomside spread F plasma ir-
regularities. (W. B. Hanson, personal communication,
1993.) They show 3-s time intervals of density measure-
ments. The power spectra of the plasma density struc-
tures are characteristically flat at long wavelengths and
adopt power law scaling with a -2 spectral index (ap-
proximately) at short wavelengths. The spectral break
occurs at a wavelength (27/k;) anywhere between 500
m and 5 km but usually between 1 and 2 km. (We as-
sume here that the flow is frozen in, so that the time
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axis of the density data can be converted to a spatial
scale.)

The spectrum of bottomside spread F' may therefore,
on the basis of the in situ data, be modeled approxi-
mately as

2(AN?) [k
1+ (k/k)?
(AN?)ehalel

si(k) = (17)

pi(z) = (18)
where s1(k) is the one-dimensional spectral density of
the irregularities with mean-squared amplitude (AN?).
We are referring to the spectrum one would calcu-
late from the time series data obtained from a satel-
lite pass through the irregularities, for instance. Here
p(z) is the corresponding one-dimensional autocorrela-
tion function of the density irregularities. Our preced-
ing calculation requires us to specify the complete two-
dimensional spectrum of the bottomside spread Firreg-
ularities. For the sake of expediency, we merely assume
here that the irregularities are statistically isotropic.
We then compute the corresponding two-dimensional
irregularity spectrum by writing the axisymmetric form
of the two-dimensional autocorrelation function and
Fourier transforming (see Fredricks and Coroniti [1976]
or Woodman and Basu [1978)):

pa(r) = (AN?)e hr (19)
21 (AN?)ky
so(k) = (kf(+ k2))3/2 (20)

Substituting this spectral form into (16) leads to the
following anomalous diffusion coefficient estimate.

(AN (54 L)

D) =~
() B Vin

2
ki

where we have made use of the fact that k; > k., ko
being the lower cutoff of the irregularity spectrum, and
have generalized the earlier result by including currents
driven by gravity alongside the background ionospheric
Pedersen current driven by E,. The wavenumber & is
the wavenumber of the large-scale waves, associated in
this case with radar plumes, where it has been assumed
that k, > k. The strong dependence of our estimate
on the wavenumber of the spectral break in our model
is a consequence of the k=2 factor in (16), larger-scale
fluctuations being more efficient dissipators of plasma
structure. We note that, while our model suffers from
some uncertainty regarding the exact value of the outer
scale of bottomside spread F, this parameter only enters
the final estimate logarithmically.

For example, assuming k., = 27/20 km, k; = 27/2
km, (E/B + g/vin) = 40 m/s, and and RMS density
fluctuation level of 0.5, we can estimate an anomalous
diffusion coefficient D ~ 5.7 x 10* m?/s, which is about
5 orders of magnitude greater than the expected am-

(In(k; /ko) +1n2 — )2 (21)
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Figure 1. Observations of plasma density irregularities in bottomside spread F' made by the
AE-E spacecraft. The plots with linear scales show three seconds of time series data. The
plots directly above each of those with log scales represent the associated spectral density.
Both periodograms (points) and MEM spectra (solid lines) are shown. The horizontal axes
on the spectral plots represent inverse wavelength.

bipolar diffusion coefficient. In comparison, the linear,
nonlocal growth rate of the large-scale collisional inter-
change instability can be expressed as

1 —_ —

v(k) 1<E g)( o

L B Vin
where L is the background density gradient scale length
and d is a parameter which specifies the vertical extent
of the positive vertical density gradient [Zargham and
Seyler, 1989]. (We have taken the limit kd > 1 here
for simplicity.) Long-wavelength waves with A\/d = 1
are clearly stabilized by nonlocal effects. Meanwhile,
dissipative damping due to the wave-driven diffusion
found above is significant when A < 100 km. Given L
= 25 km and d = 50 km, the new dissipation term in
fact introduces a peak in the linear growth rate at a

! ) - Dk?* (22)

wavelength of very nearly 100 km. The growth rate of
this fastest growing large-scale wave is approximately
half the linear growth rate in the local, dissipation-free
limit.

The finding of an induced long-wavelength peak in °
the linear growth rate may explain why it is that bot-
tomside layers very often launch small plasma deple-
tions into the topside ionosphere at regular spatial inter-
vals of approximately 100 km. (These depletions look
like mini radar plumes in the radar data, with radar.
echoes that last only as long as would take a small scat-
tering target to drift through the radar beam.) If the
height of the bottomside layer were to be modulated by
a large-scale plasma wave, the resulting crests would be
the most likely sites for mini plumes to form. Mean-
while, the preceding calculation does not support the
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notion than bottomside spread F suppresses the occur-
rence of large-scale (A > 100 km) topside waves and
radar plumes in nature. However, intermediate-scale
bottomside waves may nonetheless inhibit the growth of
large-scale waves by rapidly dissipating the steep bot-
tomside F region plasma density gradient necessary for
instability.

4. Summary and Analysis

We have derived an expression for anomalous diffu-
sivity in a magnetized plasma driven by small-scale tur-
bulence. The derivation assumes that Pedersen currents
are the dominant currents, or that Q, Q; > vin > w,
assumes a zonal background electric field (or vertical
gravity), and also assumes that the large-scale waves of
interest propagate preferentially in one direction (hori-
zontally).

It is informative to compare (16) to the expression
obtained by Montgomery [1972], who calculated the
anomalous diffusivity in a bounded, strongly magne-
tized, two-dimensional guiding center plasma using a
test particle approach. His calculation assumed like
ours that the amplitudes of the wave normal modes
were statistically uncorrelated and further assumed that
the test particle positions were uncorrelated with those
of the background particles. The diffusivity was ex-
pressed in terms of a discrete sum over the modal elec-
tric field amplitudes. Converting those electric field
amplitudes to densities with the help of (10) and tak-
ing the continuous limit reproduces our expression (16),
except with the k2/k? factor replaced by k2/k?. The
discrepancy is due to the fact that the two deriva-
tions answer somewhat different questions. The Mont-
gomery [1972] derivation predicts the total diffusivity
in a plasma driven by all the wave modes present. The
k2 /k* factor expresses the fact that horizontally prop-
agating waves generate the largest electric fields and
the greatest plasma advection and transport by the re-
quirements of quasi-neutrality. Meanwhile, our calcu-
lation involves the wave-wave coupling between small-
scale fluctuations and a large-scale, horizontally propa-
gating wave. This coupling is most efficient if the fluc-
tuations propagate vertically, hence the k2 /k? factor.

We have shown that fully developed bottomside
spread F waves may inhibit the large-scale collisional in-
terchange instability via anomalous dissipation and sup-
press waves with wavelengths less than about 100 km.
Combining this effect with finite gradient length scale
stabilization produces a peak in the linear growth rate
of the collisional interchange instability that may ex-
plain the 25-100 km spatial periodicity of high-altitude
depletions that emerge from bottomside spread F lay-
ers as observed by ground-based radar [Hysell and Bur-
cham, 1998]. Anomalous dissipation does not seem to be
strong enough to suppress the very large-scale depletions
underlying the largest radar plumes observed with ground-
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based radar. The fact remains that such radar plumes
seldom occur once fully developed bottomside spread F has
emerged on a given evening.

The present analysis has taken for granted the form
of the spectrum of the ionospheric irregularities with-
out considering the processes responsible for generating
them. Recently, J. P. Flaherty et al. (Large-amplitude
transient growth in the linear evolution of equatorial
spread F with a sheared zonal flow, submitted to Jour-
nal of Geophysical Research, 1998) analyzed the linear
collisional interchange instability, taking into account
the effects of shear, a seemingly ubiquitous property
of bottomside spread F layers. They found that shear
causes the system to become highly nonnormal, permit-
ting a strong transient response not predicted by a con-
ventional eigenmode analysis. The transient response is
seen principally at wavelengths near the marginal wave-
lengths of the unsheared system, which are stable in the
sheared system. As time progresses, the response occurs
at increasingly long wavelengths, including wavelengths
longer than the gradient scale length. The transient re-
sponse eventually decays, and the system becomes dom-
inated by the long wavelengths predicted by eigenmode
analysis. It is at this time that topside depletions are
thought to be produced by the nonlinear instability and
also that the present analysis begins to have a clear
bearing on the wavelengths of the irregularities that re-
sult. The anomalous diffusivity we have found would
increase the wavelengths of the fastest growing eigen-
modes, explaining the large-scale periodicity of topside
depletions rising out of bottomside layers. It is not so
clear at this point what effect the anomalous diffusivity
would have on the transient response itself, which may
persist for some time in the early evening.

Acknowledgments.

This work was supported by NASA grant NAG7-6212 and
by NSF grant ATM-9415931 to Clemson University. We
wish to thank W. B. Hanson and R. A. Heelis for their help-
ful suggestions.

The editor thanks J. D. Sahr and S. Singh for their assis-
tance in evaluating this paper.

References

Fejer, B. G., and M. C. Kelley, Ionospheric irregulari-
ties, Rev. Geophys., 18, 401, 1980.

Fredricks, R. W., and F. V. Coroniti, Ambiguities in the
deduction of rest frame fluctuation spectrums from
spectrums computed in moving frames, J. Geophys.
Res., 81, 5591, 1976.

Gary, S. P., Wave-particle transport from electrostatic
instabilities, Phys. Fluids, 28, 1193, 1980.

Haldoupis, C., A review on radio studies of auroral F-
region ionospheric irregularities, Ann. Geophys., 7,
239, 1989.

Kelley, M. C., The Earth’s Ionosphere, Academic, San
Diego, Calif., 1989.



HYSELL AND SEYLER: ANOMALOUS DIFFUSION IN THE EQUATORIAL IONOSPHERE

Keskinen, M. J., S. L. Ossakow, and P. K. Chaturvedi,
Preliminary report of numerical simulations of inter-
mediate wavelength collisional Rayleigh-Taylor insta-
bility in equatorial spread F, J. Geophys. Res., 85,
1775, 1980. ' ’

Kichatinov, L. L., Renormalization group method in
nonlinear problem of dynamics of mean magnetic field
in a turbulent medium, Magnetohydrodynamics, 85,
105, 1985. '

Kintner, P. M., and C. E. Seyler, The status of obser-
vations and theory of high-latitude ionospheric and
magnetospheric plasma turbulence, Space Sci. Rev.,
41,91, 1985. ’

Montgomery, D., Strongly magnetized classical plasma
models, In Plasma Physics, edited by C. DeWitt and
J. Peyraud, Gordon and Breach, New York, 1972.

Riggin, D., W. E. Swartz, D. T. Farley, and B. G. Fe-

~ jer, Radar studies of long-wavelength waves associ-
ated with mid-latitude sporadic E layers, J. Geophys.
Res., 91, 8011, 1986.

Ronchi, C., R. N. Sudan, and P. L. Similon, Effect of
short-scale turbulence on kilometer wavelength irreg-
ularities in the equatorial electrojet, J. Geophys. Res.,
95, 189, 1990.

Sahr, J. D., and B. G. Fejer, Auroral electrojet plasma
irregularity theory and experiment: A critical review
of present understanding and future directions, J.
Geophys. Res., 101, 26,893, 1996.

Woodman, R. F., and S. Basu, Comparison between

26,737

in-situ spectral measurements of F region irregulari-
ties and backscatter observations at 3m wavelength,
Geophys. Res. Lett., 5, 869, 1978.

Woodman, R. F., and C. La Hoz, Radar observations
of F region equatorial irregularities, J. Geophys. Res.,
81, 5447, 1976.

Yamamoto, M., S. Fukao, R. F. Woodman, T. Ogawa,
T. Tsuda, and K. Kato, Mid-latitude E-region field-

* aligned irregularities observed with the MU radar, J.
Geophys. Res., 96, 15,943, 1991.

Zalesak, S. T., and S. L. Ossakow, Nonlinear equato-
rial spread F: Spatially large bubbles resulting from

. large horizontal scale initial perturbations, J. Geo-
phys. Res., 85, 2131, 1980.

Zargham, S., and C. E. Seyler, Collisional interchange
instability, 1, Numerical simulations of intermediate-
scale irregularities, J. Geophys. Res., 92, 10,073,
1987.

Zargham, S., and C. E. Seyler, Collisional and inertial
dynamics of the ionospheric interchange instability,
J. Geophys. Res., 94, 9009, 1989.

D. L. Hysell, Dept. of Physics and Astronomy, Clemson
University, Clemson, SC 29634. (dhysell@clemson.edu)

C. E. Seyler, Dept. of Electrical Engineering, Cornell
University, Ithaca, NY 14853.

(Received May 13, 1998; revised July 20, 1998;
accepted July 24, 1998.)



