What else can we learn with coherent scatter radars?

J. L. Chau et al.
Radio Observatorio de Jicamarca, Instituto Geofísico del Perú, Lima

Acknowledgments
Christos Haldoupis
Dave Hysell
Mike Rouhoniemi
Paul Bernhardt

ISEA12, Crete, Greece – May 24, 2008
Outline

- ?
- Targets/Techniques/Plasma research vs. Diagnostics (Declare victory?)
- 150-km echo challenge
- Mother Nature vs. Man Made
- Conclusions
Main “Equatorial” Questions

– \(F \) region: What are the fundamental plasma processes, including nonlinear processes, that govern the generation of plasma plumes? What are the precursor phenomena in the late afternoon \(F \) region that control whether or not an \(F \)-region plume will be generated after sunset?

– Daytime Valley echoes (or so-called 150-km echoes). What are the physical mechanisms causing them?

– \(E \) region: What are the nonlinear plasma physics processes that control the final state of the electrojet instabilities? To what extent do these instabilities affect the conductivity of the \(E \) region.

 • What are the basic background parameters in the equatorial \(E \) region? What is the morphology of the density profiles in this difficult to probe region? How does this morphology affect the \(E \)-region dynamo?

– \(D \) region: What effects do meteor ablation and mesospheric mixing have on the composition in this region?

– \(E \) and \(F \) (valley) region coupling. Does the \(F \) region respond to an \(Es \) layer instability? Are 150-km echoes related to \(Es \) layers?
Atmospheric/Ionospheric Irregularities
Coherent Radar Networks

[MF, MST, ST, Meteor]

[Source: ATRAD]

[SuperDarn North]

[SuperDarn South]

[Digisonde Network]
Coherent Radars Summary

Radar Frequency
- MF
- HF
- VHF
- UHF

Configurations/Techniques
- Monostatic/Multi-Static
- Multi-beam
- CW/Pulsed
- Multi-station
- Interferometry
- Imaging
- Multi Frequency
- Passive

Coherent Targets
- PEME/PMSE
- Specular Meteors
- Other meteors
- E region
- 150-km/Valley
- F region

Main Derived Parameters
- Irregularity Power, Drifts, and spectra shape
- Neutral winds
- Electric fields
- Electron Density
- Neutral Temperatures
- GWs/Tides/PWs
Coherent Radars: SuperDarn

Radar Frequency
- MF
- HF
- VHF
- UHF

Configurations/Techniques
- Monostatic/Multi-Static
- Multi-beam
- CW/Pulsed
- Multi-station
- Interferometry
- Imaging
- Multi Frequency
- Passive

Coherent Targets
- PEME/PMSE
- Specular Meteors
- Other meteors
- E region
- 150-km/Valley
- F region

Main Derived Parameters
- Irregularity Power, Drifts, and spectra shape
- Neutral winds
- Electric fields
- Electron Density
- Neutral Temperatures
- GWs/Tides/PWs
SuperDarn Convection Maps
Coherent Radars: ESF Imaging

Radar Frequency
- MF
- HF
- VHF
- UHF

Configurations/Techniques
- Monostatic/Multi-Static
- Multi-beam
- CW/Pulsed
- Multi-station
- Interferometry
- Imaging
- Multi Frequency
- Passive

Coherent Targets
- PEME/PMSE
- Specular Meteors
- Other meteors
- E region
- 150-km/Valley
- F region

Main Derived Parameters
- Irregularity Power, Drifts, and spectra shape
- Neutral winds
- Electric fields
- Electron Density
- Neutral Temperatures
- GWs/Tides/PWs
ESF RTDI + Imaging

Chau et al., 2008
Coherent Radars: 150-km Echoes

Radar Frequency
- MF
- HF
- VHF
- UHF

Configurations/Techniques
- Monostatic/Multi-Static
- Multi-beam
- CW/Pulsed
- Multi-station
- Interferometry
- Imaging
- Multi Frequency
- Passive

Coherent Targets
- PEME/PMSE
- Specular Meteors
- Other meteors
- E region
- 150-km/Valley
- F region

Main Derived Parameters
- Irregularity Power, Drifts, and spectra shape
- Neutral winds
- Electric fields
- Electron Density
- Neutral Temperatures
- GWs/Tides/PWs
150-km Experiments: Oblique vs. Perpendicular
150-km Spectra: Oblique vs. Perpendicular

(a) Expected 150-km ISR Spectrum

(b) Normalized Radial Velocity [m/s]

900K, mu = 1, 50% [O²], 50% [Molec]
150-km Perpendicular Parameters

SNR Perp. [DC bins] dB

Doppler Perp. [DC bins] [m/s]

Width Perp. [DC bins] [m/s]
150-km Oblique Parameters
Equatorial Irregularities modified by Solar Flares

Solar flare 07-Sep-2005

[Courtesy of P. Reyes]
Artificial Ionospheric Irregularities

[Courtesy of D. Hysell]
SAMI2 Model
283° Longitude Equatorial Ionosphere

[Image of a diagram showing the March Equinox conditions, F10.7 = 150, 1845 LT, with color-coded electron density and temperature contours.]

[Courtesy of P. Bernhardtl]
Heated Field Line at 7.9 MHz (7.8 \(10^5\) cm\(^{-3}\)) \(283^\circ\) Longitude Equatorial Ionosphere

March Equinox, \(F10.7 = 150\), 1845 LT

[Courtesy of P. Bernhardtl]
Concluding Remarks

• Irregularity drifts vs. electric fields (local and background)
• Radar Imaging.
• Common volume multi-frequency.
• E and F (valley) region coupling.
• 150-km campaigns (multi-instrument?)
• Coherent scatter diagnostics of artificial ionospheric irregularities at equatorial and low latitudes.