On the characterization of radar receivers for meteor-head echoes studies
Abstract
We report the role that the ambiguity function (AF) plays on the determination of signal to noise ratio (SNR) collected from meteor head echoes. Theoretical analysis shows that any measured meteor SNR exhibits temporal ripples whose shape is related to both the transmitted pulse envelope and the filter impulse response of the receiver. These theoretical findings are corroborated with (1) experimental meteor data recorded with Jicamarca 50 MHz radar (11.95 S, 76.87 W) and (2) simulated meteor data obtained by replicating the acquisition system of Jicamarca. A statistical analysis of the experimental meteor data reveals that at least 14% of the population collected each day at Jicamarca exhibits these ripples. On the remaining 86% of meteor events, the ripples cannot be distinguished due to noise, contamination from other sources of scattering (i.e., nonspecular echoes), and ensemble average applied to the data. In general, these ripples demonstrate the importance of obtaining an accurate model of a radar system to avoid misinterpretation of SNR.
Description
Date
2013-01
Keywords
Meteors , Radar receivers , High‐power large aperture radars
Citation
Galindo, F. R., Urbina, J., Chau, J. L., Dyrud, L., & Milla, M. (2013). On the characterization of radar receivers for meteor-head echoes studies. Radio Science, 48 (1), 33-41. https://doi.org/10.1029/2012RS005034
Collections
Loading...
Publisher
American Geophysical Union