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[1] The Gordeyev integral for plasma particles colliding with neutrals is obtained using a
particle dynamics formalism in which the collisions are modeled as a discrete Poisson
process. The result leads to an electron density fluctuation spectrum model for partially
ionized plasmas which is identical with the spectral model obtained from BGK plasma
kinetic equations. This isomorphism between the Poisson process and the BGK operator is
analogous to a similar relation between the Brownian motion process and the Fokker-
Planck operator with constant coefficients. We take advantage of this analogy to derive a
collisional ISR spectrum model that takes into account collisions with both neutrals
and charged species.
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1. Introduction

[2] The purpose of this note is to show that incoherent
scatter spectrum theory derived from the Boltzmann equa-
tion with BGK collision operator can also be obtained by
using a particle dynamics approach where particle collisions
are modeled as a Poisson process. This is analogous to
Fokker-Planck operator (with constant coefficients) and the
Brownian motion (Ornstein-Uhlenbeck) collision process
leading to identical spectral models when utilized in the
Boltzmann equation and in particle dynamics formalism,
respectively [e.g., Chandrasekhar, 1943; Gillespie, 1996;
M. Milla and E. Kudeki, Simulations of electron and ion
Coulomb collisions in a magnetized plasma for ISR applica-
tions, poster presented at 2006 CEDARWorkshop, National
Center for Atmospheric Research, Santa Fe, New Mexico,
2006].
[3] In general, incoherent scatter spectral theories perti-

nent to various types of ionospheric plasmas (magnetized,
collisional, etc.) in thermal equilibrium can be expressed in
terms of appropriately derived Gordeyev integrals utilized
within a general framework described by Kudeki and Milla
[2006]. Briefly, in this framework, the electron density k�w
spectrum causing the incoherent radar scatter can be
expressed (for a single ionic species, singly ionized; gener-
alization to multiple ions is straightforward) as

n k;wð Þj j2
D E

¼
jw�o þ sij j2 ntej j2

D E
þ sej j2 ntij j2

D E
jw�o þ se þ sij j2

; ð1Þ

with

nts k;wð Þj j2
D E

No

� 2Re Js wsð Þf g ð2Þ

and

ss k;wð Þ
jw�o

� 1� jwsJs wsð Þ
k2h2s

; ð3Þ

where ws � w � k 
 Vs is Doppler-shifted frequency due to
mean velocity Vs of species s (‘‘e’’ or ‘‘i’’ in the single-ion
case) in the radar reference frame, hs =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�oKTs=Noe2

p
is the

corresponding Debye length, Ts the species temperature,
No the mean plasma density, K Boltzmann constant, �o
permittivity of free space, �e electronic charge, and

Js wð Þ �
Z 1

0

dt e�jwt ejk
Drs
� �

ð4Þ

is a Gordeyev integral (a one sided Fourier transform)
expressed in terms of characteristic function he jk
Drsi of
random particle displacement vector Drs for species s over
intervals t. Different types of plasmas are distinguished by
different types of Drs statistics, the specification of which,
depending on the physical processes governing individual
particle motions (with the exception of collective interac-
tions), determines the species conductivities ss(k, w) and
the corresponding spectra, hjnts(k, w)j2i, of thermally
impressed density fluctuations which ‘‘collectively drive’’
the observed electron density spectrum hjn(k, w)j2i. The
characteristic function hejk
Drsi, an expected value that
depends on the pdf of displacements Drs, will also be
termed as single particle signal correlation (or ACF), since
signal return from a single particle exposed to a radar
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pulse would be proportional to ejk
rs, with rs = rs(t) denoting
the particle trajectory.
[4] During the review process of Kudeki and Milla

[2006], the validity of the general framework outlined
above was initially questioned by one of the reviewers,
who was concerned about BGK-based incoherent scatter
spectral models being an exception to the proposed frame-
work. Although the reviewer was ultimately shown that
BGK-based models constitute no exception, i.e., they can be
represented in terms of a Gordeyev integral corresponding
to a one-sided Fourier transform of a single particle ACF, an
explicit discussion of this was not included in the published
version of the paper. In this note, we are revisiting the case
of BGK-based incoherent scatter theories to provide an
explicit derivation of the BGK density spectrum from a
particle dynamics point of view. In particular, the BGK-based
Gordeyev integral is obtained, in section 2, by assuming a
Poisson collision process, and it is shown that its inclusion in
the above framework yields the usual BGK model results
[e.g., Dougherty, 1963; Dougherty and Farley, 1963] for
the electron density spectrum. The paper is concluded with
further discussions and implications of our results in
section 3.

2. Derivation of the BGK Gordeyev Integral
Using a Particle Dynamics Approach

[5] Clemmow and Dougherty [1969] state that the BGK
model can be used to simulate the effect of binary collisions,
e.g., collisions between charged and neutral particles, and
also that these collisions could be imagined to be a Poisson
process. However, this explanation was given more to
provide a possible interpretation of the BGK model than
to establish a direct relationship with the Poisson collision
process. The mathematical proof that these two collision
models are directly linked is provided next.
[6] Assume that in a time interval t, a particle (electron or

ion) collides n times with neutral particles constituting a
medium. Collision events are independent from each other.
In between collisions particles move in straight line orbits.
We can then express the particle displacement over interval
t as the random vector

Drs ¼
Xn
l¼0

vl tlþ1 � tlð Þ; ð5Þ

where t0 � 0, tn+1 � t, and tl is the time of lth collision such
that 0 < t1 < . . . < tn < t.
[7] Let the number of collision events n invoked above be a

Poisson random variable with a collision frequency n and pmf

p nð Þ ¼ e�nt ntð Þn

n!
for n � 0: ð6Þ

Given that there are n collision events in an interval t, the
conditional pdf of collision times tl (for 1 � l � n) is given
by [e.g., Hajek, 2009]

f t1; ::; tnjnð Þ ¼
n!

tn
if 0 < t1 < . . . < tn < t

0 else:

(
ð7Þ

This is in effect a uniform distribution over all ordered sets
of collision times 0 < t1 < . . . < tn < t, that can also be
written as

f t1; ::; tnjnð Þ ¼ n!

tn
Yn
l¼0

u tlþ1 � tlð Þ ð8Þ

in terms of unit-step function u(t) and it satisfies
R
dtn . . .R

dt1f(t1, .., tnjn) = 1 as all pdfs do. Additionally, assume that
particle velocities vl, l 2 [0, n], in between the collisions
constitute a set of independent and identically distributed
random variables. Taking the distribution of vector velocities
vl as Maxwellian, we have

f vlð Þ ¼ e
� 1

2C2
v2
l

2pC2ð Þ3=2
; ð9Þ

where C =
ffiffiffiffiffi
KT
m

q
is the thermal speed of the particles.

[8] Let us next compute the single particle ACF hejk
Drsi
(the characteristic function of displacements Drs) required
in the general framework outlined above, where the
expected value will be computed over random variables
v0, . . ., vn, t1, . . ., tn, and n using the probability distribu-
tions defined above. We note that

e jk
Drs
� �

¼ e
jk

Pn

l¼0
vl tlþ1�tlð Þ

D E
v;t;n

¼
Yn
l¼0

e jk
vl tlþ1�tlð Þ

* +
v;t;n

; ð10Þ

where the subscripts on the right indicate successive
expected value operations to be performed. Starting with
the expectations over independent Gaussian random vari-
ables vl, we have

e jk
Drs
� �

¼
Yn
l¼0

e�
1
2
k2C2 tlþ1�tlð Þ2

* +
t;n

: ð11Þ

Expectations over t1, . . ., tn next yield

n!

tn

Z
dtn 
 
 


Z
dt1

Yn
l¼0

e�
1
2
k2C2 tlþ1�tlð Þ2u tlþ1 � tlð Þ

* +
n

; ð12Þ

where integration limits run from �1 to 1. Finally, using
p(n), we find that the ACF is

X1
n¼0

nne�nt
Z

dtn 
 
 

Z

dt1
Yn
l¼0

e�
1
2k

2C2 tlþ1�tlð Þ2u tlþ1 � tlð Þ: ð13Þ

Now we define

g tð Þ � e�nt�1
2
k2C2 t2 u tð Þ; ð14Þ

to rearrange (13) as

e jk
Drs
� �

¼
X1
n¼0

nn
Z

dtn 
 
 

Z

dt1
Yn
l¼0

g tlþ1 � tlð Þ

¼
X1
n¼0

nn
Z

dtng t � tnð Þ 
 
 

Z

dt1g t2 � t1ð Þg t1ð Þ: ð15Þ
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Clearly, the integral chain above is n successive convolu-
tions of n + 1 realizations of g(t) evaluated at t = t. Thus,
the ACF of particles with a Maxwellian velocity distribution
undergoing a Poisson collision process reduces to

e jk
Drs
� �

¼
X1
n¼0

nn g tð Þ * 
 
 
 * g tð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
nþ1

: ð16Þ

Since he jk
Drsi is the characteristic function of Drs, i.e., the
Fourier transform of the pdf of Drs, our particle displace-
ment model with Poisson collisions is uniquely described
by (16).
[9] The corresponding Gordeyev integral (4), i.e., one-

sided Fourier transform of the single-particle ACF (16), is
then (using the properties of the convolution and the Fourier
transform)

Js wð Þ ¼ G wð Þ
X1
n¼0

nnGn wð Þ; ð17Þ

where

G wð Þ �
Z1
0

dte�jwte�nt�1
2
k2C2t2 ð18Þ

is the Fourier transform of g(t). The convergence of the
series in (17) is guaranteed as

X1
n¼0

nnGn wð Þ ¼ 1

1� nG wð Þ ð19Þ

since jnG(w)j < 1 for any n � 0. Hence, Gordeyev integral
(17) reduces to

Js wð Þ ¼ G wð Þ
1� nG wð Þ ; ð20Þ

a well-known result previously derived byDougherty [1963]
using the BGK collision model for unmagnetized plasmas.

3. Discussion

[10] We can argue, on the basis of our result in section 2,
that from a particle dynamics perspective, the BGK colli-
sion process is a Poisson process. As a consequence, any of
the expected quantities that can be obtained using the BGK
kinetic equation, can also be derived using our stochastic
model for particle dynamics, for example, species conduc-
tivities ss(k, w) and the spectra of thermally impressed
density fluctuations hjnts(k, w)j2i.
[11] The general framework for incoherent scatter spec-

trum models presented by Kudeki and Milla [2006] can be
developed independent of plasma kinetic equations, on the
basis of only the following fundamental relations: the
fluctuation-dissipation or Nyquist theorem that relates
hjnts(k, w)j2i and Re{ss(k, w)} for particles in thermal

equilibrium [e.g., Callen and Welton, 1951], and the
Kramers-Kronig relations that connect the real and imaginary
parts of ss(k, w) in order to satisfy the principle of causality
[e.g., Clemmow and Dougherty, 1969]. As we have shown
above, plasmas can also be studied on the basis of these
principles, and thus, whether we use kinetic equations or the
particle dynamics approach is a matter of choice in solving
plasma problems concerning particles in thermal equilibrium
(including the phenomenon of Landau damping).
[12] Let us now calculate, as an example, the covariance

matrix of particle displacements in a Poisson collision
process. The covariance matrix is defined as

DrsDrTs
� �

¼
Xn
l¼0

Xn
l0¼0

vlv
T
l0 tlþ1 � tlð Þ tl0þ1 � tl0ð Þ

* +
v;t;n

: ð21Þ

Since vl are independent random variables, we have

DrsDrTs
� �

¼
Xn
l¼0

vlv
T
l tlþ1 � tlð Þ2

* +
v;t;n

: ð22Þ

Furthermore, provided that the components of vl are
Gaussian and independent, the covariance matrix of vl is
given by

vlv
T
l

� �
¼ C2�I ; ð23Þ

where �I is the identity matrix. Thus,

DrsDrTs
� �

¼ C2�I
Xn
l¼0

tlþ1 � tlð Þ2
* +

t;n

: ð24Þ

After some math, it can be verified that

Xn
l¼0

tlþ1 � tlð Þ2
* +

t

¼ 2t2

nþ 2
: ð25Þ

Taking the expected value of (25) with respect to n and
substituting in (24) gives

DrsDrTs
� �

¼ C2�I
X1
n¼0

e�nt ntð Þn

n!

2t2

nþ 2

¼ 2C2

n2
�I
X1
n¼0

e�nt nþ 1ð Þ ntð Þnþ2

nþ 2ð Þ! ; ð26Þ

which simplifies as

DrsDrTs
� �

¼ 2C2

n2
�I nt � 1þ e�ntð Þ: ð27Þ

[13] This is a very interesting result because the same
mathematical expression can be derived in the context of a
Brownian motion collision model [e.g., Chandrasekhar,
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1943], an approach that it is often used to describe
Coulomb collisions [e.g., Zagorodny and Holod, 2000]. In
the Brownian motion formalism, the effects of collisions on
particle motion are considered to be caused by the action
of a friction force and random diffusive forces. A param-
eter analogous to n is also defined, but it is regarded as a
friction coefficient. Although, the expressions for hDrsDrs

Ti
are the same for the Poisson and the Brownian motion
models, the corresponding expressions for the single particle
ACFs are not equal and lead to different incoherent scatter
spectral shapes [e.g., Hagfors and Brockelman, 1971]. The
differences, however, are only noticeable for intermediate
values of n since both spectra converge to the same asymp-
totic expressions in the collisionless/frictionless (n ! 0) as
well as high collision/friction (n!1) limits. The difference
at intermediate n can be attributed toDrs(t) being a Gaussian
random variable at each t in case of a Brownian motion
process, but only so in t ! 0 and 1 limits for a Poisson
process; whenDrs(t) is strictly Gaussian, and only then, the
ACF hejk
Drsi can be shown to reduce to e�

1
2
k2hDrs

2i,
where hDrs

2i is a diagonal element of hDrsDrs
Ti.

[14] A generalization of the results presented in section 2
can be easily performed. Notice that the assumption that in
between collisions the particles move in straight line orbits
was not a necessary condition and it was only considered in
order to recover the classical results of the BGK collision
model. In between collision events, we could have consid-
ered the particles moving in helical orbits due the action of
an external magnetic force or even move randomly because
of Coulomb interactions with other charged particles con-
stituting a plasma. Either of these assumptions would have
led to different definitions of the function G(w), but it can be
shown that the form of the Gordeyev integral Js(w), i.e.,
equation (17), would have remained the same. In general, it
is found that

G wð Þ ¼
Z1
0

dte�jwte�nt e jk
Dris

D E
; ð28Þ

where hejk
Drs
ii is the single particle ACF of the process that

takes place in between Poisson collision events. For instance,
let us consider an unmagnetized plasma in which both
neutral and Coulomb collisions are relevant. Modeling the
neutral collisions as a Poisson process of frequency n, and

Coulomb collisions as a Brownian motion process, G(w)
takes the form

G wð Þ ¼
Z1
0

dte�jwte�nte
�k2C2

b2
bt�1þe�btð Þ; ð29Þ

where we have used b to denote the friction coefficient in
Brownian motion. This expression together with (17) pro-
vides us with a model for ionospheric incoherent scatter
spectrum measurements detected from regions in which both
neutral and Coulomb collisions are expected to be important,
e.g., the 150-km region. More general extensions of the
Poisson collision model can be pursued, for instance, a
velocity-dependent collision frequency n(v) could be
considered into the theory. Further generalizations of this
type will be the subject of future studies.
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