Multi-frequency and multi-volume radar studies of the equatorial 150-km region

J. L. Chau¹, M. A. Milla², and E. Kudeki²

¹Radio Observatorio de Jicamarca, Instituto Geofísico del Perú, Lima

²Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, IL, USA

Outline

- Introduction: A "radar" puzzle?
- What do we know from previous Jicamarca measurements?
 - Perpendicular observations
 - Off-perpendicular observations
- New observations
 - Density profiles from Faraday experiments
 - Multi-frequency results

First detection

- Jicamarca Observations
 - Balsley [1964]
- Rocket Observations
 - Thumba, India [*Prakash et al.*, 1969]
 - Punta Lobos, Peru [Smith and Royrvik, 1985]
- A radar puzzle?

Perpendicular to B main features

- Proposed Mechanisms
- •Gravity wave wind driven interchange instability [Kudeki and Fawcett, 1993
- •Low-latitude Es layer instability providing free energy for the growth of interchange instability at equatorial 150-km [*Tsunoda and Ecklund*, 2004] [from

Main features

- •Daytime phenomena
- •Occur between 130-180 km
- •Necklace shape
- •Come from field-aligned irregularities (?)
- •Observed at different longitudes and within "few" degrees away Mag. Equator
- •At Jicamarca they are observed all seasons
- • $Vz \sim vertical F$ -region ExB.

[from Kudeki and Fawcett., 1993 and Fawcett, 1999]

150-km Aspect Sensitivity

"We conclude that aspect widths of the 150-km echoes are smaller than those of the electrojet and that the central tendency of 0.05° presented above can be considered an upper bound of the aspect width of the 150-km echoes."

150-km Experiments: Oblique vs. Perpendicular

Perpendicular Spectrograms after coherent integrations

Perpendicular Spectrograms without coherent integrations

Oblique spectrogram

Incoherent Scatter Spectra

- Spectra are wide (>1000 m/s or 300 Hz at 50 MHz) and independent of α within typical antenna beam widths.
- Spectra get narrower (less than 150 m/s) for smaller α and change very quickly.
- Measured spectra results from a convolution of spectra with different widths due to finite antenna beam width.

150-km Spectra: Oblique vs. Perpendicular

150-km Perpendicular Parameters

150-km Oblique Parameters

Faraday Density Experiments (1)

For Incoherent scatter, Power is proportional to N

Faraday density experiments (2)

150-km echoes appear to correlate with density depletions/enhancements below or above.

Digital Ionograms (VIPIR)

VIPIR Simulated profiles

VIPIR Ionograms: Every 2 minutes

150-km observations at 50 MHz

VIPIR "Range-time" parameters

Plasma Frequency vs. 150-km irregularities

Equatorial Daytime Valley Region

- In this region occurs the transition between the dominant molecular ions of lower altitudes and F-region dominant atomic oxygen ion.
- Collisions with neutrals start to be less important as the altitude increases.
- Magnetic field lines around 140–170 km are mapped to both the north and south E regions that are located outside the EEJ belt.
- Intermediate layers are known to occur at these altitudes but so far they have not been observed at equatorial regions during the day.
- Large electron to temperature ratios are expected and observed during the day.
- Maximum photoelectron production rate occurs around 150 km.
- Highly-structured electron density profiles (altitude, time, and horizontal?)