Full profile incoherent scatter analysis at Jicamarca

D. L. Hysell¹, F. S. Rodrigues¹, J. L. Chau², and J. D. Huba³

(1) Earth and Atmospheric Sciences, Cornell University, Ithaca, NY
(2) Radio Observatorio de Jicamarca, Instituto Geofísico del Perú, Lima
(3) Plasma Physics Division, Naval Research Laboratory, Washington, DC

coded pulse data

long-pulse data

URSI 2008 – p. 3/2

ambiguity functions

full profile analysis

inverse methodology

- Problem is to find density, temperature, and composition of ionosphere consistent with lag-product measurements (1600) within confidince limits (determining bandwidth, pulse width, integration time). Must begin with sufficiently accurate lag products, error estimates.
- Strategy is to solve the forward problem, iterate using nonlinear damped/augmented least squares methodology (regularization).
- Discretization: parameterize temperature, composition curves by finite number of points (20) and fill in using cubic B-spline interpolation.
- Problem is mixed determined (no exact solution, many statistically indistinguishable solutions) and poorly conditioned (solutions to noisy data problem typically very oscillatory).
- Regularize by introducing prior information to cost function.

cost function

Minimize penalty composed of the following elements

- \checkmark prediction error norm $e^t C_d^{-1} e$
- $||T_e''||_2^2 ||T_i''||_2^2$ temperature roughness
- $T_i/T_e \leq 1$ temperature ratio
- $||H^{+''}||_2^2$ hydrogen ion roughness
- composition fractions [0,1]

12 LT

3 *L***T**

24 hours

SAMI2 comparison

May '08

alternating code

alternating code

- Full-profile analysis will permit the first comprehensive, time-resolved measurements of plasma density, temperature, and compisition profiles with drifts at Jicamarca.
- Validation compare other modes?
- More meaningful comparisons with *in situ* (RPA) and radio propagation (TEC, occultation) measurements from space now possible.
- Thermal balance, ion composition, and photoelectron transport studies getting underway.
- Substantial improvement in noise estimation, debris removal and transmit pulse characterization should facilitate new analyses, including conventional drift measurements.