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Coherent radar imaging: Signal processing
and statistical properties

Ronald F. Woodman

Jicamarca Radio Observatory, Instituto Geofisico del Peri, Lima

Abstract. The recently developed technique for imaging radar scattering irregularities
has opened a great scientific potential for ionospheric and atmospheric coherent radars.
These images are obtained by processing the diffraction pattern of the backscattered
electromagnetic field at a finite number of sampling points on the ground. In this paper, we
review the mathematical relationship between the statistical covariance of these samples,
(££1), and that of the radiating object field to be imaged, (FF'), in a self-contained
and comprehensive way. It is shown that these matrices are related in a linear way by
(??T) = aM(FFT)MTa*, where M is a discrete Fourier transform operator and a is a
matrix operator representing the discrete and limited sampling of the field. The image, or
brightness distribution, is the diagonal of (FF'). The equation can be linearly inverted only
in special cases. In most cases, inversion algorithms which make use of a priori information
or maximum entropy constraints must be used. A naive (biased) “image” can be estimated
in a manner analogous to an optical camera by simply applying an inverse DFT operator to
the sampled field f and evaluating the average power of the elements of the resulting vector
F. Such a transformation can be obtained either digitally or in an analog way. For the latter
we can use a Butler matrix consisting of properly interconnected transmission lines. The
case of radar targets in the near field is included as a new contribution. This case involves
an additional matrix operator b, which is an analog of an optical lens used to compensate
for the curvature of the phase fronts of the backscattered field. This “focusing” can be done
after the statistics have been obtained. The formalism is derived for brightness distributions
representing total powers. However, the derived expressions have been extended to include
“color” images for each of the frequency components of the sampled time series. The
frequency filtering is achieved by estimating spectra and cross spectra of the sample time
series, in lieu of the power and cross correlations used in the derivation.

1. Introduction A coherent radar makes use of enhanced index
of refraction fluctuations produced by either iono-
spheric or atmospheric irregularities. Wind profilers,
mesosphere-stratosphere-troposphere radars, and radars

The first successful observations were obtained at the 10 the study of E'and F'region ionospheric irregular-

Jicamarca Radio Observatory, Lima, Peru, using the ities are examples of such radars. Imaging the irreg-
“coherent” radar mode [Kudeki and Siricd, 1991; ularities which produce the scattering is providing

Sirici, 1992; Hysell, 1996; Hysell and Woodman a better understanding of the physical mechanisms
! ’ ’ ’ " responsible for their formation.

Some of the radar “images” of irregularities pre-
viously shown in the literature [e.g., Woodman and
La Hoz, 1976], although loosely interpreted as two-
dimensional (east-west and vertical) pictures, are ac-
tually range-time-intensity (RTI) plots. RTT plots
Paper number 97RS02017. could be interpreted as slit-camera pictures, but with
0048-6604/97/97RS-02017$11.00 their inherent limitations. The limitations come
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One of the most important advances in the last
few years in the field of atmospheric and ionospheric
radar techniques is the use of imaging techniques.

this issue].

Copyright 1997 by the American Geophysical Union.
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about because of the nonfrozen nature of the target
and its possible two-dimensional horizontal structure
in the most general case. In this paper, we consider
real three-dimensional images in time. The time di-
mension is represented as a time sequence of images
in a movie fashion. Although three-dimensional im-
ages (horizontal cross section and range) have not
been attempted yet, we include their theory in this
review. It just involves a redefinition of the indices
in our vector and matrix notation.

Doppler sorting the echoes adds one further dimen-
sion. It makes possible three-dimensional “color”
movies. The number of colors can be as large as
desired, depending on the structure of the Doppler-
frequency spectrum. The study of F region irregu-
larities, with their large number of spectral features
[Woodman and La Hoz, 1976], can benefit greatly
from this possibility. In general, the possibility of
imaging in coherent radars opens a whole new hori-
zon in the field of atmospheric and ionospheric re-
search.

Imaging techniques have been used in radar and
radio astronomy for quite some time. There is ex-
tensive literature on the subject [e.g., van Schoon-
eveld, 1979a; Ostro, 1993, and references therein].
Ionospheric and atmospheric radar imaging tech-
niques can benefit from this experience, and indeed
they have done so. Nevertheless, there are sufficient
differences with these astronomical applications to
warrant making a review of the fundamentals of co-
herent radar imaging and its signal processing re-
quirements in a single comprehensive unit. This is
the goal of this paper. It is hoped that it will be
useful to students and researchers entering this new
field.

Radar astronomy takes advantage of the rotation
of the planets and of radar ranging to produce an
image. Radio astronomy has a frozen sky to image
(and plenty of time to do so) and can take advantage
of the rotation of the Earth to change the projected
baseline of an interferometer pair. The different base-
lines are used to synthesize a large aperture with
different antenna spacings. Neither of these possi-
bilities is available for coherent radars. Furthermore,
the ionospheric and atmospheric irregularities are al-
ways changing, and their depth requires multiple im-
ages, which have to be obtained in a relative short
time. Since there are requirements specific to coher-
ent radar imaging, which the astronomical systems
do not have, and vice versa, a specialized treatment
is justified.
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Several new contributions that are included in this
review are the following: (1) the focusing of images
in the near field; (2) a discussion of the statistical na-
ture of the processes involved; (3) the introduction
of a vector and matrix notation, which simplifies the
treatment of two-dimensional images (actually three,
when range is included) and their full covariance sta-
tistics; and (4) the representation of sampling and
aperture truncation as a linear matrix operator.

There is a closer similarity between a coherent
radar image system and an optical camera than with
the other radio astronomy counterparts. We have
taken advantage of this similarity in what follows in
order to provide a better physical insight to their
common mathematical models. Coherent radar im-
ages change so quickly that the similarity is closer to
a movie camera than to a still one. In fact, most of
the images obtained so far have been put in the form
of video images (E. Kudeki and D. Hysell, personal
communications, 1996). Although it is not possi-
ble to publish them in present journals, they can be
and are distributed via the World Wide Web. These
“movies” are of great importance to the understand-
ing of the physical dynamical processes they depict.

A great difference between a coherent radar and a
camera 1s the ability to sample and process the ac-
tual radio electromagnetic field (not just the power)
in a digital form. In the radar case, the field can
be sampled and processed at the proper space and
time Nyquist rate, while it is impossible to do the
same in optics with present technology. Thus the
analogy can be used only to get physical insight into
the mathematical algorithms, not for the processing
techniques. Even in the radar case, the computa-
tional demand is very great, especially when one con-
siders that there are multiple images corresponding
to the different radar ranges. Fortunately, the infor-
mation content per unit time is not as large as in
optics, and computers are becoming faster and very
economical. It is not a coincidence, then, that coher-
ent radar imaging has been achieved only recently.

It is expected that the trend in rapid computer de-
velopment will continue. Therefore we have reviewed
the processing needs and algorithms, ignoring the
possible practical processing limitations with current
technology, and considered applications that have
not been implemented so far. Along these lines, we
present the theory of two-dimensional imaging with
arbitrary two-dimensional antenna distributions. We
will consider special simpler cases, amenable to im-
plementation with present technology, as particu-
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lar ones derived from the more general approach.
One particular case discussed is the use of a one-
dimensional nonredundant spacing array, such as the
one used recently at Jicamarca [Kudeks, and Siricd,
1991; Hysell, 1996; Hysell and Woodman, this issue].

We describe the mathematical model of the process
using matrix notation. Once the symbols are intro-
duced, this notation allows us to present the math-
ematics with greater simplicity. The fields are rep-
resented as column vectors. Matrix operators, with
a single-letter symbol, represent the field propaga-
tors, the effect of an aperture, and that of a focusing
lens. The operators act on the field column vector
by matrix inner products. The same operator, and
its transpose, operates on the full covariance statis-
tical matrices of these column vectors to obtain the
statistics of other linearly related fields.

Evaluating the statistics of the full covariance ma-
trix of the observable field presents no additional
complexity. It allows us to discuss the effect of some
linear operations that spoil the diagonal character
of the covariance matrix of the initial radiation field
that we are trying to image. Having expressions for
the evaluation of the covariance matrices is the first
step in making an error analysis of the estimated
image. In addition, optimum inversion algorithms
require full statistical description of the processes in-
volved. Simpler statistical concepts, like correlation
functions and power spectra, are obtained from the
principal (elements with the same index) and sec-
ondary (transverse) diagonals of these matrices.

The statistical mathematical problem is posed as
one of modeling the system, from reality to image
estimate, and then as one of inversion. In certain
instances, it is possible to invert by simply applying
matrix inverse operations. In others, it is not. Unfor-
tunately, some of the matrices are singular, requiring
modeling techniques with a priori constraints, includ-
ing those imposed by maximum entropy algorithms.
We do not cover the latter. We stop at posing the in-
version problem and specifying the constraints. For
its actual inversion, we refer the reader to the exten-
sive literature on maximum entropy methods [e.g.,
Smith and Grandy, 1985; Skilling and Sibisi, 1996]
and to the recent results presented by Hysell [1996].

An additional difference between an imaging radar
and an optical camera is produced by the ranging
possibilities of the first. An optical image projects
all the objects between the camera and infinity onto
a single plane. In a radar, it is possible to discrim-
inate between different surfaces by delay ranging to
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produce multiple separate images, one for each dif-
ferent range. In our discussions, we will assume that
this i1s always possible but will discuss only the imag-
ing processes corresponding to a single range.

We will first discuss the imaging of the total power
backscattered by the target. However, as in the op-
tical case, it is possible to have as many images as
“colors” (Doppler shifted spectral ranges) one wishes
to filter out. In the last section, we discuss what
is involved in producing multiple color images as a
modification to the earlier discussions.

2. The Mathematical Model of
Imaging

In order to gain some physical insight into the
definitions of some of the fields and their relation
to imaging, we will first consider the mathematical
model of an optical camera and draw an analogy to
a radar imaging system. We will define some of the
notation in the process.

In an optical camera the lenses have two functions:
first, to collimate the rays coming from an object in
the near (Fresnel) field before they go through the
aperture and second, to focus them again in the fo-
cal plane. These two functions are usually obtained
with two lenses (or sets of lenses), one above and
the other below the iris (aperture). The need for the
second function never exists in the radar case; one
can always project the image at infinity (Fraunhofer
field). The radar analog for the first lens is necessary
for images of “objects” in the near field. However, we
will discuss first, at length, radar imaging of objects
in the far field, which is the most common case. Thus
we require no lenses. In optics this is the case of a
pinhole camera. At first, then, we need to consider
the simple mathematical model of a pinhole camera
with no lenses. In a later section, we will treat the
case of radar near-field imaging and the implemen-
tation of a radar lens analogy.

2.1. A Pinhole Camera: A Fourier
Transform Operator

Figure la depicts schematically a pinhole cam-
era (the lens shown is needed for later discussion).
There are three important planes: the object plane,
the aperture plane, and the focal, or image, plane.
The size of the pinhole or aperture in the aperture
plane has been exaggerated for illustration purposes.
The following statements and approximations will be
valid only if the distances between planes, L, and Lo,
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are much larger than the pinhole. The condition to
meet is that the two planes, object and focal, have
to be in the far field of the aperture. That is, their
distances to aperture ratio, Ly /a and Ly/a, have to
be much larger than the aperture measured in wave-
lengths, a/A. The pinhole can be, and in fact nor-
mally is, very large in terms of a wavelength.

At any one instant, the optical electromagnetic
field at the three planes can be expressed as a com-
plex function of the respective two-dimensional po-
sitions, #,x, and 8. We shall use only their com-
plex scalar amplitudes, ignoring the vectorial nature
of the fields, to keep the mathematical symbolism
simple. There are four fields in these three planes:
F(0) and F(8), corresponding to the object and focal
plane, and f(x) and ]?(x), corresponding to the field
just above and below the aperture plane. The func-
tion f(x) is equal to f(x), for x within the aperture,
and zero elsewhere. It is convenient to represent the
object and focal plane field functions in terms of an
angular set of coordinates. We will take them with
respect to a set of orthogonal coordinates aligned
with the axis of the camera and centered at the center
of the aperture. We shall use the directional cosines
of a unit vector corresponding to the point in ques-
tion. Thus we define 8 = [sin(6;), sin(fy)]. Similarly,
0= [sin(l’l), sin(é’\y )], but with the negative direction
of the 2z axis. It is also convenient to express the x
coordinates in wavelength units, i.e., x = [k, k).
In terms of these coordinates, it can be shown [e.g.,
Ratcliffe, 1956] that

F(f) = c{\(x) (1)
Fe) = &f(x), (2)

where = stands for a Fourier transform pair with a
kernel of the form exp(+:0 - x). Note that we do not
need to make the usual approximation 8 = [0, 0y],
although its validity occurs so often that it justifies
our notation: the use of @ for the set of directional
cosines.

Notice we have used the same symbol for the cor-
responding functions above and below the aperture
plane, except for a modifying hat. A symbol with a
hat implies that the corresponding function has been
modified somehow by the aperture truncation. We
have used this notation convention throughout the
paper. In addition, we have used 8 for the angu-
lar variable of the image. Although it has the same
magnitude as the angle of the corresponding object
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point, 8, the hat reminds us of its independence and
that the angle is measured with respect to the same
camera axis but in the opposite direction to the one
used for 8.

If we ignore for a while, as a zero-order approxima-
tion, the effect of the aperture truncation and assume
f(x) = f(x), the above equations tell us that there
is a one-to-one mapping; that F(8) = CF(0)|,_5- In
other words, within a constant of proportionality, C,
the field at the focal plane is a homologous image of
the object. We could have reached this conclusion
using arguments borrowed from ray optics, but then
we could not have evaluated the real effect of trun-
cation. Let us see next what the effect of truncation
is.

Let us introduce a function a(x) to represent the
effect of the aperture such that

1, x within the aperture
0 elsewhere, (3)

a(x) =
a(x) =
and such that

fx) = ax)f(x), 4)
and define
A() = a(x), (5)

where = stands for a Fourier transform pair with the
same kernel as before.

It can be shown, using the convolution theorem,
that the relationship between the object and the focal
fields is then

F(8) = CA(8) * F(8)|,_5- (6)

The asterisk above implies a convolution operation.
The imaging therefore still exists, but I/';(,O\) is a
blurred or smeared representation of F(6). The
smearing (convolving) function A(0) is a narrow func-
tion of @ of the order of A/2a, where a is the scale
size of a(x). This operation is illustrated in Figure
la by showing less structure in F (5) than in F'(0).

Note again that a pinhole, despite its name, can-
not be modeled or approximated by a(x) = §(x). Its
finite size, measured in wavelengths, is important.
In fact, the larger the aperture the better the perfor-
mance of the pinhole camera (the same for the radio
analog). As we have mentioned above, it needs to be
small only with respect to the distances to the object
and the image plane, L; and L.
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Figure 1. (a) Schematic representation of a pinhole camera. (b) Schematic realization of a
discrete “radio camera” by means of an antenna array and a DFT “black box” drawn as an
overlay of Figure la. Refer to the main text for symbol definitions. The lenses are needed

only for objects in the near field.

We derive three important conclusions from the
above discussion: (1) A pinhole camera is a per-
fect Fourier transform operator acting on the field
present within the aperture (equation (2)); (2) all
the information about the image (not the object!) is
present in the field at the aperture; and (3), the im-
age is a smeared representation of the object (even
under proper focus, as we shall see later). The same

holds true at radio frequencies, but obviously it is
impossible to construct a pinhole radio camera; the
dimensions would be enormous if we are to satisfy
the La/a >> a/) >> 1 condition.

The analogy is only physically realizable down to
the aperture. In order to obtain an image, we need to
find alternative ways of performing the same Fourier
transformation performed by the propagation within
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the space between the aperture and the image plane
represented by equation (2). A digital approach is
obvious, but later, and in the appendix, we will also
discuss one possible analog implementation. In ei-
ther case, we would have to sample the field at the
aperture plane. For this we need an array of antennas
within the aperture, i.e., where a(x) # 0. To stress
the optical analogy, we could even imagine making
a hole in the opaque ground (not necessary!) and
placing an even larger array of sampling antennas
slightly under, including the region outside the aper-
ture. Only the ones inside the aperture would sample
nontrivial values of the field, so we can obviate the
construction of the ones below the opaque ground
and replace them and their corresponding receivers
with dummy lines with zero amplitudes. Such a con-
ceptual picture is depicted in Figure 1b. The analog
to the camera proper would then be a “black box” (of
realizable dimensions), as the one depicted in Figure
1b, capable of performing the Fourier transformation
of this sampled and truncated f(x) field, [ﬁ(] The
inputs to the box are the output of the antennas and
corresponding receivers plus the mentioned dummy
lines, and the outputs would represent the sampled
image field, [Fp]. With this picture in mind, we can
identify the corresponding radio fields f(x) and f(x)
as the fields just above and below the hypothetical
perforated opaque ground. The set [fx] and [fx]
stand for the sampled representations of the same
fields. Notice that we have used brackets and indices
for the discrete representations of the corresponding
continuous functions. The symbol for the index is the
same as the one used for the independent variable in
the corresponding continuous function. We shall use
this notation convention throughout the paper.
There is an additional operation performed in a
camera that needs to be discussed. It is the detec-
tion and recording of the image. In an optical pho-
tographic camera, this is performed by a film, sensi-
tive to the average intensity (integrated power) of the
field at the focal plane, B(8) = (ﬁ(@)ﬁ(@)*) Notice
we have used a hat over B to differentiate it from the
real brightness of the object, B(6) = (F(0)F(0)*),
it is trying to image. This operation can be per-
formed in the radio case by standard analog, digital,
or hybrid techniques, all of which involve the averag-
ing of a detected power at each point of the equiv-
alent “focal plane”, that is, at each output of our
Fourier transform black box, as illustrated in Figure
1b. This reduces, on the one hand, the amount of re-
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quired information to be recorded, and on the other,
1t requires a statistical treatment of the instrument,
given the random nature of the fields. The recorded
information is depicted as sampled lines in Figure 1b
labeled [By].

At this point, it is worth mentioning that the usual
case of a radar or radio antenna connected to a single
receiver and power detector is analogous to a camera
with a single grain of light-sensitive recording emul-
sion at only one point in the focal plane. This is
certainly a waste of information. What we try to
achieve with imaging is the full use of a given aper-
ture (antenna) to detect in parallel the radiation in-
tensity coming from several different directions, i.e.,
to make use of all the information available in the
electromagnetic field available at the aperture of the
antenna, just as the optical camera does.

We should also mention that in photographic op-
tics (excluding holography) one is seldom interested
in the actual instantaneous electromagnetic fields
F(0) and F(0). In fact, they are never available as
observables. A description of the brightness of the
object B(@) and its image B(6) is sufficient. How-
ever, this is not the case in radio imaging. In radio
and radar imaging, one does sample the instanta-
neous electromagnetic fields. This justifies our con-
cern with the properties of the former.

We are confronted with an additional conceptual
problem. F(6) can be highly structured. Its struc-
tural size is determined by the coherence length of
the scatterers, (which can be as small as a Debye
length in the case of an incoherent scatter radar) and
by their distance from the aperture defining the angle
they subtend. If, as an approximation, we place the
object field at infinity, the angular size of the struc-
ture would reduce to an infinitesimal width. This
very small structure, in turn, because of its Fourier
relationship with f(x), implies the need for a very
large domain for x. Fortunately, this large domain
is only a mathematical construct, which can be as
large as necessary. The practical implications will be
discussed later in the image estimation section. At
this time it is sufficient to say that it can be taken
as finite with no practical consequences.

2.2. Discretization of the Aperture and
Image Plane Field

The optical camera performs a continuous trans-
formation on continuous fields. In drawing the radar
analogy, we have already mentioned the need for a
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discrete sampling of the fields. Therefore it is appro-
priate that we discuss its effects.

rrn /0N L

The presence of sin(#) terms in the kernel of the
Fourier transform automatically limits the maximum
spatial frequency in fbe wnerti Te ﬁelﬂ The max-

imum values th ariables, sm( 0
and sin(fy), take are limited by IGI = (sm b, +
sin? §,)1/? = 1. Larger values correspond to evanes-
cent waves, which are not in the radiation fields con-
sidered here. Thus F'() is “band-limited” and f(x)
can be sampled at the Nyquist “frequency”, which
can be shown to be A/2. Furthermore, in accor-
dance with the previous section the x domain can
be taken as finite, and therefore f(x) can be repre-
sented by a finite number N of samples, fx. It is
also up to us to define the shape of the domain. For
convenience in evaluating its discrete Fourier trans-
form, we will define it as being rectangular and much
lmger than the aperture. Within this domain we will
take N = n x m evenly distributed samples. The
aperture, on the other hand, can have an arbitrary
shape. We will use the same domain, for the time
being below the aperture plane, and represent f ( )

\_/

by the same N number of samples, fx Of course,
as we mentioned before, we do not need antennas or
receivers to sample the zero values of the field out-
side the aperture. Furthermore, we will later discuss
computation economical ways of reducing N, taking

advantage of the trivial values outside the aperture.
This finite set of samples, [fx], contains all the infor-
mation available at the aperture and, consequently,
its discrete Fourier transform (DFT), [F5], contains
the same information.

The sampling of the field can be obtained by short
dipoles, A/2 apart. However, we are not forced to do
this if we are only interested in obtaining images in a
limited region of the sky. Just as in the case of a time

series, we can filter the [fyx] sequence and sample it at
a new and “slower” Nyquist rate (decimation). The
filter equivalent in our case is defined by the physi-
cal size of the antenna sampling element (not to be
confused with the size of the imaging array), which
can be larger than A/2. To each sampling antenna
element we can associate a weighting function con-
fined within its physical size, for example, 1 within
the antenna element and 0 elsewhere. The output at
the feed end of this element is then the convolution
of the radio wave field with the weighting function of
the antenna, sampled at the position of the electrical
center of the antenna. The effect of this filtering in
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at dlstances comparable to the size of the antenna
elements (proper Nyquist separation), does not lose
any further information. The new system would be
capable of producing an image within the pattern of
these larger antenna elements and with a resolution
defined by the even larger array defining the aper-
ture.

There is no direct optical analog to this spatial
filtering at the aperture plane. The closest would be
to block waves arriving from outside a central region
with a black cone (lens hood) extending from the
pinhole or by sensing a limited area in the focal plane.
The effect is similar but it is achieved in a different
way.

In the radar case, there is an additional way of
“filtering” and selecting a given small region of the
sky. One can use a transmitter antenna that only il-
luminates this given region. In what follows, we will
assume we have done so and that the proper sampling
antenna size and separation has been used. Further-
more, we will assume that the combined transmit-
ter antenna and sampling receiver antenna element
weigh to zero the object field outside the main beam
of the sampling antennas. In reality, it is impossible
to achieve this in an absolute way. In practice, it
is important to keep this limitation in mind, since
there is an implicit periodicity in the DFT which
would always alias undesired regions of the weakly
illuminated object outside the region into the main
beam of the sampling antenna .

2.3. Imaging in Matrix Notation

Being able to discretize continuous object, aper-
ture, and image field functions into a set of N sam-
ples allows us to use simple matrix notation. The no-
tation allows us to model mathematically a discrete
imaging system regardless of the method, analog or
digital, used to perform the DFTs. The sampled field
functions, introduced before, can be represented by
the following column “vectors”:

F = [Fp] (™
¢ = A ®)
f = [fx] (9)
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In addition, we would also need to discretize our
model for F'(0) introduced before. In order to avoid
the mathematical problems associated with its pos-
sible infinitesimal structure and the need for an infi-
nite large x domain, we will define it in terms of the
inverse DFT of f, namely,

F = [Fo]=M"'f. (10)

Notice we have used the term “vector” to describe
the sets of field samples, although they are actually
two dimensional, corresponding to the two dimen-
sions of the aperture. This allows us to keep the lan-
guage simple. We will use the term “matrix” only for
the linear operators and covariance matrices defined
next, which are actually four-dimensional matrices.
The doubling of the dimensions are shown explicitly
by the use of a two-dimensional bold index. The in-
dex O stands for evenly distributed values of sin 6,
and sin 05, and the index x stands for evenly distrib-
uted values of kz1 and kz5. The notation is also valid
for one-dimensional imaging by simply reducing the
indices to a single dimension. We will use bold letter
symbols for vectors and bold sans serif for matrices.
We will use indexed terms within brackets whenever
we want to show explicitly the contents of a vector
or a matrix.

In matrix notation, equations (1) - (4) introduced
for the pinhole camera transformations become

f = MF (11)
f = af (12)
F = M7'f, (13)

where M and M~ stand for the DFT kernel matrix
[exp(—20 - x)] and its inverse, [exp(i@ - x)], respec-
tively. The effect of the aperture has been modeled
above by a linear operation involving a diagonal ma-
trix @ = [ax/0x'x]. Here x’ is a dummy index which
will collapse in the operations involving a. We no
longer need to assume that the ax terms are either
zero or one. We will allow them to take an arbitrary
complex value. Their amplitude and phase represent
the weight and relative phase associated to each sam-
pling (antenna) element of the aperture array. This
will become useful later when we talk about nonre-
dundant arrays, lenses, system inaccuracies, and ar-
ray steering. By substitution of equations (11) and
(12) into (13), we can write the equivalent of the
pinhole camera equation (6) as
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F = AF, (14)

where A is the matrix DFT of a, i.e.,

A=M"'aM. (15)
Notice that because of the diagonal nature of a and
the properties of the DFT operator M , the matrix
A is Toeplitz; that is, its elements have the property
[A45] = [45_,]. Furthermore, we can associate a
single-dimensional vector to both matrices, such that
one is the DFT of the other, i.e.,
[ax] = M[46]. (16)

Here [ax] and[Ag] stand for the principal diagonal
and the cross-diagonal set of terms of the matrix a
and A, respectively. Equation (14), then, is actu-
ally a convolving operation in matrix notation, as it
should be based on the discrete convolution theorem.

3. The Statistics of Imaging:
Brightness and Visibility

Since in our application, and in most other imag-
ing applications, the object electromagnetic field is a
random process in both space and time, we are not
interested in particular realizations of this field but
rather on its statistics. We are mainly interested in
a good estimate of the angular power spectrum

B(6) = (F(6)F(9)), (17)
also called the “brightness distribution” by radio as-
tronomers [e.g., van Shooneveld, 1979a], and more
specifically in a discrete representation of it: [Bg] =
(FaFy)].

[Be] as defined above represents only the diagonal
of the more general statistical matrix (FF!). Here,

and in what follows, the cross symbol stands for the
vector or matrix adjoint, i.e., for the complex conju-
gate of the transpose vector or matrix.

For all practical purposes, F(8) can be considered
a finite white nonhomogeneous random process (spa-
tial analog to nonstationary in time processes) of fi-
nite angular length. Its “whiteness” comes from the
smallness of its structure, and its finite length is due
to the finite illumination of the transmitter antenna
and the receiver antenna element pattern (in any
case, |6 is never bigger than 1). Therefore (FF1)
is a diagonal matrix, and [Bg] defines it completely.
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The process is non-homogeneous because its average
properties given by Bg depend on their position 6.

We have to recognize at this time two length scales:
(1) the length scale of the random nature of the ob-
ject field given by the correlation length of the scat-
terers and (2) the structural size of the brightness
distribution. The difference is illustrated in Figure
la by the structures shown by the continuous and the
dashed line representing the two. Consistent with
our far-field assumption, when we project our object
to a plane or sphere at infinity, any finite size that
the scatterer correlation length may have is projected
into a practically infinitesimal angle. On the other
hand, we are assuming there is a finite scale size in
the structure of the brightness distribution, which we
are trying to image. Therefore the first length scale
is much smaller than the second. It is this relative
smallness that allows us to model the object field as
a white process and its statistical matrix (FF') as
diagonal.

Notice that the smallness of the angular correla-
tion length with respect to the brightness structure,
and therefore the diagonal nature of (FFT'), could
be questioned in the case of partial reflection struc-
tures or very aspect sensitive scatterers, especially
when the object is in the near field. Such cases may
require a special treatment not included here. Our
treatment would still be a valid approximation if the
characteristic width of the nontrivial diagonal band
of the (FF') matrix is smaller than the angular res-
olution determined by the aperture.

The whiteness of the object field implies that any
one point in the aperture plane receives radiation
from a large (infinite in the limit) number of inde-
pendent scatterers. The large distance between the
object and the aperture plane implies that all points
in the latter are subject to the same radiation, except
for the phases of the independent contributions. This
makes the radiation field at the aperture plane, f(x),
a wide sense homogeneous Gaussian process (based
on the central limit theorem). As such, it is fully
characterized by its spatial autocorrelation function,

v(r) = (F(0) f*(x)), (18)

where r = x’ — x. The autocorrelation function v(r)
is called visibility function in radio astronomy jargon
[e.g.,van Shooneveld, 1979a).

In matrix representation, the full statistical prop-
erty of the field at the aperture plane is given by
(f£1). The linear relationship between the object
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and the aperture fields expressed by equation (11)
allows us to also express (fff) linearly in terms of
(FF1), namely,

(££1) = M(FFT)M! (19)
Given the diagonal nature of
(FF') = [Boboo] (20)

and the exponential nature of the Fourier transform
kernel, it follows that (fft) is Toeplitz; that is, it
can be expressed in terms which depend only on the
difference of the matrix indices as

(fff) = [vx—x]. (21)
The Toeplitz nature of (ff!) corroborates our ear-
lier deduction about the homogeneity of the process
represented by f, at least in the restricted sense.

The matrix subset [Bg] and [vy] have dimensions
N, i.e., the dimension of a “vector” (the quotes re-
mind us of the possible two dimensionality of the r
and 6 indices), and we will represent them by B and
v, respectively. They correspond to the discrete rep-
resentation of the brightness and visibility function.
It follows from (19) that they also form a DFT pair,
ie.,

v =MB, (22)

if we use r and 6@ for the indices of the DFT matrix,
M. Thus not only the field functions are DFT of
each other but their characterizing statistical func-
tions are as well. This is not surprising since they
correspond to an (spatial) autocorrelation function
and a (angular) power spectrum. It is just the well-
known Wiener-Khinchin theorem which follows from
equation (19).

We can also write directly the relationship of the
statistics of the field immediately below the aperture

(antenna) plane in terms of the one above. It is given
by

ffh) = a(ffh)a’, (23)
or, combining (19) and (23), by
) = aM(FF)M'a". (24)

In the usual case that the diagonal matrix a has ei-
ther 0 or 1 as elements, the matrix (ff') is identi-
cal to the (ff') matrix in a submatrix masked by
the nonzero elements of [axax/*] and zero elsewhere.
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In general, including cases where [ay] are arbitrary
complex coefficients, which we will consider later, the
elements of (f f T) are given by

[(FxFi)] = [ fa ) axal]

in the nonzero submatrix at the center. It is clear,
then, that in either case the (f f T) matrix is no longer
Toeplitz and its matrix DFT

(25)

(FFH = ML {ffH)M, (26)
representing the statistics at the camera image plane,
is no longer diagonal. The latter can also be ex-

pressed in terms of the object field statistics,

(FF') = A(FFHAT, (27)
with elements
(EE] = [A5_gll(FaFe )AL, 5] (28)
Nevertheless, its diagonal elements,
By = (F5F%), (29)

continue to play the most important role. It is the
equivalent to a camera picture, i.e., the equivalent to
the energy deposited in the sensitive film at the focal
plane of an optical (pinhole) camera. Asin B, we can
define an N-dimensional vector B. Its relationship
with the actual brightness distribution, B, is

B=A’B (30)
where A? is a Toeplitz matrix operator with terms
given by

A? =[45_ oA; 9]

(31)
Therefore equation (30) represents a convolving op-
eration. In the particular case that the aperture is
sampled by an evenly spaced square array of iden-
tical antenna elements, with a square aperture, a is
real and symmetric, and therefore Ag is also real and
symmetric. Furthermore, the elements of A? are the
square of the elements of A, Ag®. This justifies the
superscript 2 in the symbol for AZ.

For non-Toeplitz matrices, there is an alternative
definition (to the one used before) for the autocorre-
lation function of a process, which we can use for the
truncated field f. We will define a cross-correlation
vector ¥ in terms of the inner product of f = [fx]
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with a displaced reproduction of itself f, = [ﬁc+r],
namely, N
v =[v] = [(f-£7)/N]. (32)

Notice that the index x + r can be larger than the
domain bounded by n and m. Thus, for the definition
to be useful, we have to periodize f with periods n
and m in a checkerboard fashion. Then, it can be
shown that ¥ and B also form a transform pair, i.e.,

v = MB. (33)
However, this periodizing could also bring us some
problems, especially when we will later try to reduce
the size of the domain of x in order to reduce the
number of computations. Because of the periodicity,
the definition of v in (32) folds values correspond-
ing to a displacement (am, fn) — r into the desired
displacement r, where o and 3 can take any integer
value. This aliasing effect is harmless if we keep the
size of the domain at least equal to twice the size of
the aperture, since the folded values would be zero.
More precisely, m and n should be larger than or
equal to (2m, — 1) and (2n, — 1), respectively, where
mg and n, are the maximum projected dimensions of
the aperture. This condition could be relaxed if the
sizes of the intrinsic nontrivial values of the visibility
function themselves are smaller than the aperture.

Let N, be the number of nonzero elements f, of f.
Since f and f are linearly related, fa 1s also a N,-
variate Gaussian process. Its Gaussmn nature im-
plies that we can write its full N,- dimensional prob-
ability distribution function in terms of N2 nontriv-
ial covariance matrix terms implicit in (ff'f) This
allows us to evaluate higher-order statistical proper-
ties of the process f in terms of members of the same
second-order matrix. This is important in the evalua-
tion of errors in any brightness distribution estimate
derived from (f ff), as well as in determining opti-
mum estimation algorithms. Both require fourth-
order expectations, but these can be expressed in
terms of second- order expectations. Note that the
same can be said about the full N-variate process f,
including its zero members; we just have to include
the trivial zero values of the N x N covariance matrix
(££1) in the discussion.

It should be recalled that any linear operation on a
Gaussian process generates another Gaussian process
(although not necessarily homogeneous). Therefore
F and any other linearly derived process from fis
also Gaussian, and their higher-order statistics can
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be expressed in terms of the members of their own
second-order statistical Matrix, like (FFT) This jus-
tifies including and limiting our discussion to second-
order statistics.

4. Imaging Estimation Algorithms

We can express our imaging radar estimation prob-
lem as follows: Given a sampled representation of the
backscattered radiation field in a finite area of the
aperture plane, f (i.e., the output of a finite num-
ber of antennas), estimate the brightness distribution
B(8) corresponding to a particular radar range.

Our first step is to estimate its discrete representa-
tion, Bg, from which one can obtain B(8) by proper
interpolation (since we have sampled f at the Nyquist
frequency). There are several alternatives to solve
the problem. We will group them into three pos-
sible approaches: the radio camera analog, a linear
inversion, and a parameter estimation approach.

4.1. The Radio Camera Analog

The optical camera analog provides us with our
first algorithm: We perform an inverse discrete
Fourier transformation of the sampled aperture field,
f, and evaluate the power of each element of its in-
verse transform, given by B. The approach is rep-
resented schematically in Figure 1b. The DFT can
be performed either digitally or in an analog fashion.
For the analog approach, we use a Butler matrix.
We are including a description of such a matrix in
the appendix. .

We expect that B gives us a good sampled estimate
of B(6). Although the corresponding continuous al-
gorithm works well in the optical case, it results in a
biased estimator in most radio cases. The difference
is due to the much larger apertures used in optics,
when measured in wavelengths. The technique works
well only in those cases where the brightness distrib-
ution structure is much larger than the width of the
convolving function A(0)2 or, equivalently, when the
characteristic size of the visibility function is much
smaller than the aperture size.

One practical question arises: How large should
the number of samples, N = m x n, be? That is,
how many zeroes should we include in £? On the one
hand, for our mathematical formalism to be more
valid, we should make N large. On the other hand,

intuition tell us that a large N adds too many ze-
roes into our transformation box, which provide no
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further information. Certainly, we do not want to
burden ourselves with computations that bring us
no benefit. In fact, from DFT properties we know
that increasing the x index domain with further ze-
roes increases the sampling resolution of B (6). The
structure of B(0), in turn, is limited by the width
of the convolving function A(8)°. Higher sampling
resolution is therefore redundant. Thus the domain
of the index x does not need to be larger than twice
the size of the aperture, 1.e., the size of the nontrivial
part of the Fourier transform of A(8)?. Tt should not
be less, unless the intrinsic size of the structure of
B(8), determined by the structure of B(6), is wider
than A(6)>.
ple 13(5), losing available information. These are the
same limits we discussed in the previous section to
avoid aliasing in V.

Even if we take the proper number of terms in the
transformation, we can qualify the above algorithm
as a naive estimator. Because f is the DFT of F,
one is naively ignoring the effect of the aperture and
is inverting f by applying an inverse DFT, hoping it
will provide a good estimator of B.

Taking less could effectively undersam-

4.2. The Linear Inversion Approach

One could expect, taking advantage of the linear
relationship between (f ') and (FFT) given by equa-
tion (24), to be able to obtain (FF1) by direct linear
inversion. However, we are faced with a problem:
The matrix a is singular, because of its many zero
columns and rows, and cannot be inverted. Never-
theless, it is possible to do the inversion in certain
cases, in an approximate way.

Let us assume that the region where

(££1) = [vx—x'] = 0

can be made exactly equal to zero without any prac-
tical effect in the corresponding brightness distrib-
ution. Having done so, the nonzero region forms a
diagonal band centered on the diagonal of the (f f1)
matrix. Given its Toeplitz nature, all the terms on
diagonal lines parallel to the center diagonal have the
same index difference r = x — x’, and therefore they
take the same value given by (fxf) = vx—x/. Thus
we need to evaluate only one element in any of these
diagonal lines to obtain the corresponding value of
vx_x' and of all other terms of the matrix in the
same line, no matter how large is N. It is obvious,
of course, that if more than one term is evaluated,
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we can average them to get a statistically better es-
timate of the same value.

Within the matrix (f f1), we can identify a central
“square area” (actually a submatrix of four dimen-
sions) corresponding to the same positions where all
the values of the elements of a are nonzero. Within
this submatrix, equation (25) holds, and all of its
terms can be evaluated from the terms of ( fx f /) by

(Fxfir) = (FeFu)/(axax). (34)

Let rmax be the largest index r can take with
a nonzero value of v,. Now we should consider
two cases: Either the submatrix is larger than the
nonzero band or it is smaller. If larger, we say that
[ve] has not been truncated by the aperture. We
would have obtained at least one estimate of vy,
and proportionally more estimates for the values of
vy with smaller values of r. Our problem would be
solved. We would have all nontrivial values of [v;],
and [Bg] could be obtained by transformation using
equation (22). Having v, we could also construct
(£ £1) for the whole domain of indices xx’.

If the submatrix is smaller than the band of non-
trivial values of [v.], we say that the visibility func-
tion has been truncated by the aperture and we have
an incomplete solution. It is still possible to find a
solution to our problem, provided we make further
assumptions or have additional information. This is
the subject of the next subsection.

In either of the above two cases, we need to eval-
uate expenmental]y the values of the (f ff) matrix
terms, fx fx,). In fact, this evaluation is the one
that takes the most effort, since it involves the av-
eraging, preferably in real time, of tens to hundreds
of thousands of these products per second. This is
to be compared with the inversion operations that
are made once per integration period, i.e., once in
times of the order of one to a few minutes. We can
estimate the terms of (ff') using two alternatives:
(1) by directly evaluating each nonzero element of
the matrix (/f?T), (fxf:t,), l.e., by cross correlating
the corresponding outputs of the sampling antenna
elements of the array, or (2) through DFTs using
fast Fourier transform algorithms. The second al-
ternative involves several steps: (1) Apply a inverse
DFT, using a FFT routine, to each f to obtain F; i(2)
estimate B by squaring and averaging several real-
izations of them;(3) from B, obtain V via equation
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(33); and (4) solve equation (32) to obtain the ele-
ments (fy f) of (££1).

We should note here that equation (32) could be
linearly inverted to obtain the elements (Fufr) of
(f£1), only if the conditions on the size N of the
domain, discussed in the previous section, are satis-
fied. Only then, would we have (2mq — 1)(2n, — 1)
equations necessary to obtain the equal amount of
independent (real and imaginary) terms in the ma-
trix (/f/ff) Otherwise, the folded values could not
be unfolded. This is in agreement with our previous
evaluation of the amount of zero padding needed in
order not to undersample B(0) The importance of
zero padding in preserving the amount of information
is often overlooked in related spectral evaluations.

The only reason we would use the second alter-
native is the hope that going through a FFT would
require fewer mathematical operations. We should
recall that it takes only N log N operations to per-
form a FFT compared with N(N — 1) to evaluate a
cross-correlation matrix. Furthermore, there is the
possibility to evaluate the DFT instantaneously in
an analog way by means of a Butler matrix. The
last two operations, 3 and 4 above, are performed
infrequently, only once per imaging experiment.

One could be tempted to stop at step 2 above and
use B as an estimator of B. If we do, we would
revert to our first naive estimator. In contrast, if we
transform back, as suggested, we are allowed to use
(34) to remove the effects of a. This is effectively a
deconvolving operation. It deconvolves the effects of
A?,

4.3. Parameter Estimation Approach:
Modeling and Maximum Entropy Method

Often we have the case of a truncated visibility
function mentioned above. In this case, we could still
estimate (ff!) using the linear inversion approach
described in the previous subsection, but only for val-
ues of r for which there is at least one nonzero value
of a corresponding member ayxa},. However, a trun-
cated estimate of the visibility function does not al-
low a direct inversion to obtain the desired brightness
distribution. Nevertheless, we have at our disposal
many inversion techniques based on modeling the
brightness distribution that conform to our (incom-
plete) estimates of the visibility function, provided
we can apply other constraints. Possible constraints
include any prior knowledge we may have about the
brightness distribution and its positive-real proper-
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ties and that the entropy of the model be a maximum
(least number of assumptions beyond what we actu-
ally know). The latter leads us to the very popular
maximum entropy techniques. It is not our intention
to review them here. Many good articles and books
[e.g., Smith and Grandy, 1985; Skilling and Sibisi,
1996] have been written on the subject. Many are
motivated by imaging in radio astronomy and, be-
fore then, by time series frequency spectral estima-
tion. Further discussions applied to coherent radar
imaging is given by Hysell [1996].

Effectively, the task is to extrapolate a tail to the
known part of the visibility function in a way that
conforms with the positive definite properties of an
autocorrelation function and with whatever a priori
information we have about the object field. This is
to be contrasted with the window weighting algo-
rithms (Hanning windows and others) of Blackman
and Tukey [1959]. Window weighting introduces fur-
ther biases in our estimates which narrow the corre-
lation function even further, with the consequential
further widening of any sharp object that we might
be trying to image. Even a hand-drawn extrapola-
tion of the tail would do better than any of the dif-
ferent weighting windows that have been proposed.

The possibilities of parameter estimation through
modeling can be illustrated with a simple example.
Let us assume that we have a priori knowledge that
there is a single scattering blob in the observable
area in the object plane that we would like to im-
age. That is, let us assume the brightness distribu-
tion is bell-shaped and that a Gaussian is sufficiently
close to model it for our purposes. We then model
the brightness distribution analytically, leaving free
the six parameters that define a two-dimensional
Gaussian. These parameters correspond to the blob
scattering strength, its two dimensional position, its
width along the major and minor axis of its ellipti-
cal cross section, and the orientation of these axis.
A given set of parameters uniquely determine the
shape of the visibility function for any displacement
r. On the observational side, let us assume we have
only four antennas in a 2 X 2 square array. With
them we can estimate a 4 x 4 element cross cor-
relation and power matrix, (?fT), but with only 9
(= (2x2—-1)(2 x2—1)) degrees of freedom. We can
use a least squares fitting algorithm to minimize the
difference between the predicted shape of the visibil-
ity function and the few measured points. No mat-
ter how narrow the blob is, i.e., no matter how wide
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the visibility function is as compared with the maxi-
mum r we can measure, we should be able to obtain
the six parameters that define the brightness distri-
bution. Therefore the resolution of the instrument,
using this technique, is not determined by the size of
the array as in the radio camera approach. It is also
clear that a larger number of elements would allow us
to fit a larger number of independent sources. On the
other hand, a linear interferometer [e.g., Farley and
Ierkic, 1981] with only two antennas is the simplest
array we can have. It can be used to determine up
to three independent parameters of the model we de-
cide to use. Recently, Huang et al. [1995] has deter-
mined five simple two-dimensional model parameters
of middle latitude ionospheric F region irregularities
using three antennas to form a two-dimensional in-
terferometer.

Although the basic philosophy of the maximum
entropy method is to minimize the number of as-
sumptions needed to find a brightness distribution
consistent with our data and with the maximum def-
inite positiveness property of the brightness-visibility
Fourier transform pair, it can also be interpreted as a
fitting procedure of functions of known shape. Max-
imizing an entropy of the form 1/(26) f_ee log B(6)d6
can be interpreted as a fitting of N — 1 Lorentzian
shapes, of different widths and location, to B(9) [e.g.,
van Schooneveld, 1979b).

5. Imaging the Near Field: Focusing

The representation of the field at the aperture
plane as a Fourier integral of the field at the object
plane can be interpreted as a superposition of plane
waves with phase given by the kernel exp(—:0 - x)
weighted by their amplitude F(6). The amplitude
F(6), in turn, is proportional to the field at the point
in the source specified by the angular coordinate 6.
There is an implicit assumption in the form of the
kernel that the waves are planar. This i1s justified
by our assumptions about the object plane being in
the far field. If we relax this assumption but as-
sume that the distance is still large enough for the
curvature of the field to be expressed in terms of a
quadratic surface within the aperture area, we can
analogously represent the field at the aperture plane
by the following integral:

f(x) = c/exp(—zO-x) exp(—x-x/R)F(6)d6. (35)
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Here R is measured in wave radians and represents
the distance to the object plane (actually a curved
surface) specified by the radar range. The second ex-
ponential is the phase correction due to the curvature
of the field at the aperture. It is a function of only
x and can be taken outside the integral. It plays a
similar role in the mathematical model as a(x). Let
us define b(x) = exp(—x - x/R). We can experimen-
tally modify our original aperture function, a(x), de-
signed for objects in the far field by multiplying it by
b(x)~! and create a new aperture function given by
a(x)b(x)~!. With this new aperture the field right
below the aperture plane is given by

F(x) = a(x)b(x)~'b(x) f(x) = a(x)f(x)

and we are back to the equation we had before.
Therefore all our previous discussions hold for this
case as well.

With the function b(x)~! we have effectively intro-
duced a radio lens to collimate the radiation coming
in from the near field back into plane waves. In other
words, we have created a virtual image of the object
farther out at infinity. We can, then, process this
virtual image in the same way we process objects at
the far field. We can say that we have “focused”
in the near field. However, we should note that fo-
cusing does not correct for the smearing effect of a
finite aperture. The image is still convolved by the
aperture function A(6)2.

The radio lenses can be implemented by introduc-
ing extra lengths in each one of the antenna elements
of the aperture array in order to correct for the unde-
sirable phase introduced by the b(x) term. In matrix
notation, the curvature of the field and the correct-
ing “lens” can be represented by two diagonal ma-
trices b and b~" with elements given by [bx0xx’] and
[bx16xx], Tespectively.

Alternatively, let

(36)

~

f' = abf (37)

be the sampled field without lens correction. The
desired statistics can also be obtained by applying a

poststatistics digital correction to (f’ T), namely,

F)=b' @ )b = a(ff')a". (38)
Here we have taken advantage of the commutability
of a with b, since they are both diagonal.

Being able to do a lens correction after the sta-
tistics have been evaluated has the advantage that
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it can be done digitally without computational bur-
den, since the correction is performed only once per
integration. Furthermore, in the case of a radar, the
correction could be different for different ranges. At
VHF, for instance, MST radars would require no cor-
rection for mesospheric heights, but it would be cer-
tainly needed at tropospheric ones.

Note that we do not need to focus the radar trans-
mitter. All we need is a source of illumination. The
phase of the transmitter is randomized by the statis-
tical independence of the scatterers.

Having introduced a correcting matrix b™!, we can
use the same formalism for other applications. It may
be that the gains and phases of the different ampli-
fiers and antennas in an imaging system may differ
from the ideal constant value. We then can devise
techniques to calibrate what the effects of these im-
perfections are in terms of a matrix b and apply a
correction b™! to the statistics, in the same way as
in the focusing scheme.

In addition, we could purposely introduce a phase
correction, linear with respect to x by means of a
proper b~1. We would then have introduced a “prism
lens” and steered the array to a new position. If done
after statistics, we would be extending to multiple
antenna arrays the poststatistical steering technique
introduced by Kudeki and Woodman [1990].

6. Economizing Antennas and Signal
Processing

The first possibility we have to reduce the num-
ber of antennas and computations is by reducing the
sampling arrays from two to one dimension. A two-
dimensional aperture is a necessary requirement for
imaging horizontally isotropic (or nearly so) irregu-
larities such as the ones studied with MST radars and
wind profilers. However, ionospheric irregularities
are highly anisotropic and can be represented by a
one-dimensional image obtained by a one-dimensional
array of antennas. One-dimensional images and ar-
rays imply enormous saving in computational re-
quirements. Nevertheless, it should be mentioned
that fortunately, the two-dimensional applications
happen to have a much slower information rate (longer
correlation times). Tropospheric processes, for in-
stance, are more than 2 orders of magnitude slower
than the ionospheric F region counterpart.

We have implicitly assumed, in what has preceded,
that our observational array of antennas is filling the
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aperture in an evenly distributed form. When we
introduced the function a(x) in equation (3), we as-
sumed it took a value of one throughout the aperture
and zero elsewhere. Later on, when we introduced
the matrix operator a in equation (12), we relaxed
these restrictions and made it more arbitrary, but
still confined the nonzero area covered by a(x) to a
relatively small area at the center of the x domain.
We would like to take advantage of this arbitrari-
ness and still be able to use the same mathematical
formalism for more economical apertures.

Next, we will consider sampling antenna systems
that are not evenly distributed or, equivalently, have
several of the antennas removed from an originally
evenly distributed set. The motivation for this is to
economize with the reduction of the number of an-
tennas and receivers needed to do the imaging and
to reduce the number of computations required to
estimate the (ffT) matrix. The system takes advan-
tage of the Toeplitz properties of (ff7). We have
explained how this is done in the previous section,
when we inverted equation (23) (at least within the
submatrix delimited by the nonzero values of a). Be-
cause of the Toeplitz nature of (ff1), it is sufficient
to estimate only one cross-correlation term fyx/ for
each possible r = x’ — x, to estimate v(r), and from
it the whole matrix.

The one-dimensional nonredundant spacing an-
tenna arrays are particularly economic. These are
the antenna systems that have been used at Jica-
marca for the first coherent radar imaging of E and F
region irregularities [Kudeki and Siricu, 1991; Hy-
sell, 1996; Hysell and Woodman, this issue]. They
are designed with the goal of reducing the number
of antennas with a maximum number of possible r’.
The “nonredundant” term in the name of the tech-
nique implies that there is only one pair of anten-
nas for each spacing, x — x’. This can be achieved,
but at the cost of having no pairs for some spacings.
The dilemma increases with the number of elements.
However, if some degree of redundancy is allowed, we
can obtain all spacings and still have an economical
system. Antenna arrays that approximate a nonre-
dundant spacing can also be designed for two dimen-
sions.

We are depicting in Figure 2, for illustrative pur-
poses, the center submatrix of a hypothetical cross-
correlation matrix (£ f1) of a linear array with a func-
tion a, = [0,0,...,,0,1,1,0,1,0,0,0,1,0,...,0,0]. The
darkest elements of the matrix correspond to the only
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indices where a crosscorrelation term (f; f%,) can be
estimated. The nonredundancy has been achieved,
but at the cost of missing the spacing corresponding
to r = 5. The figure also depicts an assumed v(r). It
shows some degree of truncation; that is, some non-
trivial values of v(r) have not been sampled at larger
r’s. The only way we can invert a (f/ff) matrix of
this type, with missing r at both the tail and main
body of v(r), is by using the modeling techniques dis-
cussed in the previous section, including maximum
entropy methods [Kudek: and Siruci, 1991; Hysell,
1996; Hysell and Woodman, this issue].

From the above point of view, a filled array pro-
duces a high degree of redundancy. On first sight,
redundancy appears to be superfluous. However, we
are estimating the characterizing statistical parame-
ters, and redundancy helps in reducing the errors of
the estimates in a given observational time. How
much redundancy is worth taking advantage of is a
matter of economics. In this regard, we should con-
sider that in many radars, we already have the an-
tennas. The receivers can be built at a fraction of the
cost of the antennas, and computer power is becom-
ing increasingly economical, with sufficient speed to
process a large number of channels in parallel.

7. Frequency Power-Spectrum
Imaging

The electromagnetic radio field at the aperture
plane is a random process in space and time. It re-
sults from the superposition of random time-varying
signals coming from different regions of the sky. In
the previous section, we have reviewed the techniques
available to us to estimate only the power level com-
ing from each angular region of the sky (brightness
distribution). However, we are not limited to just
this. We have taken this approach with the purpose
of keeping the concepts and mathematical notation
simple and with the idea of later extending the dis-
cussions and conclusions to the space-time domain.

As in the case of any random process in time, we
can consider the signal coming from a particular re-
gion of the sky as the superposition of signals of dif-
ferent frequencies, each with its own power. We can
then extend the concept of brightness and introduce
B(6,w), which can be interpreted as a frequency-
dependent brightness distribution. In practice, as we
did in space, we need to limit and discretize the fre-
quency domain and associate different brightness dis-
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Figure 2. Graphical representation of the center part of the a matrix for a nonredundant
spaced array as a mask to the (f fT) matrix.This could also be interpreted as the center part
of the resultant (/fff) matrix. The index x in this case is one dimensional, corresponding
to a linear array of antennas ( [a;] = [0,...,0,1,1,01,0,0,0,1,0,...,0]. Nonzero values of a,
are shaded, and those of aza, are darkened. It also shows the visibility function that a

samples in terms of the indices r = ¢ — z'.

tributions to the different frequencies. This is analo-
gous to color photography and vision, where different
images are obtained at different colors (frequencies).
To each frequency, there corresponds a given Doppler
shift imposed by the dynamics of the medium.

All the mathematical operations transforming the
fields at the different planes we have introduced in
the previous sections are linear. Therefore the dif-
ferent frequencies forming the radiation field we are
trying to image can be treated independently. They
do not “talk” to each other. All of our mathematical
formalism introduced before, as well as the discus-
sions, are valid for any one frequency component and
for all the components that contribute to the field.
All we have to do, then, to extend our discussions
to the space-frequency domain, is to replace the la-

beling indexes x by x,w and 6 by 6,w. The main
statistical matrices become

(FF") = [(FouFy )] = [Bowbes] (39)
(ffT) = [(fX,wf;',u;)] (40)
) = [(fewfow)l (41)

and all the equations derived for them before hold.
All of the above matrix terms shown in the right-
hand brackets are cross spectra (or plain spectra
when the indices @ or x are the same). However,
only the last one is to be evaluated experimentally,
since we only have access to the signal represented by
fx,w. There is one for each radar range. The spectra
and cross spectra can be evaluated using available
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standard techniques. The terms for the other ma-
trices, including the desired brightness distribution
function, are obtained by the same imaging estima-
tion algorithms described in previous sections.

Throughout this paper, we have assumed that the
irregularities produce a backscattered field, which we
would like to image. We have not been concerned
about the relationship between this field and the tem-
poral and spatial statistics of the medium that does
the scattering. For this, we refer the reader to a pa-
per on the subject by Woodman [1991].

Appendix: An Analog Implementation
of a DFT of a Radio Field:
The Butler Matrix

When we drew the radio analogy to a pinhole cam-
era, we conceptually introduced a black box capa-
ble of performing a DFT of the sampled field under
the aperture, fyx, such as the one depicted in Figure
1b. Although we are mainly concerned in this review
with the digital algorithms we have at our disposal,
it 1s interesting to note that it is possible to construct
such a black box out of interconnected transmission
lines. One could then effectively construct a radio
camera with analog parts. Even the visual image
could be constructed by connecting the output lines
of the box to light-emitting devices. The only dif-
ference with an optical camera would be the discrete
nature of the output.

A “black box” capable of performing a two-
dimensional DFT is known as a Butler matrix, af-
ter the name of its creator, Jesse Butler [Butler
and Lowe, 1961]. An almost identical scheme (plus
some additional ones) was presented independently
by Shelton and Kelleher [1961]. Both were moti-
vated to obtain multiple beams from a given array
of subantennas. Nevertheless, the application that
motivated them could not be called imaging prop-
erly, since it involved the switching of the available
beams to accommodate a single transmitter and/or
receiver.

A Butler matrix consists of a set of Nlog N “hy-
brid” circuits connected by means of cables of the ap-
propriate length. The hybrids themselves can be im-
plemented with cables. They are a four-port circuit
with a convenient characteristic: One of the two (out-
put) ports presents the sum, and the other presents
the difference of the other two (input) ports. The
scheme is shown in Figure Ala. Details are given by
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Butler and Lowe [1961], and Shelton and Kelleher
[1961].

Even more interesting is the fact that the Butler
matrix is exactly an analog implementation of the
fast Fourier transform (FFT). More interesting still
is the fact that it was published 5 years (!) before
the famous publication of Cooley and Tukey, [1965]
of the first digital implementation of the FFT algo-
rithm. It appears that despite the difference in time,
both developments were independent, since no ref-
erence is made in the later work to Butler’s matrix.
The exact correspondence between the two can be
appreciated in Figure Al, where we display a fig-
ure from Butler’s original paper [Butler and Lowe,
1961]and a graphical representation of a FFT taken
from Cochran et al. [1967]. Butler’s (four-port) hy-
brid should be identified by the bow tie set of lines
joining a corresponding set of four points: two input
splitting points connecting to two adding points. It
corresponds to a N = 2 complex Fourier transform.

Although they do not mention it, both Butler
and Lowe [1961], and Shelton and Kelleher [1961]
must have realized they were implementing a dis-

crete Fourier transform. However, it appears they
were not aware they were implementing the equiv-

alent of a fast Fourier transform (FFT) numerical
algorithm capable of performing a Fourier transform
with only N log N operations. Otherwise, they would
have impacted the scientific community in the same
way Cooley and Tukey [1965] impacted it 5 years
later. Even today, very few scientists are aware of
the correspondence of Butler’s hardware scheme to
the FFT algorithm, and even fewer are aware of the
lead time in its discovery. In fact, we have not seen
due credit in the literature to this discovery.
Although speed of processing is not an issue in
an analog implementation, the Butler matrix al-
lows an economical implementation of a N input
FFT analog operator, with only N log N hybrid ele-
ments. The multiplication by a complex exponential,
W™ = exp(—wn2n/N), needed in the digital algo-
rithm is implemented by a transmission line of proper

length.
Imaging could be completed by attaching a detec-

tor at each output. Integration to obtain the statis-
tical average of the field intensity coming from each
direction 6; could also be accomplished in an analog
way, but only for passive imaging, or radar imaging
at a single range. For the more usual radar case,
range gating will force the use of simple digital inte-
gration schemes.
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As far as we know, a Butler’s matrix has yet to
be used to implement radar imagining. Greenwald
et al. [1978] has used it to obtain multiple beams in
the Scandinavian Twin Auroral Radar Experiment
radar, but the outputs were switched to share a sin-
gle receiver. Its potential for radar imaging is there
to tap. Its main advantage would be its speed of
processing; being analog, it is practically instanta-
neous. The large number of receivers that are needed
would also be required by a digital implementation
of the same.
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