Estimados de energía cinética turbulenta (TKE) y factor de disipación obtenidos con un perfilador de vientos virtual y verficados a través de simulaciones de remolinos grandes (LES)

D. Scipion^{1,2}, E. Fedorovich³, R. Palmer^{1,3}, P. Chilson^{1,3}, and A. Botnick²

¹Atmospheric Radar Research Center (ARRC), University of Oklahoma, USA ²School of Electrical & Computer Engineering, University of Oklahoma, USA ³School of Meteorology, University of Oklahoma, USA

Simulaciones de Remolinos Grandes

• Variables:

- Viento Zonal
- Viento Meridional
- Humedad Específica
- Viento Vertical
- Energía cinética de la subgrilla
- Sub-dominio LES:
 - 1400x1400x2000 m³
 - Resolución espacial: 20 m
 - Resolución en tiempo: 1 s

Inicializados con una radiosonda lanzada a las 11:29 UTC del 8 Jun, 2007 en the Southern Great Plains Atmospheric Radiation Measurement Climate Research Facility (SGF-ACRF) en Lamont, OK, USA

Doppler Beam Swinging (DBS): Configuración del Experimento

- Basado en Scipión et al. (2008)
- BLR virtual está localizado en el centro del sub-dominio del LES con 5 haces
- ∆r = 60 m
- BW = 9°
- Inclinación de 15.5°
- Ruido blanco aditivo Gaussiano para obtener un SNR máximo de 35 dB

Qué es lo que el radar realmente estima? **Efecto Cortante**

 V_r

Scipión et al. (2009):

 Z_0

θ

U_o, V_{o,} W_o

 \widetilde{w}

 $= u_o \sin \theta \sin \phi + v_o \sin \theta \cos \phi + \tilde{w} \cos \theta$ $\tilde{w} = w_o + s_u z_o \tan \theta \sin \phi + s_v z_o \tan \theta \cos \phi$ $s_u = \frac{\tilde{w} - w_o}{z_o \tan \theta}, \phi = 90^o$ $s_v = \frac{\tilde{w} - w_o}{z_o \tan \theta}, \phi = 0^o$

$$V_r = (u_o + s_u z_o) \sin \theta \sin \phi -(v_o + s_v z_o) \sin \theta \cos \phi +w_0 \cos \theta$$

 $\tilde{u}\sin\theta\sin\phi+\tilde{v}\sin\theta\cos\phi+w_o\cos\theta$

Velocidad aparente del viento = Velocidad media sesgada por la cortante horizontal de la velocidad vertical

Estimados del Viento Vertical (w)

Estimados del Viento Zonal (u)

Estimados del Viento Meridional (v)

Energía Cinética de Turbulencia (TKE)

 $\sigma_u^2(LES) = \overline{u'u'} + \frac{2}{3}\overline{E}$

 $\sigma_v^2(LES) = \overline{v'v'} + \frac{2}{3}\overline{E}$

 $\sigma_w^2(LES) = \overline{w'w'} + \frac{2}{3}\overline{E}$

 $\sigma_u^2(Rad) = \overline{u'u'}$

 $\sigma_v^2(Rad) = \overline{v'v'}$

L	ES	pl	ar	C
---	----	----	----	---

u' es la desviación de la media calculada sobre el plano, la barra superior representa un promedio sobre el plano y E es TKE de la subgrilla

LES tiempo:

u' es la desviación de la media temporal, la barra superior representa promedios temporales y E es el TKE de la subgrilla $TKE_{LES} = \frac{1}{2} \left(\sigma_u^2 + \sigma_v^2 + \sigma_w^2 \right)$

DBS radar:

u' es la desviacion de la media temporal y la barra superior representa promedios temporales

Q

Varianzas Horizontales

Reducción de las Varianzas Horizontales

Estimados de DBS promediados por 20 min antes de calcular las estadisticas horarias

Varianza Vertical y TKE

La varianza vertical debe calcularse con la mejor resolución temporal

Factor de dissipación de turbulencia (ϵ) Doviak yZrnic (1984): $\sigma_v^2 = \sigma_{11}^2 + \sigma_s^2 + \sigma_x^2$ σ_v^2 ancho espectral Doppler medido σ_{11}^2 ancho espectral por turbulencia σ_s^2 ensanchamiento por cortante σ_{x}^{2} ensanchamiento por procesamiento de señales White et al. 1999: El factor de disipación es $\epsilon_{Rad} = \sigma_{11}^3 (4\pi/A)^{3/2} J^{-3/2}$

proporcinal al cubo del ancho

espectral por turbulencia $\pi/2$ $J = 12\Gamma(2/3) \iint (\sin^3 \varphi) (b^2 \cos^2 \varphi)$ $+ a^2 \sin^2 \varphi$

+ $(L^2/12) \sin^2 \varphi \cos^2 \phi)^{1/3} d\varphi d\phi$

 $V_T t_D$

LES

Haz Obliquo Norte

Haz Obliquo

Este

arr(

Perfil Promediado (17:00 – 18:00)

Todos los haces tienen similar factor de disipación Discrepancias en bajas altitudes (escasez de puntos) y sobre CL (turbulencia débil)

Conclusiones

- Las varianzas de la velocidades horizontales pueden ser sobreestimadas si es que la velocidad vertical en la capa limite es muy activa
- Una manera de reducir la varianza es promediando los vientos horizontales antes de calcular la varianza
- La varianza de la velocidad vertical debe ser calculada con la máxima resolución temporal de lo contrario pude ser subestimada

Conclusiones

- El factor de disipación es inafecto a cortante de viento de la velocidad vertical
- Estimado del factor de disipación pueden obtenerse aislando el efecto de ensanchamiento del ancho espectral Doppler debido a la turbulencia
- Los estimados para los haces obliquos y vertical son equivalentes.

