

J. L. Chau¹, D. L. Hysell², O. Castillo¹, S. A. González³

¹Radio Observatorio de Jicamarca, Instituto Geofísico del Perú, Lima ²Earth and Atmospheric Sciences, Cornell University ³Arecibo Observatory

Controlled upper Atmosphere experiments with a LOwband Radar

Arecibo, March 30, 2010

385 m

at -11.949442° lon -76.871175° elev 517 m

2003 Google

(3)

- General advantages of the magnetic equator
 - Relatively stable background conditions
 - Less absorption, more ionization
 - Equatorial electrojet more reliable than auroral electrojet

- ...

- Specific features
 - VLE/ELF generation
 - Artificial periodic inhomogeneities and spread F
 - Electrojet thermal parametric instabilities
 - Langmuir turbulence
 - Mesosphere irregularities

The Jicamarca Radio Observatory

- Built in 1961 by the US NBS and then donated to IGP in 1969.
- Operating frequency: 50 MHz
- Antenna type: array of 18,432 dipoles, organized in 8x8 cross-polarized modules.
- Pointing directions: within 3 degrees from on-axis. Phase changes are currently done manually.
- Transmitters: 3 x 1.5 MW peak-power with 5% duty cycle.
- Located "under" the magnetic equator (dip 1°).

Equatorial Irregularities (1) RTIs above 100 km

Equatorial Irregularities (2) Below 200 km

SNR map West beam 150-km echoes 10 160 from ??? Equatorial electrojet 140 5 irregularities 120 Meteor echoes 0 Mesospheric 100 range (km) atmospheric/ 80 ionospheric -5 irregularities 60 40 -10 20 -15 16 8 10 12 14 L.T. (hr) Jan27,2009

VLF/ELF Generation via EEJ

Fig. 3 Amplitude, phase and spectrum of a local Jicamarca, Peru signal at 2,500 Hz, 1345–1400 UT, 9 May 1983, compared with noise spectrum.

- Lunnen et al., Nature, 311(13), 134, 1984
- N. Lehtinen, URSI GA, Chicago, Aug. 11–16, 2008
- 2006 BAE Systems patent

SAMI2 Model 283°E Equatorial Ionosphere

[Courtesy of P. Bernhardt, J. Huba]

Heated Field Line at 7.9 MHz (7.8 105 Radio Observatorio de JICAMARCA cm⁻³) 283°E Equatorial Ionosphere

[Courtesy of P. Bernhardt, J. Huba]

Electrojet thermal parametric instabilities (1)

[Courtesy of D. Hysell]

Electrojet thermal parametric instabilities (2)

Langmuir turbulence: 150-km echoes

- Use surplus OTH transmitters (8-10), feed lines
- Different options under evaluation (HIPAS, Tromso, Islote, colocated/independent).
- Construct exciter/ control hardware locally (FPGA/ DDS units)
- Likewise HF receivers (Echotek)
- Power improvement and conditioning (Rent of diesel generators).
- Upgrade diagnostics (AMISR-7, SEE receivers, VLF receivers, optics, magnetometer, ionosonde, ...)

Implementation (2)

- Participate in the installation of the transmitters at Arecibo (2 engineers + 1 technician).
- Study feasibility for:
 - Operations at lower frequency
 - Improve the efficiency (currently 30%).
- We need an independent unit to experiment
 - At Arecibo
 - Or at Jicamarca (need to de-classify the txs)