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Theoretical studies of ionospheric structure and dynamics require knowledge of the

underlying thermal structure of the ionosphere since it affects the chemical reaction

rates, recombination rates, and pressure gradients. Measurements of ionospheric

temperatures have been made for decades with a variety of ground- and space-based

techniques. This thesis is motivated in particular by the recent improvements in

the temperature measurements made by the Jicamarca Radio Observatory (JRO)

using the incoherent scatter radar (ISR) technique. Modern ionospheric models all

have widely different treatments of ionospheric energetics, and none can produce

satisfactory quantitative agreement with the JRO measurements even in quiet con-

ditions. This thesis explores the energy balance calculations in the widely used,

open source SAMI2 model in detail, and shows that it is the oversimplification

of the treatment of nonlocal heating by photoelectrons in particular which is pre-

venting this model from predicting JRO measurements. This thesis presents an

extended version of the SAMI2 model, called SAMI2-PE, which includes a newly

developed photoelectron transport model. The model uses finite volume methods

which guarantee conservation of particles and energy, incorporates the magnetic

field geometry and magnetic mirroring effects, and can be extended to any spatial,

energy, and pitch-angle resolution. The new model shows promising agreement

with the JRO measurements.
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CHAPTER 1

INTRODUCTION

The goal of aeronomy is to observationally and theoretically specify the structure

and composition of the Earth’s upper atmosphere and ionosphere. This area of

basic research is a prerequisite for studies of space weather and its impact on so-

ciety. A component aeronomy is the study of ionospheric energetics, i.e. the ways

energy is produced, transported, and transformed in the ionospheric plasma. This

thesis was inspired to revisit this old problem by recently improved measurements

of plasma temperatures in the ionosphere and inner plasmasphere made at the

Jicamarca Radio Observatory, an equatorial incoherent scatter radar [Hysell et al.,

2008, 2009]. These measurements cover the F -region ionosphere, the topside iono-

sphere, and inner plasmasphere up to ∼1500 km altitude. Our objective is to create

a theoretical model which can reproduce these Jicamarca temperature measure-

ments both in a quantitative and qualitative sense. Such a model can be used to

gain insight as to which physical processes influence the measured temperatures in

different regimes, why the measured temperatures display day-to-day variability,

and what we could potentially learn about the larger ionosphere-thermosphere-

plasmasphere system from these observations.

In this thesis we have not created an entire ionospheric model from scratch.

Our development has been based on the widely used open source SAMI2 model

[Huba et al., 2000a]. Ch. 3 reviews the physics and numerics in this model, with

a particular emphasis on the energy balance calculations, and compares SAMI2

results with Jicamarca data. We argue that the phenomenological treatment of

photoelectron transport in particular is the most significant aspect of SAMI2 which

is preventing it from satisfactorily reproducing Jicamarca data. SAMI2 is not the
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only model which suffers from this limitation; as Sec. 2.3 explains, few existing

ionospheric models have physical treatments of photoelectrons.

The remainder of this thesis is devoted to the description and use of an ex-

tended version of SAMI2 which includes a physical treatment of photoelectrons

called SAMI2-PE. Ch. 4 explains the physics added in SAMI2-PE and derives all

the pertinent equations. Numerous authors have derived variations of the photo-

electron transport equations before, and the equations used by previous authors

are either equivalent to, or limiting cases of, the equations used in SAMI2-PE (see

Sec. 2.4). Nonetheless we chose to go through all the derivations in Ch. 4 in order to

discuss every approximation involved. These approximations determine the limits

of applicability of the final equations. Ch. 4 also shows many of the intermediate

steps needed in the derivations which do not appear in journal articles.

Ch. 5 describes the specific numerical algorithms used in SAMI2-PE. The

energy reapportionment calculations are performed using an algorithm which is

equivalent to that originally described by Swartz [1985], but implemented in a

different way. In particular, our implementation allows for ionizing collisions to

be treated in a single step instead of having to loop over all possible secondary

energies (see Sec. 5.2). The steady state transport solver described in Sec. 5.1 is

an original algorithm developed for SAMI2-PE. It uses finite volume ideas to guar-

antee conservation of particles and energy. A variation of this algorithm which

uses flux limiters to eliminate some numerical pitch-angle diffusion is described

in Sec. 5.1.1, although the tests shown in Sec. 6.3.1 suggest that these higher or-

der corrections are unnecessary in the region of interest in this thesis (i.e. the

low-latitude ionosphere at altitudes up to 1500 km).
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Ch. 6 discusses example SAMI2-PE results in detail and compares them to

Jicamarca data. Example runs with a variety of different inputs are compared to

elucidate the effects of various physical drivers. These tests suggest possible sources

of the day-to-day variability observed in high-altitude electron temperature mea-

surements from Jicamarca. The thermospheric winds in particular are shown to

have important effects on the electron densities and temperatures at high altitudes

(600-1500 km). Despite the small neutral densities at these altitudes, the motions

of the neutral thermosphere are still coupled to the high-altitude plasma through

larger system processes. Finally, Ch. 7 contains concluding remarks discussing

what this thesis has accomplished and gives recommendations for future work.
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CHAPTER 2

BACKGROUND

This thesis builds on an old field, and thus a substantial amount of background

information must be reviewed. First, Sec. 2.1 gives a brief introduction to inco-

herent scatter radar and showcases the measurements which motivated this thesis.

Sec. 2.2 provides history and a top level overview of the theory of ionospheric

energetics. Then Sec. 2.3 describes how many existing ionospheric models treat

ionospheric energetics. Like SAMI2, most modern ionospheric models do not have

a physical treatment of photoelectrons with the notable exceptions of FLIP and

SUPIM. Finally, Sec. 2.4 gives a history of photoelectron transport modeling. The

various different forms of the photoelectron transport equation solved by other

models are shown to be either equivalent to, or limiting cases of, the equation

solved in SAMI2-PE.

2.1 Ionospheric temperature measurements using incoher-

ent scatter radar

Gordon [1958] was the first to theorize that Thompson scatter from electrons in the

ionosphere could be detected with a sufficiently large radar. He believed that the

scattered waves from the individual electrons would add with random phases and

hence be a type of incoherent scattering. Under this assumption the Doppler width

of the received signal would be determined by the electron thermal speed. Shortly

after the publication of this original theory, Bowles [1958] made the first detection

of Thompson scatter from ionospheric electrons and showed that the Doppler width

was much narrower than expected based on the electron thermal speeds. This
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observations prompted numerous theorists to derive expressions for the spectrum

of electron density fluctuations in a warm plasma [e.g. Dougherty and Farley , 1960;

Farley et al., 1961; Dougherty and Farley , 1963; Farley , 1966; Swartz and Farley ,

1979; Fejer , 1960a, b, 1961; Salpeter , 1960, 1961; Hagfors , 1961; Rosenbluth and

Rostoker , 1962; Woodman, 1967]. These theories used very different reasonings,

yet all derived equivalent expressions. Sec. 2.1.1 presents a quick derivation of the

basic theory based on the approach of Swartz and Farley [1979] and gives additional

references for more advanced treatments. For radar wavelengths much longer than

the electron Debye length collective effects are important and the spectral width is

related to the ion thermal speed, even though the scatter comes from the electrons.

Hence the phenomenon is not strictly a form of incoherent scattering, but the name

incoherent scatter radar (ISR) has stuck.

The ISR data presented in this thesis all come from the Jicamarca Radio Ob-

servatory (JRO), which is located outside of Lima, Peru on the magnetic equator.

This observatory opened in 1962 and recently celebrated 50 years of operations.

Despite its age, the quality of Jicamarca ISR data has improved throughout its

history as a result of upgrades to the hardware, refinements to ISR theory, ad-

vances in signal processing techniques, and more sophisticated inverse methods.

Sec. 2.1.2 reviews the major components of an ISR experiment with an emphasis

on the methods used at Jicamarca today. Sec. 2.1.3 then shows examples of some

of the recent Jicamarca observations which motivated this thesis.

2.1.1 Basic theory of incoherent scattering

Linear media with stochastic index of refraction fluctuations scatter electromag-

netic waves. The radar reflectivity (i.e. the radar scattering cross section per unit

5



volume) in the radian Doppler frequency interval between ω and ω + dω above

the transmitted frequency ω0 is related to the power spectral density of index of

refraction fluctuations, 〈|n(k, ω)|2〉, by [e.g. Booker , 1956; Tatarski , 1961; Hocking ,

1985]

σ(ω0 + ω)dω =
k4

32π3
sin2 δ〈|n(k, ω)|2〉dω, (2.1)

where δ is the angle between the wavevectors of the incident and the scattered

waves, and k is the Bragg scattering wavenumber. For a monostatic radar δ = π

and k = 4π/λR, where λR is the radar wavelength. In the ionosphere for frequencies

which are much greater than the electron gyrofrequency the index of refraction

squared is

n2 = 1 −
ω2
pe

ω2
(2.2)

(2.3)

where the plasma frequency is a function of the electron density,

ω2
pe =

e2Ne

ǫ0me
. (2.4)

Hence the radar reflectivity for a monostatic radar can be rewritten as a function

of the power spectral density of electron density fluctuations, 〈|ne(k, ω)|2〉, [e.g.

Hocking , 1985]

σ(ω0 + ω)dω = σe〈|ne(k, ω)|2〉dω
2π
, (2.5)

where

σe = 4πr2e =
1

4πǫ20

e4

m2
ec

4
≈ 10−28 m2 (2.6)

is the Thompson scattering cross section of a single electron [e.g. Jackson, 1999].

(Note this formula differs from that in Jackson [1999] by a factor of 3/2 because it
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is a radar scattering cross section instead of an extinction cross section. The extra

factor of 3/2 is the directivity of a Herztian dipole antenna in the backscattered

direction). When unstable plasma waves and/or plasma turbulence are present

〈|ne(k, ω)|2〉 can be a significant fraction of N2
e and large amounts of backscattered

power can be received from the ionosphere. This is called coherent scattering

in the ionospheric community [e.g. Woodman and La Hoz , 1976]. In a stable

plasma 〈|ne(k, ω)|2〉 will never be exactly zero, however, because the electrons

themselves are points in space. In the simple case where the electrons are randomly

distributed throughout the scattering volume with a uniform distribution in space

and a distribution f̂(v) in line of sight velocities, 〈|ne(k, ω)|2〉 = 2π
k
Nef̂(ω/k).

Inserting this into Eq. 2.5 and integrating over all Doppler shifts gives a total

reflectivity of η =
∫
σ(ω0 + ω) dω = σeNe, which is what Gordon [1958] expected.

For radar wavelengths longer than the electron Debye length the electrons

cannot be assumed to be uniformly distributed in space because of collective ef-

fects. In this case 〈|ne(k, ω)|2〉 must be determined using statistical mechanics

and plasma kinetic theory. In this endeavor the Generalized Nyquist Theorem

(a.k.a. the Fluctuation-Dissipation Theorem), is a useful tool from statistical me-

chanics [Callen and Welton, 1951]. Consider a linear system in which the Laplace

transform of the response function I(s) is related to the Laplace transform of a

generalized forcing function V (s) through an an admittance function Y (s) i.e.

I(s) = Y (s)V (s). (2.7)

When in thermodynamic equilibrium at temperature T and not driven by any

forces random thermal motions will cause this system to emit a stochastic response

with power spectral density [Callen and Welton, 1951].

〈|I(s)|2〉 = 2kBTℜ{Y (s)} (2.8)
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This response can be thought of as originating from a stochastic force with power

spectral density

〈|V (s)|2〉 =
2kBT

|Y (s)|2ℜ{Y (s)}. (2.9)

The original development of ISR theory by Dougherty and Farley [1960] applied

the Generalized Nyquist Theorem by deriving a single admittance for the entire

plasma. Swartz and Farley [1979] generalized this approach to plasmas which

were not in perfect thermodynamic equilibrium (e.g. Te 6= Ti). In the Swartz and

Farley [1979] method an admittance relating the velocity fluctuations to the forces

applied is defined for each plasma species. Let the electron density be Ne +ne and

the electron flux be NeUe + neUe + Neue where Ne and Ue are the background

electron density and electron velocity and ne and ue are small perturbations which

are proportional to exp[i(k · r− ωt)]. The electron admittance, Ye(k, ω) is defined

such that

Neue = YeF, (2.10)

where F is any force applied to the electron gas. Analogous quantities are defined

for the ions. In a warm plasma the electron and ion flux fluctuations are driven

both by stochastic forces which capture the effects of random thermal motions, Fe

and Fi, and by the self consistent electric field in the plasma, i.e.

Neue = Ye (Fe − eE) (2.11)

Neui = Yi (Fi + eE) , (2.12)

where a quasineutral background is assumed (Ne = Ni). The electric field obeys

Gauss’ Law

ik · E =
e

ǫ0
(ni − ne) . (2.13)
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Finally, the density fluctuations can be related to the velocity fluctuations through

the linearized continuity equations

−iωne + ik · (neUe +Neue) = 0 (2.14)

−iωni + ik · (niUi +Neui) = 0. (2.15)

This system of five equations can be solved for the electron density fluctuations

ne =
kYe
ωe

[Yi/ωi − iǫ0/e
2]Fe + [Yi/ωi]Fi

Yi/ωi + Ye/ωe − iǫ0/e2
, (2.16)

where for notational convenience the Doppler shifted frequencies are defined as

ωe = ω − k ·Ue (2.17)

ωi = ω − k ·Ui. (2.18)

The stochastic forces Fe and Fi are uncorrelated and have power spectral densities

related to the admittances and temperatures of the electron and ion respectively

through the Generalized Nyquist Theorem. Squaring and averaging Eq. 2.16 gives

〈|ne(k, ω)|2〉 = 2k2
|Yi/ωi − iǫ0/e

2|2Teℜ{Ye}/ω2
e + |Ye/ωe|2Tiℜ{Yi}/ω2

i

|Yi/ωi + Ye/ωe − iǫ0/e2|2
. (2.19)

A more elegant expression results by defining normalized admittances for each

species

yα =
k2Tα
Nαωα

, (2.20)

and dimensionless susceptibilities

χα =
iyα

k2λ2Dα

, (2.21)

where the Debye lengths are [e.g. Bellan, 2006]

λDα =

√

ǫ0kBTα
Z2

αe
2Nα

. (2.22)
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The spectrum of electron density fluctuations can then be written as

〈|ne(k, ω)|2〉 = 2k2Ne
|1 + χi|2λ2Deℑ{χe}/ωe + |χe|2λ2Diℑ{χi}/ωi

|1 + χe + χi|2
(2.23)

The generalization of this formula to an arbitrary number of ion species is [Swartz

and Farley , 1979]

〈|ne(k, ω)|2〉 = 2k2Ne

|1 +
∑

j χj|2λ2Deℑ{χe}/ωe + |χe|2
∑

j Zj
Nj

Ne
λ2Djℑ{χj}/ωj

|1 + χe +
∑

j χj |2
,

(2.24)

where the sums over j refer to sums over all ion species.

The susceptibilities themselves are determined by solving the linearized Vlasov-

Poisson system of equations [see Bellan, 2006; Ichimaru, 2004]. For a simple

collisionless, unmagnetized, Maxwellian plasma species the susceptibility is [e.g.

Bellan, 2006]

χα(k, ω) =
1

k2λα
[1 + θαZ(θα)] (2.25)

where the normalized frequency defined as

θα ≡ ωα√
2k

√
mα

kBTα
, (2.26)

and Z(θα) is the plasma dispersion function [Fried and Conte, 1961].

The dispersion relation for electrostatic waves in a plasma is [e.g Bellan, 2006;

Ichimaru, 2004]

1 + χe +
∑

j

χj = 0. (2.27)

Thus the denominator of Eq. 2.24 goes to 0 at (k, ω) values which correspond to

electrostatic normal modes. The denominator will never go precisely to 0 for real

ω values, however, since all electrostatic waves experience some kind of damping.
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The ISR spectrum has several peaks where the Doppler shifts of the peaks match

the phase velocities of electrostatic waves and the widths of the peaks are related

to the damping rates of those electrostatic waves. In the case of an unmagnetized

plasma there is a broad peak near the ion acoustic resonance, known as the ion

line, and a narrow peak at the Langmuir wave resonance, known as the plasma

line. Most of the power is in the ion line. Fig. 2.1 shows examples of ion line

spectra for an O+ plasma for different values of Te/Ti. The two peaks correspond

to the phase velocities of ion acoustic waves traveling towards and away from the

radar. The locations of these peaks gives a measure of Ti and the area under the

curve is related to Ne. If the plasma is moving along the radar’s line of sight the

entire spectrum will be Doppler shifted. The widths of the peaks are related to the

Landau damping rate of the ion acoustic waves and are thus related to Te/Ti. Thus

ion line spectra contain unambiguous information about electron densities, both

electron and ion temperatures, and line of sight plasma velocities. When multiple

ions are present composition information can also be determined if the masses of

the ions are sufficiently different. Fig. 2.2 compares ion line spectra for plasmas

containing both O+ and H+. A pure H+ plasma has a spectrum which is four times

wider than an O+ plasma. The spectra for mixtures are not simple superpositions

of the single ion spectra, but nonetheless both narrow and wide spectral features

are present so the H+ fraction can be determined.

Eq. 2.24 applies to any stable plasma [Swartz and Farley , 1979], but for dif-

ferent types of background conditions the susceptibilities will change. Expressions

for magnetized plasmas have been derived [e.g. Farley et al., 1961; Fejer , 1961;

Hagfors , 1961; Salpeter , 1961] (see also section 4.4 of Ichimaru [2004] for an ex-

cellent discussion of electrostatic waves in magnetized plasmas). For aspect angles

away from perpendicular to B the ISR spectrum will have three lines: an ion line
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Figure 2.1: Normalized incoherent scatter spectra for various different tem-
perature ratios, Te/Ti. The vertical axis is in arbitrary units and
the horizontal axis is the ion normalized frequency. The plasma is
assumed to be unmagnetized, pure O+, at rest, and kλDe = 0.2.

which is similar to the ion line from the unmagnetized case, a plasma line which

moves between the Langmuir wave and upper hybrid wave resonance as the aspect

angle moves closer to perpendicular to B, and a gyro line near the electrostatic

electron cyclotron wave resonance. Perpendicular to B the ion line collapses into

a narrow spike at low frequencies [Woodman and Hagfors , 1969; Kudeki et al.,

1999]. Collisions with neutrals have been incorporated into the theory in a va-

riety of different ways [Dougherty and Farley , 1963; Tanenbaum, 1968; Hagfors

and Brockelman, 1971]. All of these theories predict that the spectrum will con-

verge to a narrow Lorentzian shape at D-region altitudes, but that ion-neutral
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Figure 2.2: Normalized incoherent scatter spectra for various mixtures of O+

and H+. The vertical axis is in arbitrary units and the horizontal
axis is the normalized frequency for O+. The temperatures of all
three species are assumed to be equal and all other parameters
are the same as in Fig. 2.1

collisions have a minor effect at F -region altitudes and above. The presence of

suprathermal electrons can greatly enhance the power in the plasma lines, but has

a negligible effect on the ion line spectra [Perkins and Salpeter , 1965; Yngvesson

and Perkins , 1968]. Recently, substantial efforts have been spent to incorporate

magnetoionic effects and Coulomb collisions between the charged species into ISR

theory because these effects have detectable effects on spectra obtained looking

nearly perpendicular to B [Sulzer and Gonzalez , 1999; Aponte et al., 2001; Wood-

man, 2004; Kudeki and Milla, 2006; Milla and Kudeki , 2006; Kudeki and Milla,

2011; Milla and Kudeki , 2011]. The Coulomb collision problem was solved analyt-
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ically by Woodman [2004] for the case where Te = Ti, but no analytic solution is

known for the more general case. The approaches of Sulzer and Gonzalez [1999]

for small magnetic aspect angles and Milla and Kudeki [2011] for aspect angles

going all the way to perpendicular to B required running computer simulations of

test particles traveling through plasmas and interpolating the tabulated results.

The incorporation of Coulomb collision effects has corrected a historical problem

with Te/Ti measurements made at Jicamarca first noted by Pingree [1990].

2.1.2 Experimental considerations

Usually ISR signals are sufficiently broadband that they constitute overspread tar-

gets and thus conventional pulse-to-pulse radar analysis methods cannot be used.

Notable exceptions are the ISR spectra perpendicular to B [Woodman and Hag-

fors , 1969; Kudeki et al., 1999] and in the highly collisional D-region [for recent

examples see Chau and Kudeki , 2006a; Raizada et al., 2008; Nicolls et al., 2010].

The spectra of overspread targets are difficult to measure because real radars trans-

mit pulses of finite length and receive signals in a limited band. Let s(t) be the

transmitted waveform in baseband and h(t) be the impulse response of the receiver.

The baseband voltage received at sample time ts is (in arbitrary units)

y(ts) =

∫

dtd3reik·rs(t− 2r/c)∆Ne(r, t− r/c)h∗(ts − t) + n(ts), (2.28)

where n(ts) is white Gaussian noise with power N , ∆Ne(r, t) is the deviation of

the electron density from the background density at a given location and time, and

the asterisk denotes complex conjugation [Hysell et al., 2008]. These voltages will

be zero mean Gaussian random variables, and thus all the information is contained

in their second moments. The lag product between voltages received at times ts1
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and ts2 is

〈y(ts2)y
∗(ts1)〉 =Nδ(ts2 − ts1)+ (2.29)

∫

dt1dt2d
3rd3r′eik·r

′〈∆Ne(r + r′, t2)∆N
∗
e (r + r′, t2)〉

s(t2 − 2r/c)h∗(ts2 − t2)s
∗(t1 − 2r/c)h(ts1 − t1),

where it is assumed that r′ is a displacement from the center of the scattering

volume which is small compared to the correlation length in the plasma [Hysell

et al., 2008]. With the definition τ = t2 − t1 this expression can be written in a

form which is similar to a convolution [Hysell et al., 2008]

〈y(ts2)y
∗(ts1)〉 = Nδ(ts2 − ts1) +

∫

dτd3rρ(k, τ ; r)Wts2,ts1(τ, r), (2.30)

where the plasma autocorrelation function is

ρ(k, τ ; r) ≡
∫

d3r′〈∆Ne(r + r′, t+ τ)∆Ne(r, t)〉 (2.31)

=
1

2π

∫

〈|ne(k, ω)|2〉eiωτ dω, (2.32)

and the radar ambiguity function is [Lehtinen, 1986; Lehtinen et al., 1996; Nygrén,

1996]

Wts2,ts1(τ, r) =

∫

dt s(t+ τ − 2r/c)h∗(ts2 − t− τ)s∗(t− 2r/c)h(ts1 − t). (2.33)

The ambiguity function is like an instrument response function characterizing a

particular radar experiment.

The ambiguity function is entirely determined by the design of a radar experi-

ment. If a radar experiment can be constructed such that the ambiguity function

is nearly a delta function then each lag product corresponds to the plasma auto-

correlation function at a single range and lag time. A classic radar experiment

which nearly accomplishes this, and has been used extensively at Jicamarca, is the
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Figure 2.3: Range-Time diagram for a double pulse experiment (figure cour-
tesy of D. T. Farley).

double pulse experiment [Farley , 1969b; Pingree, 1990]. The transmitted pulse is

a pair of pulses each of length T spaced a time τ ≥ T apart, i.e.

s(t) = u(t)u(T − t) + u(t− τ)u(T − t+ τ), (2.34)

where u(t) is the unit step function. The receiver uses a filter matched to a single

response, i.e.

h(t) = u(t)u(T − t). (2.35)

The ambiguity function is localized between lags of τ − T and τ + T and a span

of ranges which is only cT wide. Fig. 2.3 illustrates this experiment with a range-

time diagram. The shaded regions indicate volumes which are responsible for the

scattering sampled at times ts and ts + τ . Only returns from the same altitude will

be correlated, thus only the darkly shaded volumes contribute to the averaged lag

product. The lightly shaded regions do not contribute to the expected values of

the lag product, but they will contribute to the mean. This extra “self-clutter” can

be completely eliminated in the double pulse experiment by using two orthogonal

polarizations for the two pulses [Farley , 1969b].

The double pulse experiment only gives information about the autocorrelation

function at a single lag. One must cycle through many different pulse spacings,

τ , to construct the entire autocorrelation function [Farley , 1969b]. Thus double
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pulse experiments take a long time to build up sufficient statistics. Many other ISR

experiments have been designed with highly localized ambiguity functions which

can build up statistics faster than the double pulse including multi-pulses [Farley ,

1972; Nygrén, 1996], random codes [Sulzer , 1986], and alternating codes [Lehtinen

and Häggström, 1987; Lehtinen et al., 1997; Hysell , 2000].

The experiments described above are designed such that the plasma autocorre-

lation function at individual ranges can be constructed. Once this is accomplished

these autocorrelation functions can be fit one at a time for the plasma parameters

at each range. An alternative is to fit for the plasma parameters at all ranges and

include the radar ambiguity function in the inverse problem [Lehtinen, 1986; Holt

et al., 1992; Lehtinen et al., 1996; Hysell et al., 2008]. In principle, this type of “full

profile analysis” can be used with any type of radar experiment, not just those with

carefully contrived pulsing schemes. Fitting for the parameters at all altitudes also

allows for the inclusion of extra regularization which encourages solutions which

are smoothly varying in altitude [Hysell et al., 2008].

Radars typically record voltages in arbitrarily sized analog-to-digital converter

counts. The received powers must be calibrated by comparing to an independent

measurement of electron density. Faraday rotation measurements are the method

of choice for calibration at Jicamarca [Farley , 1969a; Pingree, 1990]. Different po-

larizations travel at slightly different phase velocities in magnetized plasmas. Thus

when the radar transmits and receives on two different orthogonal polarizations,

the phase difference between the two channels gives a measurement of the absolute

electron density integrated from the radar to the scattering volume and back.
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2.1.3 Recent Jicamarca observations

The Jicamarca antenna is a phased array which can be configured to point in differ-

ent directions by changing lengths of waveguides. Incoherent scatter experiments

are divided into perpendicular experiments, where the beam is pointed exactly

perpendicular to B, and oblique experiments, where the beam is pointed a few

degrees away from perpendicular. The perpendicular experiments can be used to

make highly accurate plasma drift measurements (1 m/s or better), but cannot

be used to derive plasma temperatures or composition [Woodman and Hagfors ,

1969; Kudeki et al., 1999]. The oblique experiments can be used to derive plasma

temperatures and composition, but cannot be used for drift measurements. As

this thesis is concerned with temperature measurements, all the Jicamarca data

shown will be from oblique experiments.

Fig. 2.4 shows data from an oblique experiment on April 19, 1999. The experi-

ment was a standard double pulse experiment with calibration by Faraday rotation

[Pingree, 1990]. The fitted parameters shown are electron density, electron temper-

ature and ion temperature. No fitting for composition was attempted. The double

pulse mode produces reliable temperature measurements throughout the F -region,

but in the topside where the densities (and thus signal strengths) decrease fits are

difficult to obtain.

One method for gaining topside data in an oblique experiment is to interleave

long pulses coded with alternating codes with the double pulses [Hysell , 2000].

Fig. 2.5 shows data from such an experiment performed on December 4, 2002.

The data below 450 km come from the double pulses and the data above 450 km

come from the alternating coded pulses. The long pulses are unusable below 450

km because of ground clutter. The alternating coded data can be fitted for H+
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Figure 2.4: Fitted parameters from an oblique experiment on April 19, 1999
using double pulses. White regions indicate missing data.

fractions or Te/Ti, but not both. The double pulse data is always fitted for Te/Ti

but never for H+ fraction. In Fig. 2.5 the alternating code data is fit for Te/Ti

in the morning, assuming the H+ fraction is zero, and fit for H+ fraction during

the rest of the day assuming Te/Ti = 1. On this particular day an unphysical

discontinuity is apparent in the Ti data when the fitting for Te/Ti is disabled.

An even better method for extending oblique experiments into the topside is

the mode described by Hysell et al. [2008], which shall henceforth be referred to as

the full profile mode. Uncoded long pulses are interleaved with double pulses. The

long pulse data is unusable below 450 km due to ground clutter, but above 450

km it is fit with a full profile algorithm. The long pulse has excellent sensitivity,

but has an ambiguity function which extends over a wide span of ranges. A full
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Figure 2.5: Fitted parameters from an oblique experiment on December 4,
2002. Data above 450 km use alternating codes while data below
450 km use double pulses. White regions indicate missing data.

profile analysis is necessary to properly cope with such an ambiguity function.

Six additional regularization conditions are added to the cost function minimized

in the inverse problem. The first three minimize the magnitudes of the second

derivatives of the electron temperatures, ion temperatures, and H+ fractions with

altitude. Two others ensure Te > Ti and the H+ and He+ fractions added together

do not exceed 1. The final regularization condition minimizes the He+ fraction since

it is expected to be small and it is the most difficult parameter to fit for, and thus

the most sensitive to noise. The full profile mode is the only oblique experiment at

Jicamarca which can be fit for He+ fraction. Fig. 2.6 shows data from an oblique

experiment on March 25, 2009 which uses this mode. The increased sensitivity

of the long pulse combined and the extra smoothness conditions imposed by the
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Figure 2.6: Fitted parameters from an oblique experiment on March 25,
2009. Data above 450 km use uncoded long pulses fit with a
full profile algorithm while data below 450 km use double pulses.
White regions indicate missing data.

additional regularization produce much cleaner temperature measurements at high

altitudes. It is worth noting that the electron densities in Fig. 2.5 are much higher

than those in Fig. 2.6 since 2002 was near solar max, whereas 2009 was in the

deepest solar minimum since the dawn of the space age. Thus the full profile mode

can produce cleaner data at altitudes extending up to ∼1500 km even with weaker

signals. The low solar activity in 2009 is also why the transition from O+ to H+ is

so low.

Ch. 6 shows additional examples of full profile data from Jicamarca. The

topside temperatures exhibit large amounts of day-to-day variability. The primary

purpose of this thesis is to compare these new topside temperature measurements
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with current theories and to explore possible sources of this variability. This task

demands an in depth reexamination of ionospheric energetics.

2.2 History and overview of ionospheric energetics

Schunk and Nagy [1978] provide a detailed review of the early history of ionospheric

energetics. Maris and Hulburt [1928] were the first to suggest that the upper atmo-

sphere should be hot (∼ 1000 K) as a result of the absorption of ionizing radiation.

Early estimates of upper atmospheric temperatures from the disappearance of me-

teor trails indicated temperatures of only 300-350 K [Lindemann and Dobson,

1923], but estimates based on the absorption of radio waves indicated much higher

temperatures [Martyn and Pulley , 1936; Appleton, 1937]. The conclusion of a hot

upper atmosphere was ultimately correct, even though the logic used in these early

radio wave experiments was flawed [Schunk and Nagy , 1978].

The availability of V-2 rockets shortly after World War II made it possible to

attempt in situ measurements of upper atmospheric parameters. The feasibility of

flying a Langmuir probe on a rocket was first demonstrated by Reifman and Dow

[1949], but technical issues rendered the data from this rocket, and many subse-

quent attempts, useless [Schunk and Nagy , 1978]. Boggess et al. [1959] made the

first successful in situ electron temperatures measurements on a rocket launched in

1958. These measurements, and numerous other successful in situ measurements

made shortly afterwards, indicated that the electron temperatures exceeded the

ion and neutral temperatures [Schunk and Nagy , 1978]. This controversial result

was confirmed in the 1960s after the advent of incoherent scatter radar [see Evans ,

1969; Farley , 1991, for reviews of the early days of ISR]. ISR observations of en-
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hanced plasma lines further confirmed the presence of suprathermal electrons in

the ionosphere [Yngvesson and Perkins , 1968; Evans and Gastman, 1970].

Prior to the 1960s the dominant opinion was that all of the components of the

upper atmosphere should be in thermodynamic equilibrium, i.e. Te = Ti = Tn

[Schunk and Nagy , 1978]. In a largely ignored paper, Drukarev [1946] suggested

that the plasma and the neutrals should have different temperatures and derived

an expression for the temperature difference based on the average photoelectron

energies. A few others began to speculate about the possibility of a lack of ther-

modynamic equilibrium in the 1950s [e.g. Mitra, 1952; Rawer , 1957]. In the early

1960s, Hanson and Johnson [1961], Hanson [1963], and Dalgarno et al. [1963] cal-

culated Te, Ti, and Tn theoretically in a local approximation where the heating

rates balanced the cooling rates. This studies corroborated the experimental pic-

ture which was beginning to emerge at the same time; the electron temperatures

substantially exceed the ion temperatures, especially in the lower F -region.

Conceptually Fig. 2.7 summarizes the modern picture of the important path-

ways through which energy flows in the low latitude ionosphere (c.f. Fig.2 in

Schunk and Nagy [1978] and Fig. 9.1 in Schunk and Nagy [2009]). Chapter 9 of

Schunk and Nagy [2009] gives a basic introduction to these various processes. The

primary source of input energy is solar extreme ultraviolet (EUV) and soft X-ray

radiation. When these photons ionize the neutral atmospheric species nearly all

of the excess energy is given to the ejected photoelectron. These photoelectrons

lose their energy through a variety of different types of collisions. Collisions with

thermal electrons will efficiently heat the ambient electron gas. Elastic collisions

with ions and neutrals, however, will not transfer appreciable amounts of energy

due to the extreme mass difference. The ion and neutral gases are heated by
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Figure 2.7: Conceptual diagram of major pathways of energy flow in the low
latitude ionosphere.

collisions with the ambient electron gas. Electron-ion collisions do not transfer en-

ergy efficiently due to the disparate mass ratios, but electron-neutral collisions can

transfer energy well through inelastic collision processes. The ion and neutral gases

are strongly coupled to each other since they have similar masses. Photoelectrons

with sufficiently high energies can produce secondary electrons through impact

ionization of neutrals. These secondary electrons are usually suprathermal and

thus behave like a part of the photoelectron spectrum. Inelastic collisions between

suprathermal electrons and neutrals can also generated excited neutral species.

Excited neutrals can also be produced as a result of direct photoabsorption or cer-

tain chemical reactions. The excited neutrals can relax by emitting photons in the

visible spectrum, thus producing airglow. They can also relax through collisional

quenching whereby the excess energy ends up as heat in the neutral gas. A few

excited species can also be quenched by collisions with electrons. An important
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example is N(2D) which undergoes the reaction [Richards , 1986]

N(2D) + e→ N(4S) + e + 2.4 eV. (2.36)

This process will promote thermal electrons back up into the suprathermal popu-

lation (see Sec. 4.2.5 for further details).

Variations of Fig. 2.7 have been understood for a long time, but the details of

the individual pathways are complicated. Substantial efforts were exerted in the

1960s to compare in situ temperatures measurements, ISR temperatures measure-

ments, and theoretical temperatures estimates to each other. The in situ measure-

ments systematically exceeded the ISR measurements; this effect was ultimately

attributed to surface impurity effects associated with Langmuir probes [Schunk

and Nagy , 1978]. The theoretical models in use at the time all produced signif-

icantly different results because of the use of different cross sections and cooling

rates. For example, Dalgarno and Degges [1968] showed that the addition of elec-

tron cooling by the excitations of the fine structures of atomic oxygen significantly

lowered electron temperatures in the lower F -region and brought the theoretical

values into closer agreement with measurements from Millstone Hill.

Fig. 2.7 also ignores transport. Geisler and Bowhill [1965a, b] and da Rosa

[1966] were the first to add thermal conduction along the field lines to their the-

oretical calculations. Thermal conduction is important for explaining how the

electrons temperatures in the upper F -region become elevated at mid-latitudes

[Geisler and Bowhill , 1965a]. Thermal conduction down from the plasmasphere

is also crucial to explaining raised electron temperatures at night at mid-latitudes

[Geisler and Bowhill , 1965b]. Nisbet [1968] created the first detailed theoretical

description of photoelectron transport. It was shown that some photoelectrons

could escape from the ionosphere completely and travel all the way to conjugate
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ionosphere. This provided an explanation for temperatures enhancements some-

times observed before dawn by ISRs [Carlson, 1966; Carru et al., 1967; Evans and

Gastman, 1970]. After Nisbet [1968] many other theoretical descriptions of pho-

toelectron transport were created. Sec. 2.4 reviews the evolution of photoelectron

transport models from Nisbet [1968] to the present in detail.

The first examinations of electron and ion temperature measurements obtained

from the Jicamarca ISR were performed by Hanson and Cohen [1968] and McClure

[1969]. McClure [1969] concluded that altitudinal and time of day variations in

the Jicamarca electron and ion temperature measurements between 200 and 500

km were consistent with local theories like those developed by Hanson [1963] and

Dalgarno et al. [1963]. During the day Te/Ti > 1 at altitudes below 300-320 km

and an isothermal region where Te/Ti ≈ 1 and the temperatures are constant with

altitude appears between 300-500 km [McClure, 1969]. The use of local theories

at altitudes as high as 500 km is only possible at Jicamarca because the horizontal

magnetic field lines inhibit vertical photoelectron transport and vertical thermal

diffusion [Hanson and Cohen, 1968; McClure, 1969]. Above 500 km both Te and

Ti begin to rapidly increase with altitude and this feature cannot reproduced with

a local theory [McClure, 1969]. Bailey et al. [1975] created a steady state energy

equation solver which used the Swartz et al. [1975] photoelectron transport model

to derive nonlocal heating rates. The calculations performed by Bailey et al. [1975]

for many field lines at a single time during the middle of the day (when a steady

state assumption is appropriate for the energy equation) confirmed that the rapid

temperature increase above 500 km routinely observed at Jicamarca was indeed

due to nonlocal heating from photoelectrons.
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2.3 Treatments of energy balance in modern ionospheric

models

Many modern ionospheric models make major simplifications of processes involving

photoelectrons because of the computational complexity of photoelectron transport

routines. Two notable exceptions are FLIP [Richards and Torr , 1996] and SUPIM

[Bailey and Balan, 1996], which both use the same photoelectron transport model

(see Sec. 2.4.5). Photoelectrons are coupled to the ion continuity equations through

the secondary production rates and to the electron energy equation through the

electron heating rates. The latter connection can be completely removed by using

an empirical temperature model instead of solving an energy equation. For exam-

ple, PBMOD [Retterer , 2005] uses the model of Brace and Theis [1981] and IPM

[Schunk , 2002] uses the model of Titheridge [1998] to set the temperatures. The

original CTIP model [Millward et al., 1996] had an energy equation solver, but this

has been abandoned in the descendant models CTIPe [Fuller-Rowell et al., 2002],

GIP and IDEA [Fuller-Rowell et al., 2008], in favor of the empirical Titheridge

[1998] model.

Many models, including SAMI2, ignore secondary production entirely. A sim-

ple way to include secondaries is to multiply the primary photoproduction rates by

(1+pe/pi), where the secondary to primary production ratios, pe/pi, are computed

using a detailed photoelectron transport model and tabulated as a function of pho-

ton wavelength and possibly optical depth [e.g. Richards and Torr , 1988; Solomon

and Qian, 2005]. This formulation assumes secondary electrons are created by

photoelectrons produced locally. At low altitudes these ratios are approximately

constant, but at high altitude photoelectron transport effects become important.

The pe/pi values can vary by as much as a factor of 2 above 250 km depending on
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ionospheric conditions and the presence or absence of conjugate electrons [Richards

and Torr , 1988]. The Solomon and Qian [2005] method, which is now a standard

part of TIE-GCM [Roble, 1996], uses a single pe/pi value for each ion species and

each wavelength computed at an optical depth of unity and ignores all variation

with optical depth and/or altitude.

Electron heating rates can also be treated in a similar local empirical fashion.

The TIGCM [Roble et al., 1987, 1988], its descendants TIE-GCM and TIME-

GCM [Roble, 1996], and GTIM [Ridley et al., 2006] assume the electron heating

rate equals the total local photoproduction rate times a photoelectron heating

efficiency factor which is a function of the local electron and neutral densities. The

concept of a photoelectron heating efficiency factor was originally introduced by

Hanson [1963] and its altitude dependence was first investigated using Jicamarca

temperature data by Hanson and Cohen [1968]. Swartz and Nisbet [1972] and

more recently Smithtro and Solomon [2008] provide empirical expressions for the

efficiency factor based on detailed photoelectron calculations. GAIT [Smithtro

and Sojka, 2005] uses a similar local approximation for the heating rates, but

instead of using an empirical efficiency factor it calculates the heating rates at low

altitudes using a local equilibrium photoelectron model [Richards and Torr , 1983]

and ignores electron heating at high altitudes.

None of the above approaches can incorporate the effects of photoelectron trans-

port along the field lines. The electron heating model used in the original CTIP

[Millward et al., 1996], as well as the original SAMI2 [Huba et al., 2000a] and its

descendant SAMI3 [Huba et al., 2009] attempts to account for photoelectron trans-

port empirically. The Swartz and Nisbet [1972] efficiency factor is used below 300
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km, and the heating rate above 300 km is set to

Qphe(ℓ) =
Ne(ℓ)B(ℓ)

Ne (ℓ300N )B (ℓ300N )
Qphe (ℓ300N ) exp

(

−Cqe

∫ ℓ300N

ℓ

Ne(ℓ
′)dℓ′

)

(2.37)

+
Ne(ℓ)B(ℓ)

Ne (ℓ300S)B (ℓ300S)
Qphe (ℓ300S) exp

(

−Cqe

∫ ℓ

ℓ300S

Ne(ℓ
′)dℓ′

)

,

where B is the magnetic field strength, and ℓ300N and ℓ300S are the points where

the field line crosses 300 km in the northern and southern hemispheres respec-

tively and the integrals are taken along the field line. The attenuation factor, Cqe,

is a parameter which must be set a priori. The notion that electron heating rates

decayed exponentially with the field line integrated electron density was first pro-

posed by Nisbet [1968]. Using a modified diffusion photoelectron transport model

and electron density profiles measured from Arecibo, Nisbet [1968] estimated val-

ues Cqe ranging from 6.95× 10−14 to 9.58× 10−14 cm2 (see Table 2 of that paper).

Ch. 3 of this thesis shows that changes to the free parameter, Cqe, have a large

effect on the electron temperatures produced by SAMI2 at low latitudes and no

one value produces satisfying agreement with Jicamarca data for all local times

and altitudes.

2.4 History of theory and modeling of photoelectron trans-

port

The problem of photoelectron transport and the closely related problem of ener-

getic particle precipitation at high latitudes are two of the oldest in aeronomy.

These problems are both special cases of electrons traveling through materials, a

problem which has been studied in laboratory settings since the late 1930s [see

Spencer , 1955, for a review]. A major application for this early research was char-
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acterizing the harmful effects of β radiation on biological tissues [Spencer , 1955].

As will be shown below, the photoelectron transport equation is a type of radiative

transfer equation. Similar equations appear in studies of the scattering of neutrons

in nuclear reactors and the scattering of light in stellar and planetary atmospheres

[e.g. Chandrasekhar , 1950]. Photoelectron models can be broadly classified by con-

sidering the treatment of the total electron distribution function, the treatment of

transport, and the treatment of collisions.

A rigorous approach to a plasma containing suprathermal electrons is to di-

rectly solve the nonlinear Boltzmann-Fokker-Planck equation (i.e. a kinetic equa-

tion which uses a the Boltzmann collision integral for electron-neutral collisions

and a Fokker-Planck operator for electron-electron collisions) for the total electron

population [e.g. Ashihara and Takayanagi , 1974; Jasperse, 1976, 1977]. The com-

putational complexity of this method makes it only practical when transport can

be neglected. The more common approach is to divide the total electron distribu-

tion function into a thermal portion, which is presumed to be Maxwellian, and a

suprathermal portion which is presumed to have a much smaller total density (see

Krinberg [1973], Hoegy [1984], and Ch. 4 of this thesis for a more detailed discussion

of this division). As is shown in Sec. 4.3, under these assumptions the nonlinear

terms in the Boltzmann-Fokker-Planck equation for the suprathermal portion of

the distribution function can be neglected, resulting in a tractable linear equa-

tion. Every other model mentioned in this thesis, including SAMI2-PE, divides

the electron distribution function. With this division one can derive a simplified

form of the Boltzmann-Fokker-Planck equation for the suprathermal populations

[e.g. Mantas , 1975; Strickland et al., 1976]. Ch. 4 derives the form of the simplified
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Boltzmann-Fokker-Planck equation used in SAMI2-PE:

µ
∂Φ

∂ℓ
− δB

∂

∂µ

[
1 − µ2

2
Φ

]

=µδBΦ + q̂ +
∂

∂E [L(E)Φ] +D(E)
∂

∂µ

[

(1 − µ2)
∂Φ

∂µ

]

(2.38)

−
∑

n

(σ̄an + σ̄en)NnΦ +
∑

n

σ̄enNn
1

2

∫ 1

−1

dµ′Φ(ℓ, E , µ′)

where Φ is the photoelectron flux, ℓ is a spatial coordinate along the magnetic field

line, µ is the cosine of the pitch angle, E is the kinetic energy of a photoelectron,

δB = 1
B

∂B
∂ℓ

, L(E) is the energy loss rate due to Coulomb collisions, D(E) is the

pitch angle diffusion rate due to Coulomb collisions, σ̄a(e)n is the total inelastic

(elastic) cross section for collisions with neutrals, and q̂ is the total photoelectron

production rate, including cascade production from higher energies and secondary

production (see Ch. 4 for details).

Treatments of transport in suprathermal electron transport models can be di-

vided into five broad classes: local approximations, renormalization of laboratory

data, Monte Carlo techniques, transport techniques for the mid- and high-latitude

ionosphere, and transport techniques for coupled ionosphere-plasmasphere models.

SAMI2-PE belongs in the fifth class.

2.4.1 Local approximations

In the local approximation the transport of photoelectrons along the magnetic

field lines is completely neglected. This assumption is justified if the distance a

photoelectron travels away from the point where it is created before thermaliz-

ing is small compared to the length scales of the plasma and neutral densities.

This approximation is better for lower energy electrons and for lower altitudes
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where photoelectron-neutral collisions are frequent. A typical guideline is that lo-

cal approximations can be used below ∼250 km [e.g. Swartz et al., 1975]. If the

photoelectron undergo so many collisions that transport can be neglected they will

also be isotropically distributed, meaning the kinetic equations become a function

of only speed, or equivalently energy [Ashihara and Takayanagi , 1974].

Despite the apparent simplicity of the local approximation, codes which use it

can differ substantially depending on their treatments of collisions and the distri-

bution function. Jasperse [1976, 1977] modeled collisions as continuous energy loss

processes and iteratively solved nonlinear equations for the entire electron distri-

bution function. Ashihara and Takayanagi [1974] further allowed for discrete loss

processes associated with inelastic collisions. The most common approach is to di-

vide the distribution function, use a linearized collision operator, but still allow for

discrete energy loss processes [see Swartz , 1985, and references therein]. Richards

and Torr [1983] introduced the concept of average energy losses to considerably

simplify computations involving discrete loss processes. For calculations involving

energy deposited by auroral secondary electrons, Rees [1989] says continuous loss

approximations can be used if the primary electrons have energies of several hun-

dreds of eV and the secondaries have energies less than 100 eV, but collisions must

be treated as discrete loss processes if the primaries and secondaries are not well

separated in energy. Sec. 4.3 derives an appropriate linearized collision operator.

The production term q̂ in Eq. 2.38 not only contains direct photoproduction, but

also secondary production from ionizing collisions and cascade production from

higher energies. If superelastic collisions which cause photoelectrons to gain en-

ergy are ignored then the secondary production and cascade production at a given

energy level can be calculated if the flux at all higher energies is known. Thus the

steady state equation can be solved one energy bin at a time working downwards in
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energy. When using a discrete energy grid care must be taken to conserve energy

when considering discrete energy losses. Swartz [1985] introduced an algorithm

which will conserve energy perfectly on any energy grid (see Sec. 5.2 for details).

This algorithm permits the use of non-uniformly spaced energy grids, which can

greatly decrease the number of bins needed to adequately cover a given energy

range.

2.4.2 Renormalization of laboratory data

For auroral calculations a common approach is to use empirical expressions derived

from laboratory data instead of trying to compute the energetic electron distribu-

tions from first principles [see Rees , 1989, Sec. 3.3]. These type of calculations

are only reasonable for high energy electrons [Lummerzheim and Lilensten, 1994],

and thus have never been applied to photoelectrons. Grün [1957] and later Barrett

and Hays [1976] performed experiments where monoenergetic beams of electrons

with energies in the keV range were fired into chambers filled with air or pure N2

gas. The resulting 391.4 nm emissions were recorded as a proxy for the ionization

rates. Photons at this wavelength result from the following sequence of interactions

[Rees , 1989]

N2 + e∗ → N+
2 (B2Σ) + e∗ + e (2.39)

N+
2 (B2Σ, v′ = 0) → N+

2 (X2Σ, v′′ = 0) + hν(391.4 nm). (2.40)

This particular optical emission is used in laboratory experiments because its in-

tensity is nearly independent of the primary electron energy, and thus it is a reliable

measurement of the nitrogen ionization rate [see Barrett and Hays , 1976, and ref-

erences therein]. The proportionality constant relating the optical emissions to
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the energy deposition rate can be determined via conservation of energy (i.e. the

integrated energy deposition rate must equal the power in the incident electron

beam). An empirical expression for the energy deposition rate in eVcm−3s−1 is

[Rees , 1989]

ǫ(z, Ep) = 10−3FEpΛ

[
s(z)

R(Ep)

]
ρ(z)

R(Ep)
(2.41)

where F is the incident electron flux in cm−2s−1, Ep is the energy of the electron

beam in keV, ρ is the mass density of the gas in g cm−3, s(z) is the scattering

depth in g cm−2 and R(Ep) is the effective range in g cm−2. The scattering depth

is related to the mass density by

s(z) =

∫ ∞

z

ρ(z) dz, (2.42)

and for energies in the range 0.2 keV < Ep < 50 keV the effective range is approx-

imately [Rees , 1989]

R(Ep) = 4.30 × 10−7 + 5.36 × 10−6E1.67
p g cm−2. (2.43)

The empirical function Λ defines the distribution of the energy in space. It is

normalized such that [Grün, 1957]

∫ ∞

−∞

Λ
( s

R

)

d(s/R) = 1, (2.44)

and must be determined from experiment for different energies. For keV elec-

trons most of the energy deposition is in the form of secondary production, so the

production rates are approximately [Rees , 1989]

q(z, Ep) =
ǫ(z, Ep)

∆ǫion
, (2.45)

where ∆ǫion is the average energy lost during an ionization in eV (∼37 eV for N2

and ∼33 eV for O2) [Rees , 1989].
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2.4.3 Monte Carlo techniques

Monte Carlo photoelectron models divide the total photoelectron population and

use Monte Carlo techniques to compute the distribution function of the suprather-

mal portion. Random number generators are used to create a sample population

of suprathermal electrons. The motions of these electrons are then computed using

the equations of motion and randomly generated deflections to model collisions.

The suprathermal electron distribution function as a function of position, energy,

and pitch-angle is then generated by creating histograms of the sample population.

The first Monte Carlo code for photoelectron transport was created by Ci-

cerone and Bowhill [1970, 1971]. Additionally Berger et al. [1970, 1974] created

a Monte Carlo code for auroral electrons and Porter and Green [1975] created

a Monte Carlo code for low energy auroral protons. Since then numerous other

Monte Carlo codes have been created for photoelectrons, auroral electrons, auro-

ral protons, and auroral atomic hydrogen [Onda et al., 1992; Kozelov and Ivanov ,

1992, 1994; Kozelov , 1993; Synnes et al., 1998; Solomon, 1993, 2001]. Solomon

[2001] also presented a hybrid model which uses Monte Carlo techniques for au-

roral protons and atomic hydrogen, but a two-stream transport technique for the

resulting secondary electrons.

A great advantage of Monte Carlo codes is that the binning into discrete energy

and pitch angle bins is done after the transport calculations for each electron have

been performed when the histograms are formed. The individual electrons can

take on any energy and pitch angle, experience angular deflections of any size,

and lose energy through inelastic collisions in discrete steps of any size. Thus

collisions in Monte Carlo codes can be described with very few approximations.

However, Monte Carlo codes need integrable, analytic fit functions for quantities
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like scattering phase angles and secondary energy distributions [Solomon, 2001].

The disadvantage of Monte Carlo codes is that a large number of particles are

needed to generate sufficient statistics in the histograms, meaning these codes can

be very computationally expensive. For this reason Monte Carlo techniques are

often considered “brute force” methods which are used to validate other methods

[Solomon, 2001].

2.4.4 Transport techniques for the mid- and high-latitude

ionosphere

In the mid- and high-latitude ionosphere the magnetic field lines are approximately

straight, meaning δB = 0. At ionospheric heights the pitch-angle diffusion due to

Coulomb collisions can be neglected compared to elastic collisions with neutrals.

Furthermore, when working on a discrete energy grid the continuous loss of en-

ergy to the thermal electrons can be treated like a discrete loss process having an

effective cross section of σth (see Ch. 5 for details). These approximations result

in a simpler photoelectron transport equation which is in the form of a radiative

transfer equation:

µ
∂Φ

∂ℓ
= q̂ − σthNeΦ −

∑

n

(σ̄an + σ̄en)NnΦ +
∑

n

σ̄enNn
1

2

∫ 1

−1

dµ′Φ(ℓ, E , µ′) (2.46)

The methods of Chandrasekhar [1950] developed for other radiative transfer prob-

lems can be used to make this integro-differential equation tractable. This equation

must be solved one energy bin at a time, in descending order, and an energy reap-

portionment scheme like the Swartz [1985] algorithm must be used account for the

cascade and secondary production.

A commonly used radiative transfer idea is the finite ordinate approximation
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[Chandrasekhar , 1950]. The integral can be replaced with a sum using a quadrature

rule

∫ 1

−1

Φ(µ′)dµ′ ≈
∑

k

gkΦ(µk), (2.47)

where the ordinates µk are a discrete set of size 2n and the gk are an associated set of

weights. The weights must satisfy
∑

k gk = 2. Chandrasekhar [1950] recommends

using Gauss-Legendre quadrature rules since these will be the most accurate for

polynomial functions. The finite ordinate approximation transforms Eq. 2.46 into

a set of 2n coupled ODEs where the 2n functions being differentiated are the flux

evaluated at each of the ordinates. The finite ordinate approximation has been

applied to photoelectrons by Stolarski [1972] and Stamnes [1977] and to auroral

electrons by Stamnes [1980] and Lummerzheim et al. [1989].

An even simpler idea is the two-stream approximation, which was first applied

to photoelectrons by Banks and Nagy [1970] and Nagy and Banks [1970] and later

to auroral electrons by Banks et al. [1974]. Let the upwards and downward fluxes

be defined by integrating over the upper and lower hemispheres, i.e.

Φ+(ℓ, E) = π

∫ 1

0

Φ(ℓ, E , µ)dµ (2.48)

Φ−(ℓ, E) = π

∫ 0

−1

Φ(ℓ, E , µ)dµ. (2.49)

Eq. 2.46 can then be written as a coupled pair of ordinary differential equations

(ODEs)

〈µ〉+dΦ+

dℓ
= q̂+ − σthNeΦ

+ −
∑

n

(σ̄an + σ̄en)NnΦ+ +
∑

n

σ̄enNn
1

2

(
Φ+ + Φ−

)

(2.50)

−〈µ〉−dΦ−

dℓ
= q̂− − σthNeΦ

− −
∑

n

(σ̄an + σ̄en)NnΦ− +
∑

n

σ̄enNn
1

2

(
Φ+ + Φ−

)
,

(2.51)
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where the upwards and downwards productions are defined as

q̂+(ℓ, E) = π

∫ 1

0

q̂(ℓ, E , µ)dµ (2.52)

q̂−(ℓ, E) = π

∫ 0

−1

q̂(ℓ, E , µ)dµ, (2.53)

and the mean pitch angles are

〈µ〉+ =

∫ 1

0
µΦ(ℓ, E , µ) dµ

∫ 1

0
Φ(ℓ, E , µ) dµ

(2.54)

〈µ〉− = −
∫ 0

−1
µΦ(ℓ, E , µ) dµ

∫ 0

−1
Φ(ℓ, E , µ) dµ

. (2.55)

This coupled pair of first order ODEs requires two boundary conditions. For

photoelectrons in the ionosphere a simple choice is to set Φ+ = 0 at the lowest

altitudes and Φ− = 0 at the top of the atmosphere [Banks and Nagy , 1970]. In

general Φ+ will not be 0 at the top boundary because photoelectrons can escape

the ionosphere; this escape flux is determined as part of the solution to the two-

stream equations [Banks and Nagy , 1970]. For auroral calculations Φ− at the top

of the atmosphere must be known a priori [Banks et al., 1974]. Even if the auroral

calculations are being conducted in darkness (i.e. without photoproduction) there

will still be a non-zero escape flux because some fraction of the incident auroral

electrons will backscatter out of the atmosphere [Banks et al., 1974].

In the two-stream approximation the complete pitch-angle distribution is not

computed, so these mean pitch angles must be specified a priori. In general 〈µ〉+

and 〈µ〉− will not necessarily be equal and will be functions of position and energy.

Banks and Nagy [1970], and most other two stream codes, simply assume 〈µ〉+ and

〈µ〉− are equal and constant. For isotropic distributions 〈µ〉 = 0.5. The original

work by Banks and Nagy [1970] used 0.375. The choice of 〈µ〉 = 1/
√

3 ≈ 0.577 will

make the two-stream equations identical to a finite ordinate approximation using

n = 1 and Gauss-Legendre quadrature, however the meanings of the two sets of
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equations are subtly different. When using the finite ordinate approximation the

functions are the fluxes evaluated at specific pitch-angles whereas in the two-stream

approximation the functions are the integrals of the fluxes over specific ranges of

pitch angles. Despite being the location of the ordinate for a 2-point Gaussian

quadrature rule, an effective 〈µ〉 of 0.577 is usually considered to be too large to

be the average pitch angle [Cicerone et al., 1973]. Lack of knowledge of 〈µ〉 is a

substantial source of uncertainty in two-stream models. Varying 〈µ〉 in the Banks

and Nagy [1970] code between 0.375 and 0.577 results in changes in the computed

fluxes of as much as 50% [Cicerone et al., 1973].

The above version of the two stream equation assumes isotropic collisions, how-

ever these equations are easily generalized to the case of anisotropic collisions by

introducing backscatter probabilities, βen [Banks and Nagy , 1970; Stamnes , 1981].

〈µ〉+dΦ+

dℓ
= q̂+ − σthNeΦ

+ −
∑

n

(σ̄an + (1 − βen)σ̄en)NnΦ+ +
∑

n

σ̄enNnβenΦ−

(2.56)

−〈µ〉−dΦ−

dℓ
= q̂− − σthNeΦ

− −
∑

n

(σ̄an + (1 − βen)σ̄en)NnΦ− +
∑

n

σ̄enNnβenΦ+,

(2.57)

Stamnes [1981] has compared auroral calculations using these two-stream equa-

tions with 〈µ〉 = 0.5 and using the multi-stream finite ordinate approach of Stamnes

[1980]. The two-stream results provide reasonable agreement with the multi-stream

results as long as the backscatter probabilities are computed appropriately; the dis-

agreements between the two models were most pronounced at the lowest altitudes

(largest collision depths) [Stamnes , 1981].

Analysis of the average pitch angles produced by Monte Carlo codes shows the

〈µ〉 usually will vary with position, especially at the highest altitudes. Particles
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which are traveling nearly parallel to B will make fewer collisions on their journey

up the field line and thus have a greater probability of escaping. As a result the

mean pitch angle cosine of the upwards flux, 〈µ〉+, will be noticeably closer to 1

at high altitudes than at intermediate or low altitudes [Cicerone et al., 1973]. For

example, the effective 〈µ〉 produced by the Cicerone and Bowhill [1971] Monte

Carlo code at 500 km under the conditions tested by [Cicerone et al., 1973] is 0.7.

This effect is one of the primary reasons that the Cicerone and Bowhill [1971]

Monte Carlo code produces different results from the Banks and Nagy [1970] two-

stream code under identical conditions [Cicerone et al., 1973].

The modified diffusion approach [Nisbet , 1968; Swartz and Nisbet , 1973] is

an alternative to the two-stream equations which partially resolves this issue by

explicitly incorporating the notion of an escape flux. Let the density of energetic

electrons be defined as

nE ≡ 2π

v

∫ 1

−1

Φ dµ, (2.58)

and the total production rate be

q̄ ≡ 2π

∫ 1

−1

q̂ dµ. (2.59)

Integrating Eq. 2.46 over all pitch angles produces

2π

∫ 1

−1

µ
∂Φ

∂ℓ
= q̄ − σthNevnE −

∑

n

σ̄anNnvnE. (2.60)

The term on the left hand side is the net change in the photoelectron density

caused by transport effects. The modified diffusion approach generates a tractable

equation by making an assumption about the form of this term instead of making

assumptions about the form of Φ itself. This term is assumed to be the sum of an

escape term and a diffusion term. It can be written as

2π

∫ 1

−1

µ
∂Φ

∂ℓ
= F +

∫ 1

−1

dµ µ
∂

∂ℓ
(φmd) , (2.61)
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where F is the rate at which photoelectrons are lost due to escape, and φmd is a

modified diffusion flux. The escape term can be expressed in terms of an escape

probability, 〈PE〉, as

F = 〈PE〉
[

q̄ + vnE

∑

n

σ̄enNn

]

. (2.62)

For isotropically produced photoelectrons the position dependent escape probabil-

ity is

〈PE〉 =
1

2

∫ 1

0

exp

[

−τ
µ

]

dµ, (2.63)

where τ is the collision depth associated with that position [Swartz and Nisbet ,

1973]. Neglecting collisions with ambient electrons, assuming an exponential neu-

tral atmosphere with scale height Hn for neutral species n, and assuming the field

line is straight with dip angle I the collision depth is [Swartz and Nisbet , 1973]

τ =
1

sin I

∑

n

NnHn [σ̄an + σ̄en] . (2.64)

The diffusion component is derived by assuming that portion of the photoelec-

tron population behaves like an isotropic distribution of particles diffusing in an

ordinary gas. The modified diffusion flux is assumed to be [Nisbet , 1968]

φmd =
1

2
βµv

∂nE

∂ℓ
, (2.65)

where the mean free path is [Swartz and Nisbet , 1973]

β =

{
∑

n

Nn [σ̄an + σ̄en]

}−1

. (2.66)

This equation assumes the mean free path is shorter than characteristic scale

lengths of the photoelectron density [Nisbet , 1968], i.e.

1

β
≫ 1

nE

∂nE

∂ℓ
. (2.67)
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Using these various assumptions transforms Eq. 2.60 into a single second order

ODE [Swartz and Nisbet , 1973, note Eq. 3 has sign error]

0 = q̄ [1 − 〈PE〉] + v

{

∂

∂ℓ

(

β
∂nE

∂ℓ

)

− nE

∑

n

Nn [σ̄an + 〈PE〉σ̄en]

}

(2.68)

This second order ODE needs two boundary conditions. Obviously nE should go

to 0 at the lowest altitudes. Originally it was assumed that the divergence of the

diffusive flux should go to 0 at the top boundary [Nisbet , 1968], i.e.

∂

∂ℓ

(

β
∂nE

∂ℓ

)

= 0. (2.69)

However, all photoelectrons which cross the top boundary are escaping by defini-

tion. Thus the diffusive flux itself, φmd, should be 0 at the top boundary. This

in turn implies ∂nE

∂ℓ
= 0 at the top boundary. Applying this boundary condition

instead noticeably decreases the high altitude fluxes produced by the modified

diffusion method [see Cicerone et al., 1973, Fig. 12]. Codes to solve this second

order ODE and to solve the coupled pair of first order ODEs which make up the

two-stream equations are of comparable complexity. Nonetheless, the high altitude

fluxes produced by the modified diffusion method can exceed those produced by a

two-stream method by as much as a factor of 2 depending on how the boundary

conditions are set for the modified diffusion method, and on what 〈µ〉 is chosen for

the two-stream method [Cicerone et al., 1973]. This discrepancy can be greatly

reduced by setting the diffusive flux in the modified diffusion method equal to 0

at the top, and by using higher 〈µ〉 values than the value 0.375 originally used

by Banks and Nagy [1970]. The Cicerone and Bowhill [1971] Monte Carlo code

produces results which are in between the other two models [Cicerone et al., 1973].

Of the approaches discussed above the two-stream method has become the most

popular. Since [Banks and Nagy , 1970], many other authors have written their

own two-stream codes for a variety of applications using different energy grids,
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collisions cross sections, backscatter coefficients, and computational methods. The

GLOW code [Solomon et al., 1988; Solomon and Abreu, 1989; Bailey et al., 2002]

predicts airglow emissions using a sophisticated photochemistry model and two-

stream photoelectron transport equations. GLOW can be operated for ordinary

photoelectrons as well as auroral electrons; the only change needed for auroral

conditions is a specification of the downwards flux at the top boundary. Link

[1992] created two-stream and multi-stream codes which use a method created

by Feautrier [1964] for radiative transfer problems to improve the computational

speed and accuracy on coarse spatial grids. As part of a procedure for inferring

energetic electron spectra produced during HF heating experiments from artificially

produced airglow, Gustavsson and Eliasson [2008] have created a two-stream model

which includes an acceleration term to model the effects of HF waves on energetic

electrons. This model uses an iterative solution method to cope with the fact

that electrons will go both upwards and downwards in energy. Hysell et al. [2012]

have written a different airglow inversion algorithm which incorporates results

from SAMI2-PE. The photoelectron transport model inside of FLIP [Richards and

Torr , 1996] is commonly called a two-stream model, although it contains several

enhancements beyond the Banks and Nagy [1970] formulation which allow it to

treat spatially varying magnetic fields. For this reason this code is discussed in

more detail in the following subsection.

The numerical accuracy of the finite ordinate method for general radiative

transfer problems has been studied by Stamnes and Conklin [1984], and this led

to the creation of a general purpose finite ordinate code called DISORT [Stamnes

et al., 1988]. Lummerzheim et al. [1989], Rees and Lummerzheim [1989], and Lum-

merzheim and Lilensten [1994] describe a multi-stream auroral electron transport

model based on DISORT. Despite being one of the oldest photoelectron transport
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theories, the modified diffusion approach is no longer in widespread use.

2.4.5 Transport techniques for coupled ionosphere-plasmasphere

models

When using a two-stream or modified diffusion model, setting Φ− = 0 or φmd = 0

at the top of the atmosphere ignores conjugate electrons. Issues with escape fluxes

and boundary conditions at the top of the field line can be completely avoided

if the computational domain is extended through the plasmasphere down to the

bottom of the conjugate ionosphere. However, when considering an entire field

line the variation of the magnetic field strength must be included. The changing

magnetic field will alter the flux in two ways. First, the photoelectrons will change

their pitch angles as they travel to preserve their 1st adiabatic invariants. The final

term on the left hand side of Eq. 2.38 causes this effect. This term is often called

the magnetic mirror force term because it can also lead to trapping of particles in

magnetic mirrors. Second, the flux will decrease as the magnetic field weakens (i.e.

as the flux tube cross sectional area increases). The first term on the right hand

side of Eq. 2.38 causes this effect. This term can be combined with the first term

on the left hand side of Eq. 2.38 to create an alternate form of the photoelectron

transport equation written in terms of Φ/B, which is independent of changes in
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flux tube area.

µ
∂

∂ℓ

(
Φ

B

)

− δB
∂

∂µ

[
1 − µ2

2

(
Φ

B

)]

=
q̂

B
+

∂

∂E

[

L(E)

(
Φ

B

)]

(2.70)

+D(E)
∂

∂µ

[

(1 − µ2)
∂

∂µ

(
Φ

B

)]

−
∑

n

(σ̄an + σ̄en)Nn

(
Φ

B

)

+
∑

n

σ̄enNn
1

2

∫ 1

−1

dµ′

(
Φ(ℓ, E , µ′)

B

)

Swartz et al. [1975] created one of the first photoelectron transport models

which could include conjugate effects. The modified diffusion equations are solved

in both hemispheres, but the boundary conditions at the top of each ionosphere are

set by energy degraded versions of the escape fluxes from the conjugate ionosphere.

Lejeune [1979] created a semi-analytic two-stream code which could use very large

altitude step by assuming parameters varied exponentially with altitude within

each altitude cell. This code could be configured as a two hemisphere code like the

Swartz et al. [1975] code by treating the plasmasphere in between as one very large

altitude step. Yet another approach to the coupled ionosphere-plasmasphere prob-

lem was introduced by Mantas et al. [1978], who solved multi-stream photoelectron

transport equations in both ionosphere and in the plasmasphere in between simul-

taneously with carefully selected boundary conditions between the three domains.

The ionospheric portions followed the development of Mantas [1975], whereas the

plasmaspheric portion ignored collisions with neutrals, accounted for the changes

in the flux tube volume, and incorporated the changes in the pitch angles due to

the mirror force through a transformed distance coordinate. Pitch angle changes

due to collisions were ignored in the plasmasphere, thus preventing any particles

from becoming trapped in magnetic mirrors. Nonetheless, photoelectrons would

still become quasi-trapped in the plasmasphere in this model by elastic backscat-
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tering from the two ionospheres. Mantas et al. [1978] point out that fluxes at the

top of an ionosphere are the rate of exchange between the ionosphere and plas-

masphere, not “escape fluxes.” The photoelectron flux in the plasmasphere which

determines the plasmaspheric heating is not simply the sum of the “escape fluxes”

from the two hemispheres.

All of the photoelectron transport models discussed so far have been used for

calculations in a pre-specified background ionosphere and atmosphere. One of

the first studies which coupled photoelectron calculations to fluid equations in

a time dependent model was Khazanov et al. [1984], who created a single field

line coupled ionosphere-plasmasphere model to study plasmaspheric refilling after

geomagnetic storms. The electron heating in the ionosphere and plasmasphere

in this model was computed using an simple embedded photoelectron transport

model based on the approach of Polyakov et al. [1979]. Like Mantas et al. [1978],

Polyakov et al. [1979] couples a plasmaspheric photoelectron transport code to two

ionospheric photoelectron transport codes on either side. The solution methods

used by Polyakov et al. [1979] are significantly different from those discussed above,

however, but this article appears to have been largely ignored in the West because

it was written in Russian. In the ionosphere Polyakov et al. [1979] write the flux

as an infinite series

Φ(ℓ, E , µ) =

∞∑

n=0

Φn(ℓ, E)Pn(µ), (2.71)

where Pn(µ) is a Legendre polynomial of degree n. This series is truncated after 2

or 4 terms and substituted into an equation which is equivalent to Eq. 2.38 (i.e. it

includes the mirror force and pitch-angle diffusion) to derive coupled equations for

the coefficients Φn(ℓ, E). Like the two-stream approximation or the finite ordinate

approximation, this procedure leads to a system of 2 or 4 coupled linear ODEs

which can be solved for each energy. Polyakov et al. [1979] treat the plasmasphere
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like a leaking magnetic mirror trap using the same kinds of methods which are

classically used to describe the radiation belts [e.g. Roederer , 1970]. Collisions

with neutrals are ignored, and the photoelectron transport equation is averaged

over all positions between the reflection points of the mirror trap. This results in a

differential equation for the bounce-averaged distribution function in terms of the

equatorial pitch angles of the particles which must be solved for each energy. The

loss cone is coupled to the ionospheres on either side through boundary conditions.

This type of bounce-averaged formalism is still used today in models of the ring

current and inner magnetosphere [see Fok et al., 2001, and references therein].

Two well known time dependent coupled ionosphere-plasmasphere mod-

els which include photoelectron transport are the Field Line Interhemispheric

Plasma (FLIP) model [Richards and Torr , 1996] and the Sheffield University

Plasmasphere-Ionosphere Model (SUPIM) [Bailey and Balan, 1996], which both

use the same photoelectron transport code. This code is based on a two-stream

approximation to Eq. 2.70 [Young et al., 1980; Torr et al., 1990; Richards and

Torr , 1990]. Using the same definition of the up and down fluxes as above, the

coupled pair of ODEs solved are

〈µ〉 d
dℓ

(
Φ+

B

)

=
q̂+

B
− σthNe

(
Φ+

B

)

(2.72)

−
∑

n

(σ̄an + (1 − βen)σ̄en)Nn

(
Φ+

B

)

+
∑

n

σ̄enNnβen

(
Φ−

B

)

−〈µ〉 d
dℓ

(
Φ−

B

)

=
q̂−

B
− σthNe

(
Φ−

B

)

(2.73)

−
∑

n

(σ̄an + (1 − βen)σ̄en)Nn

(
Φ−

B

)

+
∑

n

σ̄enNnβen

(
Φ+

B

)

.

Pitch-angle diffusion due to Coulomb collisions is ignored. The effects of the

magnetic mirror force are incorporated into these equations in an ad hoc man-

ner [Richards and Torr , 1990]. At low altitudes 〈µ〉 is fixed at 0.577, but above
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a certain altitude 〈µ〉 varies with the magnetic field strength the same way the

pitch-angle cosine of a single collisionless electron would in the guiding center ap-

proximation. Furthermore, trapping of photoelectrons is included by specifying

photoelectron trapping fractions a priori which determine the amount reflected

from a nominal height of 1000 km [Richards and Torr , 1990].

The FLIP two-stream code has shown reasonable agreement with measure-

ments of photoelectrons escaping from the high latitude ionosphere made by the

FAST spacecraft [Peterson et al., 2008; Richards and Peterson, 2008]. FLIP can

adequately reproduce daytime F -region electron temperatures measurements from

the Millstone Hill Observatory, however these comparisons are complicated by the

lack of knowledge of the heat flux from the plasmasphere [Richards and Khazanov ,

1997; Buonsanto et al., 1997]. SUPIM can qualitatively reproduce features of the

F -region electron temperatures measured by the Hintori satellite [Balan et al.,

1997] and the MU radar [Otsuka et al., 1998]. Quantitatively, the plasmaspheric

electron temperatures from SUPIM are as much as a factor of 2 too small com-

pared to measurements from EXOS D (1000-8000 km), but they can be brought

up to near agreement if the photoelectron trapping factor is raised and an extra

high altitude heat source is added [Balan et al., 1996a, b].

Predicting the heating rates in the plasmasphere requires a multi-stream model

which can include magnetic mirror force effects in a rigorous way. The plasma-

sphere model presented by Khazanov et al. [1993] and later extended down to

ionospheric heights by Khazanov et al. [1994] is such a model. These models write

the photoelectron transport equation in yet another equivalent form by making a

variable transformation from µ to [Khazanov et al., 1979]

µ0(ℓ, µ) ≡ µ

|µ|

√

1 − B0

B(ℓ)
(1 − µ2), (2.74)
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where B0 is the magnetic field strength at the apex of the field line. This variable

is the pitch angle cosine a photoelectron will have when it crosses the equatorial

plane. Like the 1st adiabatic invariant itself, µ0 is a constant of motion for a

collisionless electron. This attribute makes µ0 a useful variable to use numerically

in the collisionless or nearly collisionless regimes. The discrete equations in terms

of µ0 will keep trapped particles trapped between the same bounce points forever

in the collisionless limit. However, the use of µ0 substantially complicates the

construction of the pitch angle grid and the boundary conditions in pitch angle

space. The collision operators also need to be transformed as well. Khazanov et al.

[1994] sidesteps this difficulty by treating all collision processes as continuous loss

processes and small angle collision processes. Under these assumptions all collisions

operators, not just the Coulomb collision operator, can be written as differential

operators of the form

1

v

δΦ

δt
=

∂

∂E [L(E)Φ] +D(E)
∂

∂µ

[

(1 − µ2)
∂Φ

∂µ

]

. (2.75)

These differential operators are much more straightforward to transform than the

collision integrals themselves.

All of the aforementioned photoelectron transport models only consider steady

state solutions. Gefan and Khazanov [1990] have argued that time dependent

solutions are necessary during certain conditions when the photoelectron popula-

tion is changing rapidly, such as plasmaspheric refilling events after geomagnetic

storms. This argument motivated the extension of the Khazanov et al. [1994]

model to a time-dependent photoelectron transport model which was coupled to

high moment fluid equations [Khazanov and Liemohn, 1995; Liemohn and Khaz-

anov , 1995]. This model has since been expanded to include parallel electric fields

[Liemohn et al., 1997], injections of plasma sheet electrons [Khazanov et al., 2000],

the drifts of photoelectrons around the planet into the nightside plasmasphere
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[Khazanov et al., 1996], and photoelectrons produced by starlight in the nightside

plasmasphere [Khazanov and Liemohn, 2002]. All of these models use the same

approximate treatment of collisions as Khazanov et al. [1994], and are primarily

concerned with L-shells greater than L=2 (i.e. apex altitudes above 6371 km).
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CHAPTER 3

ENERGY BALANCE IN THE SAMI2 MODEL

The models presented in this thesis are based on the SAMI2 model [Huba et al.,

2000a] because it is a widely used open source model which includes ion inertia

and is thus capable of capturing a number of unique phenomena in the topside

and plasmasphere [Huba et al., 2000b, c; Krall et al., 2008]. SAMI2 simulates a

single magnetic longitude using a two-dimensional dipolar grid. This grid makes

comparisons with a zenith pointing equatorial radar like Jicamarca straightforward;

the radar’s line of sight maps to a vertical line passing through the center of

grid. This chapter will review the physics and numerical techniques included in

the standard SAMI2 and discuss simulation results in the low-latitude ionosphere

with a particular emphasis on the modeled temperatures. To facilitate sensitivity

studies a steady state version of the temperature solver in SAMI2 has been written.

This allows the energy balance calculations to be repeatedly performed for a single

set of conditions in order to isolate the effects of individual physical processes. We

will show that heating due to photoelectrons is the single most important process

in the equatorial topside and the simplistic treatment of this term in SAMI2 is the

most serious issue preventing SAMI2 from accurately reproducing Jicamarca data.

3.1 Fluid equations used in SAMI2

Fluid descriptions of plasmas can be derived from kinetic descriptions of plasmas

by taking moments of the kinetic equations [see Schunk and Nagy , 2009, Chs. 3

and 5 for a detailed development]. The basic kinetic description of plasma species
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α is the Boltzmann equation [e.g. Bellan, 2006; Schunk and Nagy , 2009];

∂fα
∂t

+ v · ∂fα
∂r

+

(

g +
qα
mα

E +
qα
mα

v ×B

)

· ∂fα
∂v

=
δfα
δt
, (3.1)

where the distribution function fα is the expected number of particles of species α

in a unit hypervolume of the six-dimensional position-velocity phase space (r,v),

qα and mα are the charge and mass of the species, g, E and B are the gravita-

tional, electric and magnetic field strengths, and δfα
δt

is the rate of change of the

distribution function due to the combined effects all types of interactions between

multiple particles including collisions, chemical reactions, and photoionizations.

The zeroth, first, and second moments of the Boltzmann equation give the equa-

tions of continuity, momentum, and energy respectively [e.g. Schunk and Nagy ,

2009]:

∂Nα

∂t
+ ∇ · (Nαuα) =

δNα

δt
(3.2)

Nαmα

(
∂uα

∂t
+ uα · ∇uα

)

+ ∇ ·Pα −Nαqα (E + uα ×B) −Nαmαg =
δMα

δt

(3.3)

∂

∂t

(
3

2
pα

)

+ uα · ∇
(

3

2
pα

)

+
5

2
pα (∇ · uα) + ∇ · qα + τα : ∇uα =

δEα

δt
. (3.4)

The above equations are expressed in terms of the moments [Schunk and Nagy ,

2009]

Density: Nα ≡
∫

fα dv (3.5)

Mean Velocity: uα ≡ 1

Nα

∫

vfα dv (3.6)

Scalar Pressure: pα ≡ mα

3

∫

|v − uα|2 fα dv (3.7)

Pressure Tensor: Pα ≡ mα

∫

(v − uα) (v − uα) fα dv (3.8)

Stress Tensor: τα ≡ Pα − pαI (3.9)

Heat Flow Vector: qα ≡ mα

2

∫

|v − uα|2 (v − uα) fα dv. (3.10)
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The terms on the right hand sides of the fluid equations are defined in terms of

moments of the collision term [Schunk and Nagy , 2009]

δNα

δt
≡
∫

δfα
δt

dv (3.11)

δMα

δt
≡ mα

∫

v
δfα
δt

dv (3.12)

δEα

δt
≡ mα

2

∫

|v − uα|2
δfα
δt

dv. (3.13)

As presented, Eqs. 3.2, 3.3, and 3.4 cannot be used directly because the terms

on the right hand sides cannot be evaluated without knowing the distribution func-

tion, and because the heat flow vector and stress tensor are not known. Moment

equations for the heat flow vector and stress tensor will involve even higher mo-

ments of the distribution function, so the set of fluid equations can be extended

indefinitely. The easiest solution is to assume collision dominance such that the

distribution function is a drifting local Maxwellian [Schunk and Nagy , 2009]

fα(r,v, t) = Nα(r, t)

(
mα

2πkBTα(r, t)

)3/2

exp

[

−mα |v − uα(r, t)|2
2kBTα(r, t)

]

. (3.14)

In this case qα = 0, τα = 0, pα = NαkBTα, and the terms on the right hand side

can be evaluated;

δNα

δt
= Pα −

∑

β

RβNα (3.15)

δMα

δt
= −

∑

β

Nαmαναβ (uα − uβ) (3.16)

δEα

δt
= Qα −

∑

β

Nα
mα

mα +mβ

[
3kBν̃αβ(Tα − Tβ) +mβναβ |uα − uβ|2

]
(3.17)

where Pα is the production rate (e.g. due to photoproduction or chemical reac-

tions), Rβ is the recombination rate for chemical reactions involving species β, ναβ

is the momentum transfer collision frequency for collisions between α and β, ν̃αβ

is the energy transfer collision frequency for collisions between α and β, and Qα
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is an external heating rate. The two different types of collision frequencies can be

written as

ναβ =
16

3
Nβ

mβ

mα +mβ
Ω

(1,1)
αβ Φαβ (3.18)

ν̃αβ =
16

3
Nβ

mβ

mα +mβ
Ω

(1,1)
αβ Ψαβ, (3.19)

where Ω
(1,1)
αβ is the Chapman-Cowling collision integral [Chapman and Cowling ,

1970], and Φαβ and Ψαβ are dimensionless velocity dependent correction factors

which depend on the type of collision and are unity for Maxwell molecule collisions

[see Schunk and Nagy , 2009, Ch. 4]. Huba et al. [2000a] list all of the chemical

reactions considered in SAMI2 and give empirical expressions for the reaction rates,

momentum transfer collision frequencies, and energy transfer collision frequencies.

Assuming a local Maxwellian forces the heat flow vectors to be 0. However,

heat flow in the ionosphere is expected to be important since energy is absorbed

nonuniformly by the upper atmosphere. A way to proceed is to retain the heat

flow vector but perform a perturbation analysis where qα is presumed to be small.

In this case the heat flow vectors can be approximately expressed in terms of lower

moments of the distribution function [see Schunk and Nagy , 2009, section 5.12]. In

a strongly magnetized plasma only the parallel component of the heat flow vector

will be significant. For electron and ion gases the parallel components of the heat

flow vectors are approximately [Schunk and Nagy , 2009; Rees , 1989]

qe‖ = −λe∇‖Te − βeJ‖ (3.20)

qi‖ = −λi∇‖Ti, (3.21)

where λe and λi are the electron and ion thermal conductivities, βe is the ther-

moelectric coefficient, J‖ is the component of the current density parallel to the

magnetic field, and ∇‖ denotes the derivative along a magnetic field line. In the
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low latitude ionosphere there are no strong field aligned currents so we will ignore

the thermoelectric term. Simple approximations for the thermal conductivities are

[Banks , 1966; Huba et al., 2000a; Schunk and Nagy , 2009]

λe =
7.7 × 105T

5/2
e

1 + 3.22 × 104T 2
eNq/ne

eVcm−1K−1 (3.22)

λi =
1.24 × 104NT

5/2
i

ne
eVcm−1K−1, (3.23)

where,

Nq = n(O)q(O) + n(N2)q(N2) + n(O2)q(O2) (3.24)

q(O) = 1.1 × 10−16(1 + 5.7 × 10−4Te) (3.25)

q(N2) = 2.82 × 10−17T 1/2
e (1 − 1.21 × 10−4Te) (3.26)

q(O2) = 2.2 × 10−16(1 + 3.6 × 10−2T 1/2
e ) (3.27)

N = n(O+) + 2n(He+) + 4n(H+), (3.28)

and all densities and temperatures are expressed in cm−3 and Kelvin, respectively.

Several additional assumptions are made in SAMI2 to simplify the fluid equa-

tions. First the quasineutrality condition, Ne =
∑

j Nj, is used instead of solving

the electron continuity equation. Second the electron momentum equation is sim-

plified by noting that me/mi ≪ 1 and me/mn ≪ 1;

0 = −∇pe −Nee (E + ue ×B) . (3.29)

The parallel component of this equation can be solved for the parallel ambipolar

electric field,

E‖ = − 1

Nee
∇‖pe. (3.30)

This can then be substituted into the parallel component of the momentum equa-
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tions for each ion,

Njmj

(
∂uj‖
∂t

+ (uj · ∇)uj‖

)

= −∇‖pj −
Nj

Ne
∇‖pe +Njmjg‖ (3.31)

−
∑

n

νjn
(
uj‖ − un‖

)
−
∑

k 6=j

νjk
(
uj‖ − uk‖

)
.

SAMI2 simplifies the perpendicular components of the electron and ion momen-

tum equations by assuming the E × B drifts dominate the perpendicular motion

such that ue⊥ = ui⊥ = E × B/B2. SAMI2 never solves for the perpendicular

electric field and instead uses the empirical model of Scherliess and Fejer [1999] to

specify it. A more complete approach, which is used in SAMI3[Huba et al., 2008],

is to retain the gravitational and diamagnetic drift terms and solve for the self

consistent electric field which must form such that ∇ · J = 0 [e.g. Kelley , 2009].

Finally, the energy equations are expressed in a different form in SAMI2. Using

the equation of state, pα = NαkBTα, the source free continuity equation, ∂Nα/∂t+

∇ · (Nαuα) = 0, and qα‖ = −λα∇‖Tα, Eq. 3.4 can be rearranged as an equation

for the temperature evolution [Schunk and Nagy , 2009];

3

2
nαkB

∂Tα
∂t

= Qα
︸︷︷︸

1

− Lα
︸︷︷︸

2

+∇‖ · λα∇‖Tα
︸ ︷︷ ︸

3

− 3

2
nαkBuα · ∇Tα
︸ ︷︷ ︸

4

−nαkBTα∇ · uα
︸ ︷︷ ︸

5

.

Physically the five terms on the right hand side represent local heating (1), lo-

cal cooling (2), heat flow by thermal diffusion (3), heat advection (4), and heat-

ing/cooling by contraction/expansion (5). SAMI2 solves energy equations of this

form for both the electrons and ions, although in the electron energy equation ue‖ is

taken to be 0 such that terms 4 and 5 can be neglected [Huba et al., 2000a]. Strictly

speaking ue‖ should be determined from J‖, but J‖ is not known in SAMI2 because

there is no self consistent electrodynamic solver. Nonetheless, electron tempera-

ture advection and heating due to expansion and contraction should be negligible

compared to the other terms.
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One of the heating terms in the electron energy equation represents the heating

from photoelectrons. SAMI2 uses a simple phenomenological model of the pho-

toelectron heating [Millward et al., 1996; Huba et al., 2000a]. Below 300 km the

heating is assumed to be entirely local. Here the photoelectron heating rate is

modeled as

Qphe = ǫPphoto, (3.32)

where Pphoto is the photoproduction rate and the efficiency factor, ǫ, is given by

the empirical expression [Swartz and Nisbet , 1972]

ǫ = exp
[
−
(
12.75 + 6.94x+ 1.66x2 + 0.08034x3 + 0.001996x4

)]
eV (3.33)

x = ln

(
Ne

NO2
+NN2

+ 0.1NO

)

. (3.34)

Above 300 km the nonlocal heating is at some point ℓ on a given field line is

modeled as

Qphe(ℓ) =
Ne(ℓ)B(ℓ)

Ne (ℓ300N )B (ℓ300N )
Qphe (ℓ300N ) exp

(

−Cqe

∫ ℓ300N

ℓ

Ne(ℓ
′)dℓ′

)

(3.35)

+
Ne(ℓ)B(ℓ)

Ne (ℓ300S)B (ℓ300S)
Qphe (ℓ300S) exp

(

−Cqe

∫ ℓ

ℓ300S

Ne(ℓ
′)dℓ′

)

,

where ℓ300N and ℓ300S are the points where the field line crosses 300 km in the

northern and southern hemispheres respectively and the integrals are taken along

the field line. The constant Cqe can be adjusted. Unless otherwise specified all of

the examples presented below use Cqe = 8 × 10−14 cm2. The effect of varying this

parameter is discussed in Sec. 3.4.3.

3.2 Numerical Methods in SAMI2

Each time step in SAMI2 performs four tasks [Huba et al., 2000a]. First the neu-

tral atmospheric parameters are updated by calling NRLMSISE-00 [Picone et al.,
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2002] for the densities and temperatures and HWM93 [Hedin et al., 1991] for the

winds. The fluid equations are then solved using a time splitting procedure. In the

second step the parallel components of the ion momentum equations, ion continu-

ity equations, electron temperature equation, and ion temperature equations are

solved in that order. Photoproduction, chemical production and loss, and heating

and cooling are all included in this parallel transport portion. Third the E × B

drifts are computed from the model of Scherliess and Fejer [1999] and the state

variables are updated with an explicit scheme for the perpendicular transport.

Finally the Courant conditions are evaluated and the step size for the next time

step is chosen. The nonlinear ion inertia term is treated explicitly so the Courant

condition is set by the maximum ion velocity; the use of implicit methods for the

parallel equations mean that the ion sound speeds have no effect on the time step

size [Huba et al., 2000a].

The position coordinates in SAMI2 are represented in an orthogonal dipole co-

ordinate system, (qd, pd, φd) [Huba et al., 2000a]. In terms of a spherical coordinate

system centered on the offset and tilted magnetic dipole of the Earth, (re, θe, φe),

and the radius of the Earth, RE , these coordinates are defined as

qd =
R2

E

r2e
cos θe (3.36)

pd =
re
RE

1

sin2 θe
(3.37)

φd = φe, (3.38)

where a line of constant pd and φd is a magnetic field line [see Huba et al., 2000a, for

a more detailed description of this coordinate system]. Following SAMI2 we will

also define a coordinate s = REqd which has units of length and increases along

a magnetic field line. This coordinate is related to the distance traveled along a

58



magnetic field line, ℓ, by

ds

dℓ
=
R3

E

r3e
(1 + 3 cos2 θe)

1/2 ≡ bs. (3.39)

This dimensionless curvilinear factor bs is directly proportional to the magnetic

field strength [Huba et al., 2000a].

The original version of SAMI2 described by Huba et al. [2000a] used a La-

grangian grid where each field line moved with the E×B drift; however, subsequent

revisions of the model have all been Eulerian. This entire thesis uses the Eulerian

version of SAMI2. In the Eulerian version the perpendicular transport step ad-

vects the densities and temperatures in the perpendicular direction using a simple

explicit donor cell upwinded method. The Eulerian SAMI2 grid is composed of a

set of field lines which are all at the same magnetic longitude, φd. Each field line

contains the same number of points along the field line and extends down to the

same altitude (typically 85 km). This results in a slightly non-orthogonal grid; the

normals to the cell faces between two grid cells on two different field lines do not

exactly point in the direction of increasing pd. Thus, perpendicular advection step

includes a small amount of advection along the field line in addition to advection

from one field line to the other.

3.3 A new steady state temperature model

Throughout most of the day the time derivative terms in the temperature equations

are much smaller than all of the other terms. The typical thermal response times of

the ionospheric plasma have been studied in detail by Roble and Hastings [1977].

Below 300 km the response times are less than 30 s, meaning that the steady

state assumption is always valid. Between 300 and 600 km the temperatures
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normally reach steady state within 200-1000 s. Above 600 km the electron and

ion temperatures can display differing response times which vary depending on the

densities, but are at most 2500 s. Thus the steady state assumption is valid in the

topside when the heating is not varying significantly on time scales less than 2500

s, which is true during most of the day except at sunrise and sunset. When the

time derivative terms are negligible the temperature equations become a boundary

value problem in space. The final equations which we solve for each ion species

and electrons are

0 =−Q̃α
︸︷︷︸

1

+ L̃α
︸︷︷︸

2

+
2

3

1

nαkB
∇‖ · λα∇‖Tα

︸ ︷︷ ︸

3

(3.40)

+ uα⊥∇⊥Tα
︸ ︷︷ ︸

4a

+uα‖∇‖Tα
︸ ︷︷ ︸

4b

+
2

3
Tα∇⊥ · uα⊥

︸ ︷︷ ︸

5a

+
2

3
Tα∇‖ · uα‖

︸ ︷︷ ︸

5b

,

where Q̃ and L̃ are the local heating and cooling rates divided by 3/2NαkB. For

boundary conditions the temperatures at the two ends of each field line and along

the entire bottom field line are set equal to the neutral temperatures. Along the

top field line the difference between the top field line and line immediately below

is assumed to be 0. The details of the numerical techniques used to solve this

equation are contained in Appendix A.

The model requires a number of other parameters to be specified. The densities

and temperatures of all neutral species are specified by the NRLMSISE-00 model

[Hedin, 1991; Picone et al., 2002], the neutral winds are specified by the HWM93

[Hedin et al., 1991], the E×B drifts are specified by the model of Scherliess and

Fejer [1999], and the ion densities and parallel velocities must be fixed either by

some other ionospheric model, such as SAMI2 or IRI, or using data. As a reference

case we have run SAMI2 for 48 hours starting on May 8, 2008 with both the daily

and average F10.7 flux set to 70 and an Ap of 4. These conditions correspond to
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Figure 3.1: A vertical cut through the electron and ion density profiles above
the magnetic equator at 14 LT for the reference case. Only three
of the seven ion species used in SAMI2 are plotted. The electron
density is higher than the O+ density at low altitudes because
the densities of the four additional ions (N+, N+

2 , NO+ and O+
2 )

become significant at these low altitudes.

deep solar minimum. Running the model for two full days and ignoring the first 24

hours ensures that all transient behavior has ceased. Fig. 3.1 shows a cut through

the density profiles at the magnetic equator at 14 LT on the second day for this

reference case.
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3.3.1 Results of Reference Case

Fig. 3.2 shows vertical profiles of the computed temperatures at 14 LT above

Jicamarca for all four species for the reference case. Each plot shows the profile

from SAMI2 and the solution obtained by the two-dimensional steady state model.

The agreement between the model and SAMI2 is excellent at low altitude, but the

steady state model predicts higher temperatures than SAMI2 in the 300-1000 km

range. The discrepancy is most noticeable around 700 km because, in this case,

those field lines connect to the equatorial arcs. As will be discussed in detail later,

the nonlocal heating from the equatorial arcs has a large effect on the topside

temperatures. The densities in the arcs are never in a steady state, but rather

form throughout the afternoon. At any given time during the afternoon, the

instantaneous nonlocal heating rate is higher than the average nonlocal heating

rate over a typical response time of the temperatures. Thus the steady state solver

consistently overestimates the temperature when nonlocal heating is important.

Above 1000 km the steady state temperatures can be either higher or lower than

the SAMI2 temperatures.

To demonstrate the relative importance of the various physical processes, the

magnitudes of each term in Eq. 3.40 are plotted in Fig. 3.3 as a function of altitude.

The terms are all multiplied by 3/2NαkB and expressed in units of eVcm−3s−1.

Clearly at low altitudes local heating and cooling dominate all other processes.

At these altitudes the temperatures can be obtained by simply solving algebraic

equations. At higher altitudes thermal diffusion (term 3), nonlocal photoelectron

heating (term 1), local cooling (term 2), and perpendicular advection (term 4a) are

all important processes. Expansion and contraction (terms 5a and 5b) are always

insignificant, and parallel advection (term 4b) is small because parallel diffusion
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Figure 3.2: Vertical profiles of temperatures produced by SAMI2 and the
steady state model for the reference case at 14 LT. These profiles
represent a cut through the full solution at the magnetic equator.

acts to smooth out parallel gradients much more efficiently.

Fig. 3.4 demonstrates the validity of the steady state model for various times

of day. The solid line is the electron temperatures produced by SAMI2 during the

second 24 hours of the 48 hour reference case at 1011 km over the magnetic equator,

and the diamonds are electron temperatures from the corresponding runs of the

steady state model. During most of the day the steady state solution is only slightly

above the true solution. The discrepancies are worst just after sunrise, when the

temperatures are changing rapidly and a steady state solution is not expected to

be appropriate, and just before sunset, during the prereversal enhancement. The

steady state solutions are the most accurate during the early afternoon. During

the night the steady state solutions are simply equal to the neutral temperature

because there is no photoelectron heating. The true nighttime temperatures are

higher than the neutral temperatures due to heat which persists from the daytime.
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Figure 3.3: A vertical cut of the magnitudes of the electron heating/cooling
rates at the final model solution. The numbers in the legend
identify the terms in Eq. 3.40 corresponding to each curve. The
curve labeled “cooling” is the sum of all local cooling processes
due to electron-ion and electron-neutral collisions.

This residual heat lasts all the way until sunrise on the following day.

3.4 Sensitivity Studies

The steady state model provides an expedient way to repeatedly predict temper-

atures at a single time for a variety of different physical conditions. We have used

the model to conduct a series of numerical experiments which test the sensitivities

of the topside equatorial temperatures to a variety of physical processes. We have
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Figure 3.4: Electron temperatures produced by SAMI2 and the steady state
model for various times of day. During much of the day the
steady state solution is still approximately correct.

focused on the temperatures at 14 LT because at this time of day the steady state

model is most accurate.

3.4.1 Effects of Electric Fields

Hysell et al. [2009] have shown that the topside temperatures are extremely sensi-

tive to variations in the electric field. To fully illustrate the response we have run

SAMI2 for three full days for the reference case discussed above, but after local

noon on the third day we double the electric field. Fig. 3.5 illustrates the response
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Figure 3.5: Electron temperatures in Kelvin for selected times during the
afternoon of the second and third day of the SAMI2 run. The first
day is omitted because it potentially contains transients. The
second day corresponds to the reference case. On the third day
after local noon the electric field is doubled. The temperatures
on the third day are consistently lower than those on the second.

of the electron temperature and Fig. 3.6 illustrates the corresponding response of

the electron density. During the afternoon the electric fields are eastward, meaning

that the plasma drifts upwards. Lifting the plasma results in a reduction of the

electron temperature and the formation of equatorial arcs via the fountain effect.

Electric fields affect the topside temperatures through both direct and indi-

rect means. The direct effects stem from terms in the temperature equation

which explicitly depend on u⊥, namely the perpendicular advection and expan-

sion/contraction terms. Flux tubes always expand as they are lifted to higher

altitude, meaning that ∇ · u⊥ is positive. Furthermore, in the topside ∇T points

upwards, so u⊥ · ∇T is also positive. Thus both perpendicular advection and

expansion will cool the topside.
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Figure 3.6: Electron densities corresponding to the electron temperatures in
Fig. 3.5. Clearly the increased electric fields on the third day
moves the equatorial arcs to higher latitudes.

The redistribution of plasma by the electric fields results in many more compli-

cated indirect effects. Increasing the vertical drift raises the O+ to H+ transition

height. Changing the ion composition changes the local cooling rates. Further-

more, the topside heating is strongly coupled to the off-equatorial F -region both

through field aligned thermal diffusion and nonlocal heating from photoelectrons.

To determine the relative importance of all of these effects we have run our

steady state model for a number of different cases. We have generated electron and

ion density profiles by running SAMI2 for the reference case and for the reference

case with the electric field multiplied by 1.5. Fig. 3.7 shows the result of the model

when run at 14 LT using:

1. The standard densities and no other modifications,

2. The standard densities and the perpendicular advection terms multiplied by
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1.5,

3. The standard densities and the expansion terms multiplied by 1.5,

4. The standard electron densities with the ion densities adjusted such that the

ion fractions match those from the modified SAMI2 run,

5. The standard densities but photoelectron heating rates computed using the

modified electron densities,

6. The modified densities but photoelectron heating rates computed using the

standard electron densities,

7. The modified densities with self consistent photoelectron heating rates and

both perpendicular advection and expansion multiplied by 1.5.

The first and last cases have consistently higher temperatures than their corre-

sponding SAMI2 results due to discrepancies between the steady state and the

true solutions discussed earlier, not due to any other physical processes. The other

cases are all designed to isolate the different processes which are altered by the

electric fields. Fig. 3.7 clearly demonstrates that changes to the nonlocal photo-

electron heating have the largest individual effect. The strong dependence of the

nonlocal photoelectron heating on the electron density at 300 km is immediately

apparent from Eq. 4.82. All of the other terms provide smaller but comparable

amounts of cooling individually throughout the topside. The exception is perpen-

dicular advection which cools most of the lower altitudes but heats the very highest

altitudes simulated.

68



0 500 1000 1500 2000 2500 3000 3500
0

500

1000

1500

T
e
 (K)

A
lti

tu
de

 (
km

)

Electron Temperature

 

 

Standard
Advection
Expansion
Ion Frac
Q

phe
N

e

All

Figure 3.7: Steady state electron temperature profiles over the magnetic
equator with the electric field scaled by 1.5. The curve labeled
“Standard” is the reference case and the curve labeled “All” is
the solution with all the effects of the increased electric field in-
cluded. The other curves are solutions when only one term is
adjusted for the increased electric fields at a time as explained in
the text.

3.4.2 Effects of Meridional Neutral Winds

The effects of meridional neutral winds on the topside temperatures can be under-

stood in a similar fashion to the effects of electric fields. Neutral winds directly

change the temperature equation by changing the parallel advection and expan-

sion/compression terms, but these terms are usually small compared to the other

physical processes. However, the meridional winds can also redistribute plasma

and thus also have strong indirect effects on the topside temperatures just like
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Figure 3.8: Electron temperatures in Kelvin for selected times during the
afternoon of the second and third day of the SAMI2 run. The
second day corresponds to the reference case. On the third day
after local noon the neutral winds are doubled. The temperatures
on the third day are consistently higher than those on the second.

electric fields.

We have performed another three-day run of SAMI2 where the meridional

winds are doubled after noon on the final day. Fig. 3.8 and Fig. 3.9 illustrate the

evolution of the electron temperature and electron density respectively. The winds

produced by the HWM93 in the upper thermosphere have a strong southward

component. These winds create an asymmetry between the equatorial arcs. The

northern arc is raised in altitude and depleted while the southern arc is lowered

in altitude and enhanced. The total amount of plasma in both arcs is actually

decreased for increasing winds because as the southern arc is lowered in altitude

recombination becomes more important.

The steady state model can be used once again to isolate the relative importance
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Figure 3.9: Electron densities corresponding to the electron temperatures in
Fig. 3.8. The increased winds on the third day exaggerate the
asymmetry between the two equatorial arcs and decrease the to-
tal integrated plasma density along any given field line.

of the pathways through which meridional winds affect temperatures. Ion and

electron densities and ion parallel velocities were generated by running SAMI2

both with normal winds and with winds scaled by 2. Fig. 3.10 shows runs of the

model at 14 LT using:

1. Standard densities and velocities,

2. Standard densities and velocities with photoelectron heating rates computed

using the modified electron densities,

3. Standard velocities and modified densities with photoelectron heating rates

computed using the standard electron densities.

4. Standard densities but modified ion and neutral velocities,

5. Modified densities, velocities, and photoelectron heating rates.
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The direct effect of changing the parallel advection by changing the velocities pro-

duces a slight cooling of the topside. However, the total effect of increasing the

winds is a substantial heating of the topside. Once again the rearrangement of

the plasma along the flux tubes has a substantial indirect effect on the temper-

ature. Exactly like the electric field case the largest effect comes from changing

the nonlocal photoelectron heating. Increasing the meridional winds causes the

total integrated density along the flux tube to decrease because the wind depletes

the upwind portion of the field line, and forces the downwind portion of the field

line downwards where recombination is stronger. This means that the integral

in Eq. 4.82 is larger. Physically this integral models the attenuation of the non-

local heating as the electrons travel further along the field lines. Adjusting the

densities, and thus the parallel thermal diffusion, without changing photoelectron

heating also appreciably increases the topside temperatures.

In all of the examples presented thus far the adiabatic compression/expansion

has always been insignificant compared to other processes. These effects have been

shown to create significant ion heating, however, in SAMI3 simulations of equa-

torial spread-F where the flow velocities are much faster [Huba et al., 2009]. The

occasional satellite observations of troughs and enhancements in ion temperature

at night have also been attributed to adiabatic compression/expansion [Bailey and

Heelis , 1980; Venkatraman and Heelis , 1999a, b]. These structures are thought

to be associated with strong trans-equatorial neutral winds. The ions are con-

strained to move along the magnetic field lines as they are pushed by the wind,

so the ions in the downwind hemisphere are compressed by the converging mag-

netic field and the ions in the upwind hemisphere expand due to the diverging

magnetic field. Thus a strong meridional wind should expand and cool the ions

the upwind hemisphere, creating a trough, and compress and heat the ions the
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Figure 3.10: Steady state electron temperature profiles over the magnetic
equator with the winds scaled by 2. The curve labeled “Stan-
dard” is the reference case and the curve labeled “All” is the
solution with all the effects of the increased winds included. The
other curves are solutions when only one term is adjusted for
the increased winds at a time as explained in the text.

downwind hemisphere, creating an enhancement.

We have attempted to reproduce these effects using SAMI2. The four panels

in the upper left of Fig. 3.11 show the O+ temperature at 1 local time for four

different SAMI2 runs. The top left and center left panels are for the same date

and conditions as the reference case, which correspond to solar minimum. The

top center and center panels are for the year 2002 and an F10.7 of 190, which

are solar maximum conditions, with all other parameters unchanged. During solar

maximum the O+-H+ transition height is much higher, meaning that a larger
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proportion of the topside is composed of O+. Satellite observations have shown

that ion temperature troughs are much more pronounced during solar maximum

for this reason [Venkatraman and Heelis , 1999b]. The top left and top center panels

use the HWM93 model to generate the neutral winds. The HWM93 winds for both

the solar minimum and solar maximum conditions are plotted in the bottom two

panels. In both cases the winds in the topside are southwards at the equator,

but eventually change sign in the southern hemisphere. The center left and center

panels assume a constant, uniform neutral wind of 100 m/s southward. This is the

simplest way to create a strong trans-equatorial flow. Both of the simulations with

the HWM93 winds show very little latitudinal dependence of the O+ temperatures.

The simulation at solar maximum using the strong uniform winds, however, shows

a pronounced temperature maximum in the downwind hemisphere as well a trough

slightly upwind of the magnetic equator. Similar yet much less pronounced features

are visible in the simulation at solar minimum using the uniform winds. These four

simulations thus corroborate the main conclusions of Bailey and Heelis [1980];

troughs and enhancements in ion temperature are possible at night if strong trans-

equatorial flows exist and are much more pronounced during solar maximum when

larger amounts of O+ are present in the topside.

To prove that these troughs and enhancements are indeed the result of the

neutral wind and not a remnant of structures created by asymmetric heating during

the daytime we have run the steady state model using the uniform wind for the solar

maximum conditions at 1 local time. The steady state model was run using the

densities and ion velocities produced by the SAMI2 run with the same conditions.

The center right panel of Fig. 3.11 shows steady state O+ temperatures. The

SAMI2 temperatures (center panel) and the steady state temperatures (center

right panel) do not match because the steady state model cannot account for heat
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which persists from the daytime. Normally the steady state model sets the ion

temperatures almost exactly equal to the neutral temperatures at night since since

there are no significant heat sources. For reference the MSIS neutral temperatures

used for all of the solar max runs are plotted in the top right panel of Fig. 3.11.

In this case, however, the steady state ion temperatures show an enhancement in

the downwind hemisphere and a temperature minimum at high altitudes and in

the upwind hemisphere which are not present in the neutral temperatures. This

proves that the compression and expansion driven by the wind are acting as a

direct source of ion heating and cooling.

3.4.3 Effects of the Nonlocal Heating Parameter

The nonlocal heating model used in our model relies on an unknown parameter,

Cqe. Fig. 3.12 shows several runs of the model for a variety of different values

of the parameter for the reference case. Clearly the temperatures below 300 km

are unaffected because this parameter only appears in the model of the nonlocal

photoelectron heating above 300 km. Above 300 km all of the profiles have the

same qualitative shape, but the absolute temperatures increase dramatically with

increasing Cqe. Thus none of the model results presented above should be regarded

as strictly reliable predictions of the absolute temperatures and direct comparisons

to data or other models will almost certainly be inaccurate. Nonetheless, the

qualitative shapes of the profiles and the changes to the profiles caused by changing

physical conditions predicted by this model are still meaningful.
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Figure 3.11: Summary plots illustrating the effects of neutral winds at night
on ion temperature. All of the plots correspond to 1 local time.
The plots are (a) oxygen ion temperatures from a SAMI2 run
at solar minimum using HWM93 winds (top left), (b) oxygen
ion temperatures from a SAMI2 run at solar maximum using
HWM93 winds (top center), (c) oxygen ion temperatures from
a SAMI2 run at solar minimum using a constant, uniform 100
m/s southward wind (center left), (d) oxygen ion temperatures
from a SAMI2 run at solar maximum using a constant, uniform
100 m/s southward wind (center), (e) HWM93 winds for solar
minimum conditions (bottom left), (f) HWM93 winds for solar
maximum conditions (bottom center), (g) MSIS neutral tem-
peratures for solar maximum conditions (top right), and (h)
oxygen ion temperatures from the steady state model using the
same parameters as the center panel (center right).
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Figure 3.12: Steady state electron temperature profiles over the magnetic
equator for various values of the nonlocal heating attenuation
parameter, Cqe. The value of 8×10−14 cm2 is the standard value
used in all of the other plots.

3.5 Comparison of SAMI2 to Jicamarca data

March 25, 2009 was an exceptionally quiet day on which Jicamarca ran a full

profile mode. This day is used as the reference case for SAMI2-PE in Sec. 6.1.

This section displays some results from the standard SAMI2 for the same day

for comparison. Three simulations were performed using three different values

of the nonlocal heating parameter, Cqe. Figs. 3.13 and 3.14 show the electron

densities and temperatures respectively from these three simulations along with

the Jicamarca measurements. The electron densities in the three simulations are
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all similar to each other and agree well with the measurements. The differences

in the densities are most pronounced in the topside, where the simulations with

higher Cqe have slightly higher topside plasma densities. When the temperatures

are higher the pressure gradients along the field lines can hold more plasma up at

high altitudes. The band of strong radar returns around 150 km in the electron

density data is not actually a layer of large electron density, but rather the result

of coherent scatter from 150 km echoes [see Chau and Kudeki , 2006b, for a review

of this phenomenon]. Thus the absence of this layer in the simulations is not cause

for concern.

The electron temperatures, however, differ substantially from the data and

from one simulation to the next. Below 300 km the electron temperatures from the

three simulations are identical because Cqe has no effect on these altitudes. These

low altitude electron temperatures agree reasonably well with the data. In the

topside, however, changing Cqe can change the temperatures by over 1000 K. The

discrepancies with the data in the topside are worst at sunrise where the simulations

overestimate the temperatures by 1000-2000 K. In the afternoon the simulations

produce more reasonable temperature values, but the shapes of the temperature

profiles with increasing altitude is wrong, as illustrated in Fig. 3.15. If Cqe is tuned

such that the temperatures matches the data at some reference altitude, then

the simulation will underestimate the temperatures below that reference altitude

and overestimate the temperatures above that reference altitude. These errors are

∼500-1000 K which is 25-50% of the measured values. Thus even in the afternoon

there is no one value of Cqe which can generate satisfactory agreement with the

data. This weakness of SAMI2 is the motivation for reexamining the physics of

photoelectron heating in more detail and creating SAMI2-PE.
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Figure 3.13: RTI plots of electron densities on March 25, 2009 measured by
Jicamarca (top) and modeled by SAMI2 (bottom 3 plots). Each
vertical strip in these RTI plots is a cut through the equatorial
plane of the 2-D simulations. The values used for Cqe in the
various SAMI2 simulations are indicated on the right hand side.

Figure 3.14: RTI plots of measured and modeled electron temperatures on
March 25, 2009 in the same format as Fig. 3.13.
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Figure 3.15: Measured and modeled electron temperature profiles above the
magnetic equator at 15 LT on March 25, 2009. The black dots
with errorbars are the Jicamarca measurements. The solid lines
are SAMI2 simulations using different values of Cqe.
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CHAPTER 4

PHYSICS OF PHOTOELECTRONS

In the development of Ch. 3 photoelectron heating was treated as an external heat

source. This chapter seeks a physical description of this heat source by considering

the photoelectrons as a portion of the total electron population. Most ionospheric

electrons are at energies of ∼ 0.2 eV, but the newly produced photoelectrons have

typical energies of 10-100 eV. These photoelectrons will be a tiny part of the total

electron density, but their relative importance will increase for higher moments of

the electron distribution function. A crucial assumption used in Ch. 3 to close the

system of fluid equations was that the heat flow vector, a third moment, was small

and could be expressed in terms of lower moments of the distribution function.

Photoelectrons will make a significant contribution to the heat flow vector, and

thus this assumption is not valid. A practical way to proceed is to assume the

total electron distribution function can be divided into thermal and suprathermal

portions, fe = fth + fpe, where the thermal portion has large low moments but

negligible high moments and the suprathermal portion has negligible low moments

but significant high moments. Numerous authors have made this division by calling

all electrons below a threshold energy “thermal” and all electrons above that energy

“suprathermal” [in particular see Krinberg [1973] and Hoegy [1984] for detailed

discussions of this division]. A photoelectron-thermal electron heating rate can

only be defined once the total electron population is divided, and thus the value

of the heating rate depends on the way the division is performed [Hoegy , 1984].

An alternative to the Hoegy [1984] method of defining a fixed energy above

which all electrons are deemed to be photoelectrons is to look at the relative sizes

of the moments of the two parts of the distribution function. We assume that
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all moments of fth above the third are negligible such that the fluid equations

are a sensible description of the thermal population. Furthermore we assume

the zeroth, first, and second moments of fpe are negligible such that Ne ≈ Nth,

Neue ≈ Nthuth and Pe ≈ Pth. With these assumptions the total electron continuity

and momentum equations are unaffected by the photoelectrons. The total electron

energy equation can be written as

∂

∂t

(
3

2
pe

)

+ ue · ∇
(

3

2
pe

)

+
5

2
pe (∇ · ue) + ∇ · (qth + qpe) + τe : ∇ue (4.1)

= Qhν +Qphe −Qphe − Lpe − Lth,

where Qhν is the rate at which the total electron population gains energy from

photoionizations, Lpe is the rate at which the photoelectron population loses energy,

and Lth is the rate at which the thermal electron population loses energy. The

energy loss term can be separated into two terms because the electron-ion and

electron-neutral collision terms are linear in fe. The term Qphe which is both

added and subtracted from the right hand side is the rate at which the thermal

electron population gains energy from the photoelectron population. This equation

can be separated into two equations,

∂

∂t

(
3

2
pe

)

+ ue · ∇
(

3

2
pe

)

+
5

2
pe (∇ · ue) + ∇ · qth + τe : ∇ue = Qphe − Lth

(4.2)

∇ · qpe = Qhν −Qphe − Lpe,

(4.3)

where the first equation is a version of Eq. 3.4 for the thermal electrons only. If the

third moment of fth is assumed to be small this equation can be closed by assum-

ing the thermal electron heat flow vector, qth, is related to the thermal electron

temperature via qth‖ = −λth∇‖Tth [Schunk and Nagy , 2009]. When discussing

collisions with thermal electrons in Sec. 4.3.2 we will approximate the thermal
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distribution as Maxwellian, although if we assumed a perfect Maxwellian thermal

distribution when deriving the thermal electron energy equation all the physics of

thermal diffusion would be lost since Maxwellians have third moments of 0 [Schunk

and Nagy , 2009]. Eq. 4.3 is not useful because an equation for the photoelectron

heat flow vector would involve even higher moments of fpe. The only way to pro-

ceed is to use a kinetic equation to solve for fpe directly instead of ever taking its

moments. Once fpe is known Qphe can be calculated directly from a moment of

the photoelectron-electron collision term (see Sec. 4.3.3).

The practice of dividing the distribution function may not seem to have helped

since it still necessitates solving a kinetic equation. However, approximations can

be made which make the kinetic equation for fpe substantially easier to solve

than the Boltzmann equation for the entire electron gas. In particular, the guid-

ing center approximation can be applied to photoelectrons to reduce the number

of phase space variables (see Sec. 4.1) and the nonlinear collision terms repre-

senting photoelectron-photoelectron interactions can be neglected relative to the

linear collision terms representing photoelectron-electron, photoelectron-ion, and

photoelectron-neutral interactions (see Sec. 4.3).

4.1 Photoelectron transport equation in the guiding-center

approximation

Numerous authors have derived simplified kinetic equations for photoelectron using

a variety of different approaches [see Walt et al. [1967], Mantas [1975], Strickland

et al. [1976], Khazanov et al. [1994], Schunk and Nagy [2009] Sec. 9.4, and refer-

ences therein for examples]. This section presents a complete derivation which, like
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Khazanov et al. [1994], uses the Boltzmann equation in an arbitrary phase space

as the starting point.

A general form of a kinetic equation is [e.g. Krall and Trivelpiece, 1973; Ichi-

maru, 2004]

df

dt
= q̌ +

δf

δt
, (4.4)

where f(X)dX is the number of particles between X and X + dX in phase space

and q̌ is the rate at which particles are produced in that phase space element. The

term δf
δt

is the rate at which particles enter minus the rate at which particles leave

that phase space element due to collisions. The total time derivative on the left

hand side is taken along the path a single particle would take in the absence of

interactions with other particles. The production function q is discussed in Sec. 4.2

and the collision term δf
δt

is discussed in Sec. 4.3. The remainder of this section is

devoted to the left hand side of this equation, which represents the transport of

photoelectrons.

The units of these quantities depend on the phase space variables chosen. A

common phase space is a set of three position coordinates, r, and three velocity co-

ordinates, v. Expanding the total derivative with the chain rule then substituting

the equations of motion of a single electron neglecting gravity yields the familiar

form [e.g. Bellan, 2006]:

∂f

∂t
+
∂r

∂t
· ∂f
∂r

+
∂v

∂t
· ∂f
∂v

= q̌ +
δf

δt
(4.5)

∂f

∂t
+ v · ∂f

∂r
− e

m
(E + v ×B) · ∂f

∂v
= q̌ +

δf

δt
. (4.6)

Ionospheric problems are naturally described in a phase space which reflects an

offset and tilted dipole magnetic field. The velocity coordinates can be expressed in
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spherical coordinates relative to the magnetic field, (v, µ, ϕ), where v is the speed

of the electron, µ = cos θ is the cosine of the pitch angle, i.e. the angle between v

and B, and ϕ is an azimuth angle around the magnetic field. The speed coordinate

can be replaced by kinetic energy, E = mv2/2. Using these coordinates instead

of the velocity coordinates, the orthogonal dipolar coordinates, (s = REqd, pd, φd)

instead of the position coordinates, and applying the chain rule to Eq. 4.4 yields

a kinetic equation for the photoelectron distribution function.

∂f̃

∂t
+
∂s

∂t

∂f̃

∂s
+
∂pd
∂t

∂f̃

∂pd
+
∂φd

∂t

∂f̃

∂φd

+
∂E
∂t

∂f̃

∂E +
∂µ

∂t

∂f̃

∂µ
+
∂ϕ

∂t

∂f̃

∂ϕ
= q +

δf̃

δt
. (4.7)

The distribution function in the above equation is defined as the number of pho-

toelectrons per unit volume per unit energy per unit solid angle and has units

of cm−3eV−1ster−1. The relationship between this distribution function and the

distribution function in Eq. 4.6 by can be determined by insisting that both will

integrate to the total electron density, i.e.

Ne =

∫ ∞

−∞

dvf =

∫ ∞

0

dE
∫ 1

−1

dµ

∫ 2π

0

dϕf̃. (4.8)

Switching to spherical coordinates in velocity space in the first integral,

Ne =

∫ ∞

0

v2dv

∫ π

0

sin θdθ

∫ 2π

0

dϕf =

∫ ∞

0

dE
∫ 1

−1

dµ

∫ 2π

0

dϕf̃, (4.9)

then using the definitions µ = cos θ, dµ = sin θdθ, E = mv2/2, and dE = mvdv

yields

Ne =

∫ ∞

0

v2dv

∫ 1

−1

dµ

∫ 2π

0

dϕf =

∫ ∞

0

mv dv

∫ 1

−1

dµ

∫ 2π

0

dϕf̃. (4.10)

This equality holds when

f̃(s, pd, φd, E , µ, ϕ) =
v

m
f(r,v) =

21/2E1/2

m3/2
f(r,v). (4.11)
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The new production function, q, and collision operator, δf̃
δt

, are defined in an anal-

ogous manner.

The terms in Eq. 4.7 involving time derivatives of a coordinate (e.g. ∂s
∂t

) must

be determined from the equations of motions of an undisturbed photoelectron.

If the electric and magnetic fields are changing slowly in time compared to a

gyroperiod and slowly in space compared to the distance the particle travels during

one gyroperiod then the guiding center approximation applies and the equations

of motions simplify substantially [see Bellan, 2006, Ch. 3]. The gyroperiod of an

ionospheric electron is 2πme/(eB) = 1.43 × 10−6 s using B = 0.25 × 10−4 T for

the magnetic equator. In the ionosphere the electric fields change on time scales

of minutes and hours and the magnetic field is dominated by the geomagnetic

field which changes on time scales of years. The velocity of a 100 eV electron is

5.93×106 m/s, so the distance this electron would travel in a gyroperiod is merely

8.48 m; the spatial variation of the electric and magnetic fields in the ionosphere

will be on scales of 10s or 100s of km. Thus the guiding center approximation

is easily justified for photoelectrons in the ionosphere. When using the guiding

center approximation the distribution function can be assumed to be independent

of ϕ, i.e. ∂f̃
∂ϕ

= 0, thus eliminating one phase space variable entirely.

The remaining five equations of motion needed in Eq. 4.7 are easily obtained

from the drift equations [Bellan, 2006]. The motion of a photoelectron in the s

direction is given by

∂s

∂t
=
ds

dℓ
v cos θ = bsµ

√

2E
m
. (4.12)

In the guiding center approximation the first adiabatic invariant [e.g. Bellan, 2006],

M ≡ mv2⊥
2B

=
(1 − µ2)E

B
, (4.13)
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is constant, i.e.

0 =
dM

dt
=
∂s

∂t

∂M

∂s
+
∂µ

∂t

∂M

∂µ
. (4.14)

Differentiating Eq. 4.13, substituting Eq. 4.12, and rearranging yields a second

equation of motion,

∂µ

∂t
= −bs

√

2E
m

(1 − µ2)

2B

∂B

∂s
. (4.15)

For a dipole magnetic field the variation of the magnetic field strength obeys

[Schunk and Nagy , 2009]

bs
B

∂B

∂s
=

1

B

∂B

∂ℓ
=

1

re

9 cos θe + 15 cos3 θe
(1 + 3 cos2 θe)3/2

≡ δB. (4.16)

The terms ∂pd
∂t

and ∂φd

∂t
are related to the drifts of the photoelectrons perpendic-

ular to B. All of these drifts motions are negligibly small compared to the parallel

velocity of a photoelectron, so both of these terms are effectively 0. For example,

consider a 30 eV photoelectron traveling on a field line whose apex altitude is

∼1000 km. The path length from 300 km altitude in one hemisphere to 300 km

altitude in the other along this field line is approximately 6500 km. The parallel

velocity of this photoelectron is 5.93 × 105 m/s
√
Eµ = 3.25 × 106µ m/s. If the

photoelectron is traveling parallel to B (i.e. µ = 1) the trip from one hemisphere

to the other takes 2 s. This photoelectron will experience three types of drifts 1)

E × B drift, 2) curvature drift, and 3) ∇B drift. The E × B drift experienced

by a particle is independent of the velocity. A typical vertical E × B drift in the

equatorial ionosphere is 25 m/s, meaning the example photoelectron would only

move a total of 50 m during its 2 s journey. The grid cells in the model will be

several km wide so this is insignificant.
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The curvature drift velocity of an electron is [e.g. Bellan, 2006]

vcurvature = − 1

eB2

(

mv2‖R̂

R

)

×B, (4.17)

where R is the instantaneous radius of curvature of the field line and R̂ is a unit

vector pointing from the center of curvature to the point on the field line. In the

equatorial plane of the Earth R̂ points upwards and B points north so −R̂ × B

points east. In the worst case where µ = 1 the magnitude of this velocity will

be vcurvature = 2E/(eBR). Dipole magnetic field lines are circles with diameters

equal to RE plus the apex altitude, so for a field line with an apex altitude of

1000 km, R = (RE + 1000)/2 = 3685.5 km. The magnetic field strength in the

equatorial plane is B = B0R
3
E/r

3 where B0 = 0.25 × 10−4 T. Thus at 1000 km

B = 0.1614 × 10−4. Using these numbers a 30 eV electron would experience a

curvature drift of only 1 m/s.

Finally, the ∇B drift experienced by an electron is [e.g. Bellan, 2006]

v∇B =
mv2⊥
2eB3

∇B ×B. (4.18)

In the equatorial plane ∇B points down so ∇B × B points east, just like the

curvature drift. Furthermore, in the equatorial plane ∇B = ∂B/∂r = −3B/r.

The worst case for this drift is when µ = 0, in which case the magnitude of

the drift is v∇B = 3E/(eBr), which is 0.76 m/s for the example photoelectron

considered above.

The final term needed in Eq. 4.7 is ∂E/∂t, which is the work done on the

photoelectrons by electric fields; ∂E/∂t = −ev · E = −ev‖E‖. The perpendicular

electric fields do no work because the perpendicular velocities of the guiding centers

are dominated by the E×B drift, which is perpendicular to E⊥. Parallel ambipolar

electric fields exist in the equatorial ionosphere due to electron pressure gradients,
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but they are too small to have an appreciable impact on photoelectrons. The

ambipolar electric field forms to balance ion gravity [Schunk and Nagy , 2009]. The

steady state ion and electron momentum equations, neglecting the force of gravity

on electrons but not on ions, are

0 = eE‖ −
1

Ne

∇pi −mig cos I (4.19)

0 = −eE‖ −
1

Ne

∇pe, (4.20)

where I is the magnetic dip angle. In the simple case where Te = Ti such that

pe = pi these equations reduce to

E‖ =
mig

2e
cos I. (4.21)

At 300 km altitude on a field line whose apex altitude is 1000 km cos I = 0.2288

and g = 8.94 m/s2. In an O+ plasma the ambipolar electric field at this point

would be 1.71× 10−9 V/cm. If this field were constant along the entire half of the

field line a photoelectron would lose 0.56 eV over the 3250 km journey from 300

km to the apex at 1000 km. This is an overestimate because as the photoelectron

goes up the field line g, cos I and the mean mi all decrease. Below it is shown that

Coulomb collisions with ambient electrons can be modeled as a retarding force

whose typical magnitude is 10−8 eV/cm, which is larger than that caused by the

ambipolar electric fields.

At higher latitudes the amount of energy lost by a photoelectron as it travels

up the field line can be significant. In this case one must account for where this

extra energy goes. By Newton’s third law, the electric field which retards the

photoelectron motion must be simultaneously accelerating the rest of the plasma.

This accelerating force can be viewed as an augmentation to the ambipolar electric

field created by the suprathermal electrons. The energy lost by the photoelectrons
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is thus equal to the mechanical work done by this additional field on the plasma.

Suprathermal electron transport including parallel electric fields has been studied

in the contexts of the aurora [Min et al., 1993], plasmaspheric refilling [Liemohn

et al., 1997] and ion outflows in the polar wind [Tam et al., 1995; Khazanov et al.,

1997, 1998; Tam et al., 1998]. This thesis, however, is primarily concerned with

the low latitude ionosphere and will ignore these effects.

Inserting the two equations of motion, Eqs. 4.15 and 4.12, into Eq. 4.7 and

neglecting all the other terms yields the simplified kinetic equation

∂f̃

∂t
+ bsµ

√

2E
m

∂f̃

∂s
−
√

2E
m

(1 − µ2)

2
δB

∂f̃

∂µ
= q +

δf̃

δt
. (4.22)

Conventionally this equation is written in terms of photoelectron fluxes rather

than the distribution function itself. The fluxes are defined as

Φ ≡
√

2E
m
f̃. (4.23)

If a unit area element is oriented with its normal in the θ, ϕ direction, then Φ is

the number of electrons crossing this area element at normal incidence per unit

energy per second per unit solid angle. Fluxes defined this way have units of

cm−2s−1eV−1ster−1. Using these fluxes, switching spatial coordinates from s to

the true distance traveled along a field line, ℓ, and rearranging terms transforms

the simplified kinetic equation, Eq. 4.22, into the form of a conservation law with

net source terms:

√
m

2E
∂Φ

∂t
+ µ

∂Φ

∂ℓ
− δB

∂

∂µ

[
1 − µ2

2
Φ

]

= µδBΦ + q +
1

v

δΦ

δt
. (4.24)

The new term which appears on the right hand side, µδBΦ, increases the photo-

electron flux as the field lines grow closer together. The new collision term 1
v
δΦ
δt

is

identical to δf̃
δt

. This alternate notation is used, however, to emphasize that this
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term is the rate at which the photoelectron flux changes per unit distance traveled.

The units of the collision term are the units of Φ divided by length.

4.2 Production of suprathermal electrons

The primary source of suprathermal electrons in the ionosphere is photoionization

by solar EUV and soft X-rays [see Schunk and Nagy , 2009, Ch. 9 for an overview].

The determination of the production rate of photoelectrons requires three steps:

specification of the EUV spectrum outside of the atmosphere (Sec. 4.2.1), calcu-

lation of the EUV spectrum at a given point inside the atmosphere (Sec. 4.2.2),

and calculation of the energy dependent production rate of photoelectrons from

the EUV spectrum (Sec. 4.2.3). Suprathermal electrons can also be produced by

energetic electron impact, which is discussed below as part of the discussion of

inelastic collisions (Sec. 4.3.1). A third source of suprathermal electrons is the

quenching of metastable excited neutral species (Sec. 4.2.5). All three of these

terms are summed to produce the production function, q, in Eq. 4.24.

4.2.1 The solar EUV spectrum

We specify the EUV spectrum outside of the atmosphere, F∞(λ), using a version

of the empirical HEUVAC model [Richards et al., 2006]. HEUVAC is based on the

measured F74113 solar reference spectrum with scaling factors applied based on

the F10.7 solar radio flux index. We have adapted the standard HEUVAC model

such that we can specify both wavelength bins and individual lines. We use one

hundred and five 1 nm wide bins from 1.8 nm to 105.0 nm and eighteen individual
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Bright Solar Lines
Wavelength (nm) Energy (eV) Ion(s)

25.630 48.4 Si X - He II
28.415 43.6 Fe XV
30.331 40.9 Si XI
30.378 40.8 He II
33.541 37.0 Fe XVI
36.807 33.7 Mg IX
46.522 26.7 Ne VIII
55.437 22.4 O VI
58.433 21.2 He I
60.976 20.3 Mg X
62.973 19.7 O V
70.336 17.6 O III
76.515 16.2 N IV
77.041 16.1 Ne VIII
78.771 15.7 O IV
79.015 15.7 O IV
97.702 12.7 C III

102.572 12.1 H I (Lyman-β)

Table 4.1: Wavelengths of important lines in the solar EUV spectrum and
their associated ions.

lines. These lines correspond to exceptionally bright lines in the solar spectrum

associated with specific ionic transitions. The line wavelengths and their associated

ions are tabulated in Table 4.1. Each of these lines is regarded as a special line in

HEUVAC and given its own scaling factors.

The modeled solar flux on our wavelength grid is plotted in Fig. 4.1 for a variety

of different F10.7 values. The shape of the spectrum is complicated but remains

relatively constant with solar activity. By far the brightest line is the He II line at

30.4 nm (40.8 eV). Also of note is the abrupt order of magnitude drop at below 17

nm (above 73 eV). Later we will show that these two features of the solar spectrum

have obvious signatures in the photoelectron spectra.

92



0 10 20 30 40 50 60 70 80 90 100 110 120
10

5

10
6

10
7

10
8

10
9

10
10

Wavelength (nm)

F
lu

x 
(p

ho
to

ns
 c

m
−

2  s
−

1 )

Solar Spectra

 

 

F10.7=65
F10.7=80
F10.7=95
F10.7=110
F10.7=150
F10.7=190

Figure 4.1: HEUVAC solar spectra at the resolution used in SAMI2-PE for
a variety of different F10.7.

4.2.2 Transport and absorption of solar EUV in the atmo-

sphere

The scattering of solar EUV is negligible compared to its absorption, meaning

the flux inside the atmosphere can be modeled with the simple Beer-Lambert law

[Schunk and Nagy , 2009]

dF (λ)

dζ
=
∑

n

σabs
n (λ)Nn(z)F (λ), (4.25)

where σabs
n (λ) is the absorption cross section associated with neutral species n at

wavelength λ and ζ is a spatial coordinate which increases along the line from the

point of interest towards the sun. The attenuated EUV flux inside the atmosphere

93



is computed as

F (λ) = F∞(λ) exp

[

−
∑

n

σabs
n (λ)

∫ ∞

ζ0

Nn(z) dζ

]

. (4.26)

Numerically evaluating the integral in the exponential term is computationally

expensive and requires a 3-D specification of the neutral density profiles. A simple

approximation is to assume a plane stratified atmosphere (i.e. a flat Earth with

no horizontal gradients). In this case dζ = dz secχ, where χ is the solar zenith

angle, and

∫ ∞

ζ0

Nn(z) dζ ≈
∫ ∞

z0

Nn(z) secχ dz. (4.27)

If it is further assumed that the neutral scale height, H , is constant such that

Nn(z) = Nn(z0) exp(−(z − z0)/H) then this integral can be expressed in closed

form;

∫ ∞

z0

Nn(z) secχ dz ≈ Nn(z0)H secχ. (4.28)

A better approximation is to still assume that the neutral densities only depend

on altitude and the scale height is constant, but to use a spherical planet. In this

approximation

∫ ∞

ζ0

Nn(z) dζ ≈ Nn(z0)H(z0)Ch(z0, χ), (4.29)

where Ch(z0, χ) is the Chapman grazing incidence function [Chapman, 1931].

SAMI2 uses this approximation and computes the Chapman grazing incidence

function numerically using the algorithm of Smith and Smith [1972].

In SAMI2 only considers photoabsorption from O, O2, and N2. The photoab-

sorption cross sections for these species have been tabulated at high resolution

by Fennelly and Torr [1992]. For SAMI2-PE we construct photoabsorption cross

sections for each bin in our solar spectrum from flux weighted averages of the high
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resolution cross sections from Fennelly and Torr [1992] over the wavelength bins.

Fig. B.1 presents an example of these cross sections when a reference spectrum

with F10.7=80 is used to do the flux weighted averages.

Although small, the scattering of solar EUV is not precisely 0, meaning some

solar EUV can scatter around the planet into the nightside. At night SAMI2

computes the intensity of scattered radiation at 102.6 (Lyman β), 58.4 (He I), and

30.4 nm (He II) using a model developed by Strobel et al. [1974]. Unfortunately

the daytime and nighttime EUV fluxes produced by the original code in SAMI2

do not smoothly connect to each other; the daytime routine when the sun is just

above the horizon produces much lower results than the nighttime routine when

the sun is just below the horizon. In the present work we have resolved this issue by

adding an extra contribution to the daytime results equal to the nighttime results

evaluated with the sun at the critical solar zenith angle. This extra contribution

is negligible throughout most of the day, but guarantees continuity at sunrise and

sunset. In practice the electron heating and secondary production produced by

photoelectrons arising from photoionization at night are negligibly small and can

be ignored to expedite the calculations.

4.2.3 Photoionization processes

For a given EUV spectrum inside the atmosphere, the number of photoelectrons

with energy E produced per unit volume per steradian per second by a single

photoionization process of neutral species n is

qpn = Υ(θ, ϕ)σp
n(λp)Nn(ℓ)F (λp) (4.30)
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where σp
n(λp) is the photoionization cross section for species n at wavelength λp for

the process p and Υ(θ, ϕ) is a function with units of ster−1 which defines the pitch

angle distribution of the newly produced photoelectrons (see Sec. 4.2.4). For an

isotropic distribution Υ(θ, ϕ) = 1/(4π). The energy of the resultant photoelectron

is related to the wavelength λp by

E =
hc

λp
− Tp (4.31)

where h is Planck’s constant, c is the speed of light, and Tp is the appropriate

photoionization threshold for the process in question. In general there will be

multiple photoionization processes for each neutral species. We consider all of the

processes for O, O2, and N2 tabulated in Conway [1988]. For wavelengths shorter

than 2.3 nm we use the cross sections from Conway [1988] directly. For longer

wavelengths we use the higher resolution cross sections from Fennelly and Torr

[1992]. Fennelly and Torr [1992] do not enumerate partial cross sections for all

of the various processes for O2 and N2, so we construct these cross sections by

weighting the Fennelly and Torr [1992] cross sections by branching ratios inferred

from Conway [1988]. We also consider photoionization of He and N in the model,

but do not bother to consider all of the different branching ratios for these minor

species. All ionizations of these species are considered to have thresholds equal to

the ionization thresholds of these species, 24.6 and 14.4 eV respectively. The N

cross sections used come from Fennelly and Torr [1992] and the He cross sections

come from Kirby et al. [1979]. The high resolution cross sections for all of these

processes are adapted to the moderate resolution wavelength grid used for the solar

spectrum by computing flux weighted averages over each bin, just like absorption

cross sections in Fig. B.1. Figs. B.2, B.3, B.4, B.5, and B.6 plot the flux averaged

partial photoionization cross sections for all of the photoionization processes of

O, O2, N2 considered using the solar spectrum at F10.7=80 for the averages.
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Furthermore, Fig. B.7 plots the flux weighted total ionization cross sections which

are used to compute the ion production rates. For the molecular species non-

dissociating ionizations (e.g. O2 + hν → O+
2 + e∗) are separated from dissociating

ionizations (e.g. O2 + hν → O+ + O + e∗).

The electrons in atoms like O and N are arranged in two energy shells, which

are called the K-shell and L-shell in X-ray notation. Most of the important pho-

toionization processes involve the ejection of L-shell (valence) electrons. However,

soft X-rays can be sufficiently energetic to remove K-shell electrons. The K-shell

binding energies are 400 eV for N and 537.1 eV for O. Atoms with a missing

K-shell electron are extremely unstable; a L-shell electron will quickly transition

into the K-vacancy. The K-shell is at a much lower potential than the L-shell, so

this transition must involve an extra release of energy. The atom could release this

energy by emitting an X-ray, but it is far more probable for the atom to eject a sec-

ond L-shell electron with the necessary amount of kinetic energy. This is known

as the Auger effect and the second ejected electron is known as an Auger elec-

tron. Specifically the process described would be labeled as a K-LL Auger process.

Moddeman et al. [1971] review K-LL Auger processes and present detailed mea-

surements of the Auger spectra of several gases, including N2 and O2. The Auger

spectra typically consist of a single “normal” line and several weaker “satellite”

lines. The “normal” lines correspond to cases when the orbitals of all the other

electrons in the atom are not disturbed when the K-vacancy is formed. The nu-

merous “satellite” lines correspond to cases where the formation of the K-vacancy

is accompanied by the excitation of other electrons. The “normal” and “satellite”

lines span a relatively small range of energies (∼50 eV), and thus for aeronomical

calculations it is sufficient to assume that all Auger electrons are produced at the

energy of the “normal” line (362 eV for N and 500 eV for O) [Winningham et al.,
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1989]. [Winningham et al., 1989] have shown that the inclusion of these Auger

electrons, particularly those at 362 eV produced from ionization of N2, is essential

to accurately capturing the high energy (> 60 eV) portion of the photoelectron

spectrum.

4.2.4 Angular distribution of newly produced photoelec-

trons

Photoelectrons are not produced isotropically, but rather are ejected with an an-

gular probability distribution which is peaked in the direction of the electric field

of the incident electromagnetic wave and is zero in both the directions parallel to

wavevector and parallel to the magnetic field of the wave. In the non-relativistic

limit this probability distribution is

Ψ(ϑ, ψ) =
3

8π
sin2 ϑ cos2 ψ, (4.32)

where ϑ is the angle between the wavevector and the photoelectron velocity and

ψ is the angle between the electric field and the photoelectron velocity [Heitler ,

1954]. For randomly polarized light the dependence on ψ disappears. This can be

written as

Ψ(θ, ϕ) =
3

8π
(1 − cos2 θ cos2 β

− 2 cos θ sin θ cosϕ sin β cos β

− sin2 θ cos2 ϕ sin2 β), (4.33)

where β is the angle between the magnetic field and ζ̂, which is a vector pointing

from the point of interest towards the sun, θ is the angle between the photoelectron

velocity vector and the magnetic field, and ϕ is the angle between the photoelectron

98



velocity vector and ζ̂ × B. Fast gyromotions will randomize the photoelectron

distribution in ϕ, so

Υ(µ) =
1

2π

∫ 2π

0

Ψ(µ, ϕ) dϕ

=
3

16π

[
1 + cos2 β +

(
1 − 3 cos2 β

)
µ2
]
, (4.34)

which is equivalent to the result derived by Mariani [1964]. In terms of the solar

zenith angle, χ, the solar azimuth angle, δ, the magnetic dip angle, I, and the

magnetic declination angle D,

cos β = sinχ sin δ cos I sinD + sinχ cos δ cos I cosD

− cosχ sin I. (4.35)

4.2.5 Quenching of excited species such as N(2D)

The excited species N(2D) has a radiative lifetime of close to one day, so it is

primarily de-excited by inelastic collisions with other neutral species and electrons

[Richards , 1986]. When a thermal electron collides with N(2D) it gains 2.4 eV

and is thus promoted into the photoelectron population. The average energy of

the promoted electrons is thus kBTe + 2.4 eV. For simplicity we neglect the width

of the thermal distribution and assume all the promoted electrons appear at this

average energy. With this assumption the production rate due to quenching is

qquench =
1

4π
k1NN(2D)Neδ (E − kBTe − 2.4 eV) (4.36)

where k1 is the reaction rate for N(2D) + e → N(4S) + e + 2.4 eV [Richards , 1986].

The factor of 1/(4π) is for an isotropic pitch-angle distribution. Typically this

extra heat source has the largest effect in the lower F -region (∼240 km) [Richards ,

1986].
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Chemical Reactions Involving N(2D)
Reaction Rate (cm3s−1)

N+
2 + O → NO+ + N(2D) β1 = 1.4 × 10−10

(
300
Tn

)0.44

N+
2 + e→ 2N(2D) β2 = 2.1 × 10−7

(
300
Te

)0.39

NO+ + e→ O + N(2D) β3 = 3.4 × 10−7
(

300
Te

)0.85

N(2D) + e→ N(4S) + e∗ k1 = 6.5 × 10−10
(

Te

300

)0.5

N(2D) + O → N(4S) + O k2 = 6.0 × 10−13

N(2D) + O2 → NO + O k3 = 6.0 × 10−12

Table 4.2: Chemical reactions involving N(2D) and their reaction rates
[Aponte et al., 1999].

SAMI2 does not solve for the density of N(2D), but this density is easy to

estimate if N(2D) is assumed to be in local equilibrium. The reactions which

create and destroy N(2D) and their reaction rates are tabulated in Table 4.2. In

terms of these rates the steady state density of N(2D) is [Aponte et al., 1999]

NN(2D) =
β1NN+

2
NO + 2β2NN+

2
Ne + β2NNO+Ne

k1Ne + k2NO + k3NO2

. (4.37)

The density of N(2D) is indirectly coupled to the densities of many other species

through all the chemical processes that can produce NO+ and N+
2 [see Huba et al.,

2000a, for a complete list of the reactions in SAMI2]. The density of neutral NO is

particularly important since NO participates in several charge exchange reactions

which produce NO+. The NRLMSISE-00 model does not predict the density of

neutral NO so SAMI2 estimates it using the empirical model [Mitra, 1968; Bailey

and Balan, 1996]

NNO = 0.4 exp

(

−3700

Tn

)

NO2
+ 5 × 10−7NO cm−3. (4.38)

In reality the neutral NO density in the lower thermosphere is highly variable and

has been the subject of several modeling studies [see Barth et al., 2003; Bailey et al.,
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2002, and references therein]. The Mitra [1968] empirical model was originally

created using D-region data, so its applicability to the lower F -region is suspect.

A more recent model for the NO density has been developed by Marsh et al. [2004]

which fits empirical orthogonal functions to the Student Nitric Oxide Explorer

(SNOE) satellite measurements. Unfortunately, the SNOE measurements only

cover the altitude region from 97.5 km to 150 km, so this model cannot predict

the NO density in the lower F -region.

4.3 Photoelectron collision processes

The rate of change of the distribution function of species s due to collisions with

species t in the conventional (r,v) phase space is given by the well known Boltz-

mann collision integral [e.g. Schunk and Nagy , 2009]

δfs
δt

=

∫

dv′
tdΩdTσst(gst, α, T )gst(fs(vs)ft(vt) − fs(v

′
s)ft(v

′
t)), (4.39)

where gst = |v′
s − v′

t| is the relative velocity before the collision and

σst(gst, α, T )dΩdT is the partial cross section for the collision process in question.

In general this cross section is a function of the relative velocity, the scattering

angle, α, and the change in energy caused by the collision, T . The velocities v′
s

and v′
t are before the collision and vs and vt are after the collision (note that

Schunk and Nagy [2009] use the opposite convention for the primed and unprimed

velocities). In general the Boltzmann collision integral is a complicated nonlin-

ear operator, but for collisions involving photoelectrons in the ionosphere several

simplifying limits apply.
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Figure 4.2: Scattering geometry for a binary collision.

4.3.1 Collisions with Neutrals

Mantas [1975] presents a compact derivation of the photoelectron-neutral colli-

sion term. In this section we will show that this result can also be obtained by

manipulating the Boltzmann collision integral.

For the collision geometry illustrated in Fig. 4.2, in the frame of reference where

v′
t = 0, conservation of momentum requires that

msv
′
s = mtvtx +msvs cosα → vtx =

ms

mt
(v′s − vs cosα) (4.40)

0 = mtvty +msvs sinα→ vty = −ms

mt
vs sinα. (4.41)

In the case of electron-neutral collisions, ms/mt ≪ 1, so both components of vt

will be negligibly small.

Furthermore, photoelectrons move so much faster than the neutrals that both

the mean and random thermal velocities of the neutrals can be ignored. In this

approximation the neutral distribution function can be written as a delta function

ft(v
′
t) = Ntδ(v

′
t). (4.42)

Inserting this into the Boltzmann collision integral and taking the integral over v′
t
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yields

δfs
δt

= −Ntv
′
sfs(v

′
s)

∫

dΩdTσst(v
′
s, α, T ) +Nt

∫

dΩdTσst(v
′
s, α, T )v′

sf(vs).

(4.43)

In the second term the distribution function cannot be taken out of the integral

because the velocity after the collision depends on both the scattering angle and

the change in energy caused by the collision. The first term in this expression is

the rate at which electrons scatter out of a phase space element, and the second

term is the rate at which electrons scatter into the a phase space element from

all other possible phase space elements. Using the definitions Φ = v2/mf and

1
v
δΦ
δt

= v
m

δf
δt

and changing the coordinates from vs and α to energy and pitch angle,

this operator can be rewritten as

1

v

δΦ

δt
= −NtΦ(ℓ, E , µ)

1

2

∫ ∞

E

dE ′

∫ 1

−1

dµ′σst(E ′, E , µ′, µ)+ (4.44)

Nt
1

2

∫ ∞

E

dE ′

∫ 1

−1

dµ′σst(E ′, E , µ′, µ)Φ(ℓ, E ′, µ′), (4.45)

where E ′ and µ′ are the energy and pitch-angle cosine before the collision and E

and µ are the energy and pitch-angle cosine after the collision. The lower bounds

of the integrals over E ′ will be E instead of 0 in the case where collisions cannot

increase the energy of a photoelectron (i.e. E ′ ≥ E). For the special case of elastic

collisions the partial cross sections will be of the form

σst(E ′, E , µ′, µ) = σe(E , µ′, µ)δ(E ′ − E), (4.46)

meaning that for elastic collisions the collision operator simplifies to

1

v

δΦ

δt
= −NtΦ(ℓ, E , µ)

1

2

∫ 1

−1

dµ′σe(E , µ′, µ)+ (4.47)

Nt
1

2

∫ 1

−1

dµ′σst(E , µ′, µ)Φ(ℓ, E , µ′). (4.48)
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In general there are a multiples different neutral species, and multiple different

types of collision processes associated with each species. The full electron-neutral

collision operator is a sum over all processes and species [c.f. Mantas , 1975; Strick-

land et al., 1976],

[
1

v

δΦ

δt

]

n

= −
∑

n

(σ̄an + σ̄en)NnΦ(ℓ, E , µ) (4.49)

+
∑

n

Nn
1

2

∫ 1

−1

dµ′σen(E , µ′, µ)Φ(ℓ, E , µ′)

+
∑

n,p

Nn
1

2

∫ ∞

E

dE ′

∫ 1

−1

dµ′σp
an(E ′, E , µ′, µ)Φ(ℓ, E ′, µ′).

We have adopted the notation σp
an(E ′, E , µ′, µ) for the partial cross section for in-

elastic collisions which move photoelectrons from (E ′, µ′) to (E , µ) through inelastic

process p with neutral species n. The partial elastic cross section, σen(E , µ′, µ), is

defined in an analogous manner. The total cross sections at (E , µ) are the sums

over all processes of the integrals of the partial cross sections over all energies and

pitch angles, (E ′′, µ′′), to which a photoelectron could go, i.e.

σ̄an(E , µ) ≡
∑

p

1

2

∫ E

0

dE ′′

∫ 1

−1

dµ′′σp
an(E , E ′′, µ, µ′′) (4.50)

σ̄en(E , µ) ≡ 1

2

∫ 1

−1

dµ′′σen(E , µ, µ′′) (4.51)

In this study we will follow Stolarski [1972] and Swartz [1976] and only consider

the simple case of isotropic scattering from collisions. In this case the partial cross

sections are independent of µ′ and µ, so the collision operator simplifies to

[
1

v

δΦ

δt

]

n

= −
∑

n

(σ̄an + σ̄en)NnΦ(ℓ, E , µ, t) (4.52)

+
∑

n

σ̄enNn
1

2

∫ 1

−1

dµ′Φ(ℓ, E , µ′, t)

+
∑

n,p

Nn

∫ ∞

E

dE ′σp
an(E ′, E)

1

2

∫ 1

−1

dµ′Φ(ℓ, E ′, µ′, t).
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Stamnes [1980] has investigated the use of anisotropic elastic and inelastic collisions

for calculations involving auroral electrons, but the expressions used in that study

are only valid when E > 1 keV. Exact forms of the phase function for lower

energies are not known, but should be very nearly isotropic.

The final term in Eq. 4.52 represents the cascade production of photoelectrons

with energy E from other energies. The cascade production can be computed once

all the fluxes at higher energies are known. Thus the photoelectron transport

equations can be solved one energy at a time, working downwards in energy. The

energy redistribution algorithm for computing the cascade production is described

in Sec. 5.2, and while solving the photoelectron transport equation at a given

energy this term is combined with all of the other production terms in q. The

quantity called q̂ in Ch. 2 is the sum of what has been called q throughout this

chapter with this final cascade production term.

Throughout this thesis the subscript x appearing on the letter σ will be used

for inelastic collisions which excite but do not ionize the neutral, i will be used for

ionizing collisions, and a will be used for either variety. For ionizing collisions the

final term in Eq. 4.52 only accounts for the degraded primaries. The secondary

production at energy Es is included as part of q, and can be written as

qsec(Es) =
∑

n,p

Nn

∫ ∞

Tp

dE ′σp
in(E ′, E ′ − Tp − Es)

1

2

∫ 1

−1

dµ′Φ(ℓ, E ′, µ′, t), (4.53)

where Tp is the ionization threshold for process p.

For all of the elastic and inelastic collisions with neutrals, only atomic oxygen,

molecular oxygen, and molecular nitrogen are considered. The empirical expres-

sions, tables of parameters, and plots of the cross sections are all in Appendix C
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4.3.2 Photoelectron collisions with the ambient plasma

Coulomb collisions between electrons and between electrons and ions are long range

interactions which nearly always result in small angle changes. Instead of using

the Boltzmann collision integral, which assumes binary interactions, Coulomb col-

lisions are traditionally described using a Fokker-Planck collision operator which

models the net effects of a large number of small angle collisions. The appendix

of Khazanov et al. [1994] presents a brief derivation of an approximate form of the

Fokker-Planck operator for photoelectrons. This section repeats that derivation

and shows many of the detailed intermediate steps.

For ordinary Coulomb collisions in a warm plasma the rate of change of the

distribution function of species T as a result of all field particles F is [see Bellan,

2006, Ch. 13 for a complete derivation]

δfT
δt

=
∑

F=i,e

F (fT , fF ) (4.54)

where the Fokker-Planck operator is

F (fT , fF ) =
e4 ln Λ

4πǫ20m
2
T

[

− ∂

∂v
·
(

fT
∂hF
∂v

)

+
1

2

∂

∂v

∂

∂v
:

(

fT
∂2gF
∂v∂v

)]

(4.55)

and the Rosenbluth potentials, hF and gF , are linear functions of fF [Rosenbluth

et al., 1957];

hF (v) =

(

1 +
mT

mF

)∫
fF (v′)

|v− v′| dv
′ (4.56)

gF (v) =

∫

|v− v′|fF (v′) dv′. (4.57)

The dependencies of the Rosenbluth potentials on the distributions functions

means that in general Fokker-Planck equations are nonlinear. However, the fact

that the Rosenbluth potentials are linear in the distribution functions means that
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if the total electron distribution function is the sum of a thermal distribution and

a photoelectron distribution, fe = fth + fpe, then the total electron collision term

can be neatly separated into a thermal electron term and a photoelectron term;

δfe
δt

=
δfth
δt

+
δfpe
δt

(4.58)

δfth
δt

= F (fth, fth) + F (fth, fi) + F (fth, fpe) (4.59)

δfpe
δt

= F (fpe, fth) + F (fpe, fi) + F (fpe, fpe) . (4.60)

The first two terms in δfpe
δt

are linear in fpe whereas the final term is nonlinear.

However, if the total photoelectron density is much less than the total thermal

electron density this final term will be small compared to the first term and may

be neglected. If fth and fi are furthermore assumed to be Maxwellians then δfpe
δt

can be expressed as a linear function of fpe which depends on the electron and ion

densities and temperatures.

When the distribution function of the field particles is isotropic then the cor-

responding Rosenbluth potentials will only depend on the scalar speed of the par-

ticles, v. In this case the Fokker-Planck operator can be simplified to

4πǫ20m
2
T

e4 ln Λ
F (fT , fF ) = − ∂

∂v
·
(

fTh
′
F (v)

v

v

)

(4.61)

+
1

2

∂

∂v

∂

∂v
:

{

fT

[

g′′F (v)
vv

v2
+
g′F (v)

v

(

I− vv

v2

)]}

,

where primes denote differentiation with respect to the scalar v. This can then be

rearranged using tensor identities

4πǫ20m
2
T

e4 ln Λ
F (fT , fF ) = − ∂

∂v
·
[

fT

(

h′F (v) +
g′F (v)

v2

)
v

v

]

(4.62)

+
1

2

∂

∂v

∂

∂v
:
(

fTg
′′
F (v)

vv

v2

)

+
1

2

∂

∂v
·
(

I− vv

v2

)

· ∂
∂v

(

fT
g′F (v)

v

)

.
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Transforming to spherical coordinates and assuming azimuthal symmetry (i.e.

∂fT
∂ϕ

= 0) yields

4πǫ20m
2
T

e4 ln Λ
F (fT , fF ) = − 1

v2
∂

∂v

[
fT
(
v2h′F (v) + g′F (v)

)]
(4.63)

+
1

2v2
∂2

∂v2
(
v2fTg

′′
F (v)

)

+
1

2

g′F (v)

v3
1

sin θ

∂

∂θ
sin θ

∂fT
∂θ

. (4.64)

The physical significances of these three terms are now apparent. The first term is

a dynamical friction which slows down the photoelectrons, the second is a diffusion

term in the speed (or energy) coordinate, and the final term is pitch-angle diffusion.

For Maxwellian distributions the Rosenbluth potentials can be approximated

as [see Bellan, 2006, Ch. 13 assignment 2]

hF (v) ≈
(

1 +
mT

mF

)
NF

v
(4.65)

gF (v) ≈
(

v +
3V 2

F

2v

)

NF , (4.66)

where NF is the density of the field particles and VF =
√

kBTF/mF is their thermal

speed. Substituting these expressions yields

4πǫ20m
2
T

e4 ln Λ
F (fT , fF ) =

NF

v2

{
∂

∂v

[

fT

(
mT

mF
+

3V 2
F

2v2

)]

(4.67)

+
3V 2

F

2

∂2

∂v2

(
fT
v

)

+
1

2

(
1

v
− 3V 2

F

v3

)
1

sin θ

∂

∂θ
sin θ

∂fT
∂θ

}

.

This can be simplified further by noting that me/mi ≪ 1 and both Ve and Vi

are much smaller than typical photoelectron speeds (i.e. VF/v ≪ 1). Separat-

ing the thermal electron and ion terms and dropping the subscript pe from the
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photoelectron distribution function gives

[
δf

δt

]

e

=
Nee

4 ln Λ

4πǫ20m
2

{
1

v2
∂f

∂v
+

1

2v3
1

sin θ

∂

∂θ
sin θ

∂f

∂θ

}

(4.68)

[
δf

δt

]

i

=
Nie

4 ln Λ

4πǫ20m
2

1

2v3
1

sin θ

∂

∂θ
sin θ

∂f

∂θ
. (4.69)

The dynamical friction caused by the ions is a factor of me/mi smaller than that

caused by the electrons and thus can be neglected. However, by quasineutrality

Ne = Ni so both the ions and electrons create the same amount of pitch angle

diffusion. Combining these two terms, using the definitions 1
v
δΦ
δt

= v
m

δf
δt

and Φ =

v2/mf and transforming from v and θ to E and µ yields a simple combined collision

term for interactions between photoelectrons and the ambient plasma

[
1

v

δΦ

δt

]

e+i

=
Nee

4 ln Λ

8πǫ20

{
∂

∂E

(
Φ

E

)

+
1

2E2

∂

∂µ

[
(
1 − µ2

) ∂Φ

∂µ

]}

. (4.70)

This is the expression used by Khazanov et al. [1994]. It is of the generic form

[
1

v

δΦ

δt

]

e+i

=
∂

∂E [L(E)Φ] +D(E)
∂

∂µ

[

(1 − µ2)
∂Φ

∂µ

]

, (4.71)

where L(E) is the energy loss rate and D(E) is the pitch-angle diffusion rate.

The above derivation assumes the only type of interaction between the pho-

toelectrons and the plasma are classical Coulomb collisions. Very fast particles,

however, can also produce plasma waves via Cherenkov emission, and these effects

can be incorporated into more sophisticated forms of the Fokker-Planck equation

[Perkins , 1965; Itikawa and Aono, 1966]. Furthermore, for electrons with energies

above 14 eV the classical distance of closest approach during a Coulomb collision

can be shorter than the deBroglie wavelength of the electrons, meaning that addi-

tional quantum mechanical corrections must be applied [Schunk and Hays , 1971].

Fortunately a simple empirical expression exists for the energy lost per distance

traveled which covers both the quantum and non-quantum regimes [Swartz et al.,
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1971];

L(E) =
3.37 × 10−12N0.97

e

E0.94

( E − kBTe
E − 0.53kBTe

)2.36
eV

cm
, (4.72)

where Ne is the electron density in cm−3, E is expressed in eV, Te is the thermal

electron temperature in K, and kB = 8.618 × 10−5eV/K is Boltzmann’s constant.

Fig. 4.3 compares this expression to the classical result for an electron density of

105 cm−3 and a variety of different temperatures. The largest differences are at

energies very near to kBTe. However, at these low energies the assumption that

E ≫ kBTe no longer applies so these expressions for L(E) cease to be meaningful. A

more important difference is that the Swartz et al. [1971] expression decays slightly

more slowly than E−1, meaning the loss rates are higher than the classical result

at the highest energies.

No compact empirical expression for the diffusion rate, D(E), exists which

accounts for all of the physics contained in Eq. 4.72, so we will simply use the

classical result.

D(E) =
e4 ln ΛNe

16πǫ20E2
=
(
1.3 × 10−13eV2cm2

)
ln Λ

Ne

2E2
, (4.73)

where the Coulomb logarithm is [e.g. Bellan, 2006]

ln Λ = ln

[

4πǫ0
e2

mv2

2

√

ǫ0kBTe
Nee2

]

(4.74)

= 15.75 + ln [E(eV)] + ln [λD(cm)] . (4.75)

In the topside, where pitch-angle diffusion matters most, typical densities and

temperatures are 105 cm−3 and 2000 K respectively. These correspond to Debye

lengths of λD ≈ 1 cm. Using this Debye length, photoelectron energies ranging

from 10 to 500 eV correspond to Coulomb logarithms ranging from 18 to 22. For

simplicity the Coulomb logarithm is fixed at 20 in the model and its variation with

110



10
−1

10
0

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

L(
E

) 
(e

V
/c

m
)

Energy (eV)

Photoelectron Energy Loss Rates

 

 

Classical
Swartz et al. (1971) [800 K]
Swartz et al. (1971) [1600 K]
Swartz et al. (1971) [2400 K]
Swartz et al. (1971) [3200 K]

Figure 4.3: Comparison of the classical energy loss rate with the Swartz et al.
[1971] empirical expression for an electron density of 105 cm−3.

energy, density, and temperature is ignored. The sensitivity of the results to the

exact choice of the Coulomb logarithm is discussed in Sec. 6.3.

4.3.3 Ambient electron heating rates

The final term in Eq. 4.59 is the effect of photoelectrons on the thermal electrons.

Taking the second moment of this term gives a concrete definition of the thermal

electron heating rate,

Qphe ≡
∫

1

2
mv2F (fth, fpe) dv. (4.76)
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The energy gained by the thermal electron distribution from electron-photoelectron

interactions must equal the energy lost by the photoelectron distribution through

photoelectron-electron collisions, so an equivalent expression for the electron heat-

ing rate is

Qphe = −
∫

1

2
mv2F (fpe, fth) dv. (4.77)

Inserting Eq. 4.71 into Eq. 4.77 gives a more useful expression for the electron

heating rate.

Qphe = −
∫ 2π

0

dϕ

∫ 1

−1

dµ

∫ ∞

0

dE E
[

1

v

δΦ

δt

]

e

. (4.78)

The integral over the pitch angle diffusion portion of
[
1
v
δΦ
δt

]

e
is zero because

∫ 1

−1

dµ
∂

∂µ

[
(
1 − µ2

) ∂Φ

∂µ

]

= 0. (4.79)

The integral over the energy loss portion of
[
1
v
δΦ
δt

]

e
can be written as

Qphe = −
∫ ∞

0

dE E ∂

∂E
[
L(E)Φ̄

]
, (4.80)

where

Φ̄ ≡
∫ 2π

0

dϕ

∫ 1

−1

dµΦ. (4.81)

Using integration by parts and insisting that limE→∞ EΦ̄ = 0 yields the familiar

formula [e.g. Schunk and Nagy , 2009]

Qphe =

∫ ∞

0

L(E)Φ̄ dE (4.82)

The problem with Eq. 4.82 is the previously presented expressions for L(E) are

only valid in the limit where E ≫ kBTe, and thus the integral cannot be extended all

the way to E = 0. Hoegy [1984] has discussed this problem in detail. The proposed

solution is to arbitrarily select an energy Et and assume below this energy Φ = 0.
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Furthermore, assume any photoelectron which goes below this energy instantly

becomes a thermal electron. With these assumptions the expression for the heating

rate is

Qphe =

∫ Et

0

E q̄(E) dE −
∫ ∞

Et

E ∂

∂E
[
L(E)Φ̄

]
dE , (4.83)

where q̄ is the production rate of photoelectrons at energy E integrated over all

solid angles, including cascade production associated with inelastic collisions. In

the notation of the previous sections

q̄(E) =

∫ 2π

0

dϕ

∫ 1

−1

dµ

{

q(E) +
∑

n,p

Nn

∫ ∞

E

dE ′σp
an(E ′, E)

1

2

∫ 1

−1

dµ′Φ(ℓ, E ′, µ′)

}

,

(4.84)

where q is the sum of direct photoproduction, secondary production, and pro-

duction due to quenching. The first term in Eq. 4.83 is energy transfered to the

thermal electron population by photoelectrons which instantly thermalize after

either being produced or cascading below Et. The second term is analogous to

Eq. 4.80. Integration by parts of this term yields

Qphe =

∫ Et

0

E q̄(E) dE + EtL(Et)Φ̄(Et) +

∫ ∞

Et

L(E)Φ̄ dE . (4.85)

The new “surface term” which appears after integration by parts represents energy

which is transfered to the thermal electrons by photoelectrons which cascade below

Et due to Coulomb collisions and instantly thermalize.

Clearly Et needs to be selected such that Et ≫ kBTe so that L(Et) is well

defined. Schunk and Nagy [1978] and Hoegy [1984] assume Et should be near the

energy where the total distribution deviates detectably from a Maxwellian, which

is around 2 eV. We, however, will chose to set Et to much lower value because if

Et is too large then systematic overestimation of Qphe can result. For example,

consider a population of 1.8 eV electrons. If Et were 2 eV then this population

113



would instantly transfer 100% of its energy to the thermal population. However,

1.8 eV is above the threshold for vibrational excitation of N2 (1.5 eV), meaning

that some fraction of the energy in this 1.8 eV population should be going towards

exciting N2 molecules an not towards heating the ambient electrons. This type

of error can be completely avoided if Et is set to an energy which is below the

lowest inelastic collision threshold. In fact, if transport effects are negligible the

computed Qphe will be independent of the chosen Et for any Et which is lower than

the lowest inelastic collision threshold. Consider two energies Et1 and Et2 such that

Et2 > Et1. On the interval [Et1, Et2] assume L(E) is defined and nonzero, all inelastic

cross sections are zero, and transport is negligible. On the interval the transport

equation integrated over all solid angles reduces to

0 = q̄ +
∂

∂E
[
L(E)Φ̄

]
. (4.86)

Note the pitch angle diffusion and elastic collision terms integrate to 0. The solu-

tion to this equation on the interval is

Φ̄(E) =
L(Et2)
L(E)

Φ̄(Et2) +
1

L(E)

∫ Et2

E

q̄(E ′) dE ′. (4.87)

Eq. 4.85 evaluated at Et1 is

Qphe =

∫ Et1

0

E q̄(E) dE + Et1L(Et1)Φ(Et1) +

∫ ∞

Et1

L(E)Φ̄(E) dE (4.88)

=

∫ Et1

0

E q̄(E) dE + Et1L(Et1)Φ(Et1) +

∫ Et2

Et1

L(E)Φ̄(E) dE +

∫ ∞

Et2

L(E)Φ̄(E) dE .

(4.89)
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Inserting the solution, Eq. 4.87, into the third term yields

∫ Et2

Et1

L(E)Φ̄(E) dE =

∫ Et2

Et1

L(Et2)Φ̄(Et2) dE +

∫ Et2

Et1

dE
∫ Et2

E

q̄(E ′) dE ′. (4.90)

= (Et2 − Et1)L(Et2)Φ̄(Et2) +

∫ Et2

Et1

q̄(E ′)(E ′ − Et1) dE ′ (4.91)

= (Et2 − Et1)L(Et2)Φ̄(Et2) +

∫ Et2

Et1

E q̄(E) dE (4.92)

+ Et1
[
L(Et2)Φ̄(Et2) − L(Et1)Φ̄(Et1)

]
,

where the final step involves resubstituting the differential equation, Eq. 4.86.

Substituting this expression into Eq. 4.89 and collecting terms yields

Qphe =

∫ Et2

0

E q̄(E) dE + Et2L(Et2)Φ̄(Et2) +

∫ ∞

Et2

L(E)Φ̄(E) dE , (4.93)

which is Eq. 4.85 evaluated at Et2.

The ideal choice for Et is thus any energy which is below the lowest inelastic

collision threshold yet still high enough for Et ≫ kBTe. Unfortunately this is not

always possible since the threshold for vibrational excitation of O2 is 0.25 eV, which

corresponds to Te = 2900K. SAMI2-PE compromises by setting the effective Et to

be 3
2
kBTe rounded up to the next highest energy cell boundary. Any theoretical

description of ionospheric electrons which attempts to divide the total electron

population into thermal and suprathermal portions will inevitably be forced into

some kind of compromise like this which creates uncertainties in the “no man’s

land” where E > kBTe but E 6≫ kBTe. Applications where the exact shape of the

distribution function in this energy range are important should use fully kinetic

models instead of dividing the distribution function. Vlasov et al. [2004] discuss

one such model for the application of predicting red line airglow during HF heating

experiments.
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CHAPTER 5

NUMERICAL METHODS FOR PHOTOELECTRON TRANSPORT

CALCULATIONS

The photoelectron transport equation, Eq. 4.24, only involves the direction paral-

lel to the magnetic field, so all of the new routines for SAMI2-PE appear inside

the parallel transport portion of SAMI2. The photoelectron transport calculations

are done after the photoproduction calculations are performed but before the mo-

mentum, continuity and energy equations are solved. Thus whenever the state

variables Ne and Te appear in the photoelectron transport routine the values being

used are those from the previous time step. The photoelectron transport routine

takes the photoelectron production rates as an input and produces thermal electron

heating rates and secondary production rates. The secondary production rates are

added to the photoionization rates and the chemical production rates to form the

total production rate which is passed to the parallel continuity equation solvers.

The thermal electron heating rates are passed to the parallel electron temperature

equation solver.

Numerical methods for photoelectron transport calculations must preserve two

key attributes of the continuous equations presented in Ch. 4. First, the photo-

electron flux must be non-negative everywhere. Second, energy must be conserved

throughout the entire system. Sec. 5.1 presents a numerical scheme for solving

the photoelectron transport equation based on finite volume methods which both

guarantees non-negativity and conservation of number of particles. Conservation

of number of particles guarantees conservation of energy for calculations done at a

single energy. By assumption photoelectrons only go downwards in energy so the

photoelectron transport equation can be solved one energy at a time, starting at
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the highest and working downwards. Sec. 5.2 describes an algorithm for computing

the production rates at each energy based the fluxes at all higher energies which is

based on the algorithm of Swartz [1985]. This algorithm adjusts the inelastic col-

lision cross sections and direct production rates in such a way that energy will be

conserved on a discrete, non-uniformly spaced energy grid. Finally, Sec. 5.3 gives

a discrete expression for the ambient electron heating rates by summing all the en-

ergy lost by the photoelectrons to the thermal electrons. The resulting expression

is a discrete analogue of Eq. 4.85.

5.1 Photoelectron transport as a conservation law: Finite

volume methods

The photoelectron transport equation, Eq. 4.24, is a conservation law of the form

1

v

∂

∂t
Φ +

∂

∂ℓ
F +

∂

∂µ
G =

∂

∂EH + S, (5.1)

where the flux terms are

F = µΦ, (5.2)

G = −δB 1 − µ2

2
Φ, (5.3)

H = L(E)Φ, (5.4)

and the net source terms are

S = µδBΦ +D(E)
∂

∂µ

[

(1 − µ2)
∂Φ

∂µ

]

+ Cn(Φ) + q (5.5)

Conservation laws are naturally treated with finite volume methods [LeVeque,

2002]. We associate a ∆ℓ×∆µ rectangular cell with each point in ℓ− µ space. In
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terms of the grid points in s constructed by SAMI2,

∆ℓi =

∫ (si+1+si)/2

(si+si−1)/2

ds

bs(s)
≈ si+1 − si−1

2bs(si)
, (5.6)

where the approximation is valid because bs varies slowly over a cell. Our dis-

cretized equation takes the form

1

v

∂

∂t
φi,j,k +

1

∆ℓi

[
Fi+1/2,j,k − Fi−1/2,j,k

]

+
1

∆µk

[
Gi,j,k+1/2 −Gi,j,k−1/2

]

=
[
Hi,j+1/2,k −Hi,j−1/2,k

]
+ Si,j,k, (5.7)

where the subscripts define the discrete photoelectron fluxes and net sources in

terms of the continuous functions as

φi,j,k ≡
1

∆ℓi∆µk

∫ 2π

0

dϕ

∫ Ej+∆Ej/2

Ej−∆Ej/2

dE
∫ ℓi+∆ℓi/2

ℓi−∆ℓi/2

dℓ

∫ µk+∆µk/2

µk−∆µk/2

dµΦ(ℓ, E , µ, t),

(5.8)

Si,j,k ≡
1

∆ℓi∆µk

∫ 2π

0

dϕ

∫ Ej+∆Ej/2

Ej−∆Ej/2

dE
∫ ℓi+∆ℓi/2

ℓi−∆ℓi/2

dℓ

∫ µk+∆µk/2

µk−∆µk/2

dµ S(ℓ, E , µ, t).

(5.9)

The term Fi−1/2,j,k is the total flux entering the cell around (ℓi, µk) through the

face adjacent to the cell around (ℓi−1, µk) and Fi+1/2,j,k is the flux leaving the cell

around (ℓi, µk) through the face adjacent to the cell around (ℓi+1,µk
). The fluxes in

µ-space, Gi,j,k−1/2 and Gi,j,k+1/2, and in energy space, Hi,j+1/2,k and Hi,j−1/2,k, are

defined in analogous manners. The only way to construct these flux functions from

linear combinations of the photoelectron fluxes while retaining the conservation

properties of the original PDE is the donor cell upwinded (DCU) method, which is

a special case of Godunov’s method [LeVeque, 2002]. This scheme is only first order
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accurate, but all higher order linear schemes cannot be total variation diminishing

(TVD) as stated by Godunov’s theorem [LeVeque, 2002].

Photoelectrons are assumed to only go downwards in energy, so upwinded dif-

ferencing of the first term in Eq. 4.71 results in

Hi,j+1/2,k =
1

∆Ej+1
L(Ej + ∆Ej/2)φi,j+1,k (5.10)

Hi,j−1/2,k =
1

∆Ej
L(Ej − ∆Ej/2)φi,j,k. (5.11)

The term −Hi,j−1/2,k is a type of loss from bin j and the term +Hi,j+1/2,k is a type

of cascade production into bin j from the bin above. It is intuitive to define an

effective cross section for interations with thermal electrons as

σth,i,j =
1

Ne

1

∆Ej
L(Ej − ∆Ej/2), (5.12)

such that Hi,j−1/2,k = σth,i,jNeφi,j,k.

In ℓ-space the upwind direction is entirely determined by the sign of µ so

Fi−1/2,j,k =







µkφi−1,j,k µk > 0

µkφi,j,k µk < 0

(5.13)

Fi+1/2,j,k =







µkφi,j,k µk > 0

µkφi+1,j,k µk < 0

. (5.14)

In µ-space the upwind direction is entirely determined by the sign of −δB,

which depends on the hemisphere. We choose to number the discrete pitch-angle

cosines such that µ1 is closest to −1 and µnst
is closest to +1, where nst is the total
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number of streams considered. Using this convention

Gi,j,k−1/2 =







−δBi
1−µ2

k−1

2
φi,j,k−1 δBi < 0 (South)

−δBi
1−µ2

k

2
φi,j,k δBi > 0 (North)

(5.15)

Gi,j,k+1/2 =







−δBi
1−µ2

k

2
φi,j,k δBi < 0 (South)

−δBi
1−µ2

k+1

2
φi,j,k+1 δBi > 0 (North)

. (5.16)

By definition |µ| ≤ 1 so the fluxes in µ-space through cell faces located at µ = ±1

must be zero, i.e.

Gi,j,1−1/2 = Gi,j,nst+1/2 = 0. (5.17)

The net source term Si,j,k and the Hi,j±1/2,k terms can be reorganized into two

pieces. The first piece is a production term which is independent of the flux at

the current energy, qi,j,k. This term is the sum of the photoproduction, cascade

production, Hi,j+1/2,k, secondary production, and production due to the quenching

of N(2D) (see Sec. 5.2 for details). The other term can be written as a linear

combination of the discrete photoelectron fluxes at the current energy.

Ti,j,k =µkδBiφi,j,k − σth,i,jNeφi,j,k

−
∑

n

(σ̌an,j + σ̄en,j)Nnφi,j,k

+
1

2

∑

n

σ̄en,jNn

∑

α

gαφi,j,α

+D(Ej)∆2
k(φi,j,k−1, φi,j,k, φi,j,k+1). (5.18)

The total inelastic cross section needs to be changed to a modified total cross

section, σ̌an,j , for reasons which are discussed in Sec. 5.2. The locations of the

centers of the cells in µ and the weights gα = ∆µα are chosen such that the

second to last term in the above equation approximates the elastic collision integral
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in the second to last term in Eq. 4.52 according to an optimal quadrature rule.

This approximation transforms Eq. 4.24 from an integro-differential equation to

a system of coupled differential equations. The same approximation is commonly

used in the radiative transfer literature where it is known as the finite ordinate

approximation [Chandrasekhar , 1950]. If the photoelectron flux as a function of µ

is approximately a polynomial then the most accurate quadrature rule available is

Gauss-Legendre quadrature [e.g. Press et al., 2007]. The number of µk is always

chosen to be an even number so that none of the µk are 0. Electrons whose pitch-

angle cosines are exactly 0 travel in a circular orbit around the field line without

ever being transported along the field line.

The final term in Eq. 5.18 is a discrete approximation of the second term in

Eq. 4.71 which describes the pitch-angle diffusion. A flux-differencing method

yields the following approximation [e.g. LeVeque, 2002]

∆2
k ≡







−bkφi,j,k + bkφi,j,k+1 k = 1

akφi,j,k−1 − (ak + bk)φi,j,k + bkφi,j,k+1 k 6= 1 and k 6= nst

akφi,j,k−1 − akφi,j,k k = nst

(5.19)

where

ak =
1 − µ2

k−1/2

gk (µk − µk−1)
(5.20)

bk =
1 − µ2

k+1/2

gk (µk+1 − µk)
. (5.21)

The time derivative term in Eq. 5.1 is always negligible, so the discrete equa-

tions, Eqs. 5.7 - 5.21, can be written in steady state as a linear system. For
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notational convenience define a linear operator Mi,j,k such that

Mi,j,kφ =
[
Fi+1/2,j,k − Fi−1/2,j,k

]
+
[
Gi,j,k+1/2 −Gi,j,k−1/2

]
− Ti,j,k

=qi,j,k. (5.22)

On a grid containing nz points along a field line and nst pitch angles M will be

an nznst × nznst matrix where all of the nonzero values are located within nst

entries above or below the main diagonal. The system is solved using SGBMV

from LAPACK [Anderson et al., 1992], which performs LU decomposition and

backsubstitution in a way which is efficient for banded matrices [e.g. Press et al.,

2007]. The asymptotic complexity of this algorithm is O(nzn
2
st) for matrices like

M.

The boundary conditions for Eq. 5.22 are set as follows. At the highest energy

bin the cascade production, secondary production, and Hi,j+1/2,k are all set to zero.

There is no need for a boundary condition at the low end of the energy grid since

photoelectrons only move down in energy. Below 120 km transport is assumed to

be negligible, so the F flux terms through this lower boundary are set to 0. The

photoelectron distribution for lower altitudes could be computed by solving the

local equilibrium equation

0 = −σth,i,jNeφi,j,k −
∑

n

(σ̌an,j + σ̄en,j)Nnφi,j,k

+
1

2

∑

n

σ̄enNn

∑

α

gαφi,j,α +D(Ej)∆2
k + qi,j,k. (5.23)

However, both the heating rates and the cascade production only depend on the

integral of the flux over the pitch-angle distribution. The latter statement is only

true because isotropic collisions are assumed. Integrating Eq. 5.23 over all pitch

angles and solving for the total flux yields the simple equation

φtot
i,j =

∑

k

gkφi,j,k =

∑

k gkqi,j,k
σthNe +

∑

n σ̌an,jNn
. (5.24)
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Note that the elastic collision and pitch-angle diffusion terms disappear completely

after integrating over the pitch-angle distribution. To save computation time, at

energies below 2 eV transport is assumed to be negligible and this local equilibrium

equation is solved instead for every position. These local calculations are continued

down to an energy of 3/2kBTe. Any photoelectrons which cascade below this point

are assumed to instantly join the thermal population.

The µ coordinate is only defined between −1 and 1, meaning that no photoelec-

trons can ever be allowed to cross the µ = ±1 cell boundaries. The finite difference

rules given by Eqs. 5.15, 5.16, 5.17, and 5.19 satisfy this condition. Implicit in these

finite difference rules are the four boundary conditions

1 − µ2

2
φ

∣
∣
∣
∣
µ=±1

= 0 (5.25)

(
1 − µ2

) ∂φ

∂µ

∣
∣
∣
∣
µ=±1

= 0. (5.26)

These boundary conditions are satisfied as long as φ and its derivative with respect

to µ are finite at µ = ±1.

5.1.1 Numerical pitch-angle diffusion and higher order cor-

rections to the mirror force term

Finite differencing the mirror force term using Eqs. 5.15 and 5.16 leads to an

extra source of numerical pitch-angle diffusion. Numerical diffusion can cause

particles which should stay in the loss cones and travel all the way to the conjugate

hemisphere to leak into the mirror traps and become stuck in the plasmasphere.

This potentially leads to systematic overestimation of the heating rates in the

plasmasphere.
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The approximate value of this numerical diffusion can be estimated by rewriting

the finite difference approximation in terms of a second order Taylor expansion:

− δB
∂

∂µ

[
1 − µ2

2
φ

]

≈ − δB

∆µk

{
1 − µ2

k

2
φk −

1 − µ2
k−1

2
φk−1

}

(5.27)

≈ − δB

∆µk

{

1 − µ2
k

2
φk −

1 − µ2
k−1

2

[

φk − ∆µk
∂φ

∂µ

∣
∣
∣
∣
µk

+
∆µ2

k

2

∂2φ

∂µ2

∣
∣
∣
∣
µk

]}

.

The pitch-angle diffusion due to Coulomb collisions is

D(E)
∂

∂µ

[
(
1 − µ2

) ∂φ

∂µ

]

= D(E)

{
(
1 − µ2

) ∂2φ

∂µ2
− 2µ

∂φ

∂µ

}

. (5.28)

Comparing the second order terms in both expression gives an estimate of the

numerical pitch-angle diffusion:

Dnumerical ≈ δB
∆µ

2
. (5.29)

The term δB is given by Eq. 4.16; for a colatitude of 60◦ on a magnetic field line

having an apex radius of 1.15 RE (apex height of 955 km) δB = 2 × 10−10 cm−1.

For eight pitch-angle bins a typical value of the numerical diffusion is thus

2.5 × 10−11 cm−1. The pitch-angle diffusion due to Coulomb collisions of a 10

eV electron in a 104 cm−3 plasma is 1.3× 10−10 cm−1, which is an order of magni-

tude larger than the numerical diffusion. The pitch-angle diffusion due to Coulomb

collisions scales as Ne/E2, whereas the numerical diffusion is only a weak function

of position through δB. Thus for lower electron densities or higher energies the

pitch-angle diffusion due to Coulomb collisions can be comparable to or lower than

the numerical diffusion. Nonetheless, the numerical diffusion is smaller than that

due to Coulomb collisions over the majority of the domain considered, meaning

that it is not a significant source of error.

Khazanov et al. [1979] and Khazanov et al. [1993] created a numerical treatment

of the mirror force term which creates no numerical diffusion whatsoever. They
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rewrite the equation in terms of the pitch-angle cosines the electrons would have

if they traveled to the equatorial plane without making any collisions,

µ0(ℓ, µ) ≡ µ

|µ|

√

1 − B0

B(ℓ)
(1 − µ2), (5.30)

where B0 is the magnetic field strength at the apex of the field line. We chose

not to make this transformation because it greatly complicates the integrals over

pitch angles which appear in the collision operator. The model of Khazanov et al.

[1994] uses the transformation to µ0, but treats all collisions as continuous loss

processes using operators of the same form as Eq. 4.71, and thus avoids the need

to transform collision integrals. In this work we are focused on the ionosphere,

where the collision integrals dominate the photoelectron transport equation. In

the plasmasphere and inner magnetosphere, however, large-angle collisions with

neutrals can be neglected and the electron density, and thus the pitch-angle diffu-

sion due to Coulomb collisions, is lower. Thus the transformation to µ0 is helpful

for studies of those regions.

Another way to reduce the numerical diffusion is to stay in µ-space and add

higher order correction terms to the fluxes in µ-space (Eqs. 5.15 and 5.16). This

method cannot completely remove numerical diffusion, but it can substantially re-

duce it. One possible second order accurate scheme is to use centered differences

instead of upwind differences to approximate the mirror force term. Unfortunately,

by Godunov’s theorem, no linear scheme which is higher than first order accurate

can be total variation diminishing (TVD) [e.g. LeVeque, 2002]. Thus a scheme

using centered differences could potentially produce spurious oscillations. In prac-

tice these oscillations can sometimes cause the computed fluxes to be negative

numbers, which is unphysical.

A way to generate a higher order accurate scheme which still preserves positivity
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is to employ flux limiters. Standard references describing the use of flux limiters are

usually written for time dependent equations [e.g. Trac and Pen, 2003; LeVeque,

2002], however these formulas are easily adapted to steady state solvers. Consider

a 1-D advection equation with production and a linear loss term

1

v

∂n

∂t
+
∂n

∂x
= q − Ln, (5.31)

where n is some quantity (e.g. density), v is an advection velocity, x is a spatial

coordinate and t is a time coordinate. If q, L, and the initial n are positive

everywhere then n will remain positive everywhere for all time. Assume v is

positive, consider a uniformly spaced grid with cell widths ∆x, and let N j
i be

the total density in cell i at time j. The second order accurate time advance

equation using flux limiters is [c.f. LeVeque, 2002, Eq. 6.40]

1

v

N j+1
i −N j

i

∆t
+

{

N j
i −N j

i−1

∆x
(5.32)

+
1

2

(

1 − v∆t

∆x

)[

ψ(rji+1/2)
N j

i+1 −N j
i

∆x
− ψ(rji−1/2)

N j
i −N j

i−1

∆x

]}

= qji − Lj
iN

j
i

where ψ(r) is the flux limiter function, and rji±1/2 are the ratios of successive

gradients. For v > 0 these are

rji−1/2 =
N j

i−1 −N j
i−2

N j
i −N j

i−1

(5.33)

rji+1/2 =
N j

i −N j
i−1

N j
i+1 −N j

i

. (5.34)

Eq. 5.32 becomes the Lax-Wendroff scheme if ψ(r) = 1 [LeVeque, 2002]. If the

flux limiters are chosen appropriately the scheme will be TVD and the positivity

property will be preserved.

Suppose v → ∞ and ∆t→ ∞ in such a way that v∆t→ 0 (i.e. ∆t→ 0 faster

than v → ∞). The Courant number v∆t/∆x will go to 0 for finite ∆x. The first
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term in Eq. 5.32 will not necessarily go to infinity as v∆t→ 0 because N j+1
i −N j

i

also goes to 0 as ∆t→ 0. By definition

lim
∆t→0

N j+1
i −N j

i

∆t
≡ ∂N j

i

∂t
. (5.35)

If this derivative is finite then

lim
v→∞

lim
∆t→0

1

v

N j+1
i −N j

i

∆t
= lim

v→∞

1

v

∂N j
i

∂t
= 0. (5.36)

In these limits Eq. 5.32 reduces to a steady state equation where the sources are

balanced by transport terms;

N j
i −N j

i−1

∆x
+

1

2

[

ψ(rji+1/2)
N j

i+1 −N j
i

∆x
− ψ(rji−1/2)

N j
i −N j

i−1

∆x

]

= qji − Lj
iN

j
i .

(5.37)

Note that if ψ(r) = 1 this equation reduces to

N j
i+1 −N j

i−1

2∆x
= qji − Lj

iN
j
i , (5.38)

which is a centered difference approximation of the steady state differential equa-

tion. Eq. 5.32 is guaranteed to conserve number of particles and have non-negative

solutions for all Courant numbers less than 1. Eq. 5.37 is a limiting case of Eq. 5.32,

and thus it retains these important properties.

For the case of the mirror force term in the photoelectron transport equation

the advection speed is not a constant and can have both signs. Furthermore, the

µ-grid in SAMI2-PE is nonuniform. LeVeque [2002] describes how to write time

dependent finite volume schemes with flux limiters for both of these general cases.

Steady state expressions can be generated from these schemes by taking limits like

in the example given above. The final expressions for the fluxes in µ-space in the
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southern hemisphere (∆Bi < 0) are

Gi,j,k−1/2 = − δBi

1 − µ2
k−1

2
φi,j,k−1 (5.39)

− δBi
gk−1

gk + gk−1
ψ(ri,j,k−1/2)

[
1 − µ2

k

2
φi,j,k −

1 − µ2
k−1

2
φi,j,k−1

]

Gi,j,k+1/2 = − δBi
1 − µ2

k

2
φi,j,k (5.40)

− δBi
gk

gk + gk+1

ψ(ri,j,k+1/2)

[
1 − µ2

k+1

2
φi,j,k+1 −

1 − µ2
k

2
φi,j,k

]

and in the northern hemisphere (∆Bi < 0) are

Gi,j,k−1/2 = − δBi
1 − µ2

k

2
φi,j,k (5.41)

+ δBi
gk

gk + gk−1
ψ(ri,j,k−1/2)

[
1 − µ2

k

2
φi,j,k −

1 − µ2
k−1

2
φi,j,k−1

]

Gi,j,k+1/2 = − δBi

1 − µ2
k+1

2
φi,j,k+1 (5.42)

+ δBi
gk+1

gk + gk+1
ψ(ri,j,k+1/2)

[
1 − µ2

k+1

2
φi,j,k+1 −

1 − µ2
k

2
φi,j,k

]

.

The appropriate ratios of successive gradients in the southern hemisphere are

ri,j,k−1/2 =
ξi,j,k−2

ξi,j,k−1

(5.43)

ri,j,k+1/2 =
ξi,j,k−1

ξi,j,k
, (5.44)

and in the northern hemisphere are

ri,j,k−1/2 =
ξi,j,k
ξi,j,k−1

(5.45)

ri,j,k+1/2 =
ξi,j,k+1

ξi,j,k
, (5.46)

where

ξi,j,k =

1−µ2
k+1

2
φi,j,k+1 − 1−µ2

k

2
φi,j,k

µk+1 − µk
. (5.47)

LeVeque [2002] reviews the properties which the flux limiter function, ψ(r),

must have for the scheme to be TVD. The most conservative choice is the minmod
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limiter

ψminmod(r) = minmod(1, r), (5.48)

the most aggressive choice is the superbee limiter

ψsuperbee(r) = max[0,min(1, 2r),min(2, r)], (5.49)

and all other TVD limiters lie between these bounds [LeVeque, 2002]. A commonly

used intermediate limiter is the van Leer limiter [van Leer , 1974]

ψvan Leer(r) =
r + |r|
1 + |r| . (5.50)

Each of these limiters has the properties [LeVeque, 2002]

ψ(0) = 0 (5.51)

ψ(1) = 1 (5.52)

ψ

(
1

r

)

=
ψ(r)

r
. (5.53)

The boundary conditions

Gi,j,1−1/2 = Gi,j,nst+1/2 = 0, (5.54)

still apply when using higher order corrections. However, the high order correction

formulas involve fluxes which are more than one cell away from the interface in

question. Thus these two boundary conditions are not sufficient. The high order

correction formulas can be derived by imagining that the continuous function is

being reconstructed from the discrete data using linear segments in each cell where

the slope in each cell depends on the value in that cell, the downwind cell, and the

two upwind cells. A simple fix near the boundaries is to assume that the slopes

are 0 in the lowest and highest cells (i.e. use a zero order reconstruction instead of
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a first order reconstruction when adjacent to a boundary). This change will cause

the high order correction to disappear from one of the fluxes. In the southern

hemisphere the altered term is

Gi,j,1+1/2 = −δBi
1 − µ2

1

2
φi,j,1, (5.55)

and in the northern hemisphere the altered term is

Gi,j,nst−1/2 = −δBi
1 − µ2

nst

2
φi,j,nst

. (5.56)

The introduction of flux limiter functions makes the Gi,j,k±1/2 terms nonlinear

in φ. The resulting nonlinear system of equations can be solved iteratively. On

the first iteration the higher order correction terms are omitted. On each subse-

quent iteration, the ri,j,k±1/2 terms are evaluated using the φ from the previous

iteration. The matrix which is inverted in each iteration contains extra terms

involving ψ(ri,j,k±1/2) which depend on the solution from the previous iteration.

This matrix will have the same size and sparsity as the matrix did when the higher

order corrections are omitted. This iterative algorithm converges quickly; tests

suggest that in practice four iterations are usually sufficient. However, since the

matrix inversions are the slowest part of the program the need to iterate four times

increases the computation time by nearly a factor of four. By default these high

order corrections are omitted from SAMI2-PE because of this additional compu-

tational expense. Sec. 6.3.1 compares simulations with and without the high order

corrections. In the region of interest for this thesis (i.e. below 1500 km at low lati-

tudes) the high order corrections only have a small effect on the computed heating

rates and temperatures.

130



5.2 Energy degradation and reapportionment

The standard energy grid in SAMI2-PE uses 0.25 eV bins up to 10 eV, 1 eV bins

from 10 to 60 eV, 10 eV bins from 60 to 100 eV, 50 eV bins from 100 to 450 eV,

and 100 eV bins from 450 to 650 eV. Special care must be taken when working

on a discrete, nonuniform energy grid to conserve energy. SAMI2-PE adopts an

algorithm originally developed by Swartz [1985] to accomplish this.

The total discrete production function is a combination of photoproduction,

production due to quenching, cascade production due to excitation collisions, pro-

duction due to degraded primaries from ionizing collisions, secondary production

from ionizing collisions, and cascade production from Coulomb collisions, i.e.

qi,m,k = qphi,m,k + qquenchi,m,k + qexi,m,k + qdpi,m,k + qseci,m,k + qCoulomb
i,m,k . (5.57)

In the notation of the previous section

qCoulomb
i,m,k = Hi,m+1/2,k = σth,i,m+1Neφi,m+1,k. (5.58)

All of the others types of discrete production need to be treated specially on a

discrete grid.

The total photoproduction rate is a combination of many different photoion-

ization processes, p, resulting from many different photon wavelengths, λ, i.e.

qphoti,m,k =
∑

p

∑

λ

qphot,p,λi,m,k (5.59)

The wavelength bins are sufficiently narrow that it is reasonable to assume that

each wavelength bin only produces photoelectrons in a single energy bin via a

particular photoionization process. Let Eβ be the midpoint of the closest bin the

grid to the true photoelectron energy, Ep,λ = hc/λ− Tp. The discrete production
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rate in the bin around Em is computed as

qphot,p,λi,m,k = 2πΥ(µk)
Ep,λ

Em
σp
n(λ)Nn(ℓi)F (λ)δβm. (5.60)

In this context F (λ) is the solar flux. The final δβm is a Kronecker delta function

and n is the index of whichever neutral species process p ionizes. If the extra factor

of Ep,λ

Em
were neglected then energy would be created or destroyed by rounding from

Ep,λ to Em [Swartz , 1985]. The extra factor of 2π is included because the discrete

production rate, qi,m,k, has already been integrated over all ϕ. Note that since

Υ(µ) is quadratic in µ,

∫ 1

−1

dµΥ(µ) =
∑

k

gkΥ(µk), (5.61)

is precisely correct for a Gauss-Legendre quadrature rule, so using anisotropic

photoproduction with a coarse µ grid does not result in particles being artificially

created or destroyed. Just like the discrete photoproduction rates, the discrete

production rate due to quenching of N(2D) includes an extra factor to compensate

for the energy mismatch between nearest bin center and the true mean energy of

the newly promoted electrons

qquenchi,j,k =
1

2

kBTe + 2.4

Ej
k1NN(2D)Ne. (5.62)

The second portion of the Swartz [1985] algorithm involves adjusting the inelas-

tic collision cross sections. Inelastic collisions which excite neutral molecules will

cause a photoelectron to lose a discrete amount of energy equal to the excitation

threshold. Thus special care must be taken when adapting the cascade production

integral in Eq. 4.52 to a discrete energy grid. When considering isotropic collisions,

it is convenient to define an average discrete flux,

φ̄i,j ≡
1

2

∑

k

gkφi,j,k. (5.63)
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For a uniformly spaced energy grid the cascade production into bin m from bin j

due to excitation process p with threshold Tp is written as

qex,j,pi,m,k = σ̂p
xn(Ej)Nn(ℓi)φ̄i,j (5.64)

where n is the index of whichever neutral species is involved in process p and Em is

the closest energy cell midpoint to Ej − Tp. The total cascade production into bin

m is the sum of contributions from all higher energy bins and from all processes,

i.e.

qexi,m,k =
∑

p

jmax∑

j=m+1

qex,j,pi,m,k . (5.65)

Inevitably Em will not equal Ej − Tp, so to prevent energy from being created or

destroyed by rounding Ej−Tp to Em, the method of Swartz [1985] uses an adjusted

cross section,

σ̂p
xn =

T

Ej − Em

∫ Ej−Tp+ǫ

Ej−Tp−ǫ

dEσp
xn(Ej, E), (5.66)

where ǫ is any small positive number. This adjustment causes collisions for which

Ej − Em > Tp to be less frequent in order to compensate for the energy being lost

by rounding down and vice versa.

For nonuniformly spaced grids the width, ∆Ej, of the bin centered at Ej can

be wider than the bins around Ej − Tp. In this case the the method of [Swartz ,

1985] spreads the cascade production over a group of energy bins whose total width

equals ∆Ej. The widths of the energy bins are all integer multiples of 0.25 eV so

this is always possible. The highest bin in this group is chosen such that it contains

the energy Ej − Tp + ∆Ej/2. The production into bin α of the group is

qex,j,pi,α,k = σ̃p
xnα(Ej)Nn(ℓi)φ̄i,j. (5.67)
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The weighted adjusted cross sections are given by

σ̃p
xnα =

∆Eα
∆Ej

σ̂p
xn. (5.68)

In this case the Em used in Eq. 5.66 to compute the effective cross section is the

weighted average of middle energies of all the bins in the group, i.e.

Em =
1

∆Ej
∑

α

∆EαEα. (5.69)

Ionizing collisions cause a discrete loss in energy equal to the ionization thresh-

old, Tp, plus a variable loss in energy equal to the energy of the secondary. By

convention the less energetic of the two electrons involved in an ionizing collision

is called the secondary electron and the more energetic electron is called the de-

graded primary. To conserve energy the energy of the degraded primary, Ep, and

the energy of the secondary, Es, must satisfy Ep +Es = E −Tp. Thus the maximum

possible secondary energy which could conserve energy while still being smaller

than Ep is (E − Tp)/2. Let sp,jmax denote the index of the energy bin containing this

maximum secondary energy for ionizing collisions of process p beginning in bin

j. For every energy bin index s between 1 and sj,pmax the degraded primaries are

tracked by performing a cascade production calculation in exactly the same way

as it is for an excitation collision using T + Es as the new effective threshold. The

adjusted cross sections for each s is

σ̂p,j,s
in =

Tp + Es
Ej − Em

∫ Ej−Tp−Es+∆Es/2

Ej−Tp−Es−∆Es/2

dEσp
in(Ej, E) ≈ Tp + Es

Ej − Em
σp
in(Ej, Ej − Tp − Es)∆Es.

(5.70)

Again the production is spread over a group of bins spanning the width of ∆Ej.

The cascade production in bin α of this group due to degraded primaries from

ionizing collisions of process p coming from bin j and producing secondaries in bin
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s is

qdp,p,j,si,α,k = σ̃p,j,s
in,αNn(ℓi)φ̄i,j (5.71)

where the weighted corrected cross section is defined as

σ̃p,j,s
in,α =

∆Eα
∆Ej

σ̂p,s
in . (5.72)

The total production into bin α due to degraded primaries from ionizing collisions

of process p coming from bin j is

qdp,p,ji,α,k =

sp,jmax∑

s=1

qdp,p,j,si,α,k . (5.73)

It is convenient to define a total weighted adjusted cross section for degraded

primaries,

¯̃σp,j
in,α ≡

sp,jmax∑

s=1

σ̃p,j,s
in,α (5.74)

such that

qdp,p,ji,α,k = ¯̃σp,j
in,αNn(ℓi)φ̄i,j. (5.75)

The total discrete production due to degraded primaries is given by summing over

all processes and energies,

qdpi,α,k =
∑

p

jmax∑

j=α+1

qdp,p,ji,α,k . (5.76)

The secondary production rate in bin s is computed such that there is one

secondary for every degraded primary. The secondary production rate in bin s

associated with ionizing collisions of process p from bin j is

qsec,p,ji,s,k = σ̂p,j,s
in Nn(ℓi)φ̄i,j. (5.77)

135



Again the total discrete secondary production rate is obtained by summing over

all processes and energies, i.e.

qseci,s,k =
∑

p

jmax∑

j=s+1

qsec,p,ji,s,k . (5.78)

Ionizing collisions also create ions which must be tracked. Let the operator δpnγ be

1 if process p transforms neutrals of species n to ions of species γ and 0 otherwise.

The contribution from energy Ej and process p to the production rate of ion γ is

P sec,p,j
i,γ = δpnγ

sp,jmax∑

s=1

∑

k

gkq
sec,p,j
i,s,k , (5.79)

It is convenient to define a secondary production cross section

σ̆p,j
in ≡

sp,jmax∑

s=1

σ̂p,j,s
in , (5.80)

such that

P sec,p,j
i,γ = 2δpnγσ̆

p,j
in Nn(ℓi)φ̄i,j. (5.81)

The total production rate which is ultimately passed to the continuity equation

solvers is the sum over all processes and energies, i.e.

P sec
i,γ =

∑

p

jmax∑

j=1

P sec,p,j
i,γ (5.82)

To conserve the number of particles the total number lost from a given bin must

equal the total number which cascade into all the other bins. This can be enforced

numerically by defining the modified total inelastic cross section in Eq. 5.18 in

terms of the modified partial cross sections, Eqs. 5.66 and 5.70, as

σ̌an,j = σ̌xn,j + σ̌in,j, (5.83)
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where

σ̌xn,j ≡
∑

p

σ̂p,j
xn (5.84)

σ̌in,j ≡
∑

p

∑

s

σ̂p,j,s
in (5.85)

Throughout the SAMI2-PE code six different types of adjusted inelastic cross

sections are used: σ̃p,j
xn,α, ¯̃σp,j

in,α, σ̂p,j,s
in , σ̆p,j

in , σ̌xn,j, and σ̌in,j. All of these cross sections

can be computed once at the beginning of the program after the energy grid has

been defined. These cross sections are stored in lookup tables called wcsigex,

wcsigion, wcsigsec, sigionp, sigex, and sigion respectively.

5.3 Ambient electron heating rates

Based on Eq. 5.12, at each step down through the energy grid energy leaves bin

(j, k) at a rate of σth,i,jNeφi,j,kEj/2π eVcm−3s−1ster−1 and enters bin (j − 1, k)

at a rate of σth,i,jNeφi,j,kEj−1/2π eVcm−3s−1ster−1. The total amount of energy

transfered to the thermal population through this process is thus

jmax∑

j=jmin

(Ej − Ej−1)σth,i,jNe

∑

k

gkφi,j,k eVcm−3s−1. (5.86)

The energy index jmax is the index of the highest energy bin the grid, whereas jmin

is the lowest energy bin whose lower boundary is greater than 3/2kBTe. This sum

is a discrete approximation of the integral in the third term Eq. 4.85.

All electrons which are produced in bins below jmin are assumed to instantly

transfer their energy to the thermal population. The total heating rate can thus
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be written as

Qphe(ℓi) =

jmin−1
∑

j=1

Ej
∑

k

gkqi,j,k +

jmax∑

j=jmin

(Ej − Ej−1)σth,i,jNe

∑

k

gkφi,j,k. (5.87)

The new first term in this expression is a discrete approximation of the first two

terms in Eq. 4.85 added together. Note that by convention qi,j,k includes the cas-

cade production from the bin above due to Coulomb collisions (i.e. Hi,j+1/2,k =

σth,i,j+1Neφi,j,k). Thus the first term in Eq. 5.87 includes a term which is equiv-

alent to Ejmin−1σth,i,jmin
Ne

∑

k gkφi,jmin,k, which is a discrete approximation of the

“surface term” in Eq. 4.85.
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CHAPTER 6

SAMI2-PE MODEL RESULTS

This chapter presents examples of results from numerous runs of SAMI2-PE and

compares them to other models and real Jicamarca data. While these results

frequently show promising similarity to Jicamarca data, they certainly do not

reproduce the data perfectly. The model contains many uncertainties about the

cross sections, reaction rates, collision frequencies and other transport coefficients

as well as many simplifying assumptions (e.g. isotropic collisions), all of which

could introduce systematic biases between the data and the model. Furthermore,

SAMI2-PE requires a priori specifications of the neutral atmospheric parameters,

electric fields, and solar fluxes. The empirical models used for these parameters

contain significant amounts of uncertainty as well. Despite all these weaknesses of

the model, the results presented here are still useful because they provide insight

into the workings of the low latitude ionosphere system. The discussion in this

chapter focuses on which physical processes are most important in various regions

under various conditions and how quantities change in response different kinds of

forcing rather than dwelling on why the data and the model do not match. It

is shown that photoelectron transport is a crucial part of how the thermosphere,

ionosphere, and plasmasphere work together as a system.

6.1 Example results

We will demonstrate the performance of the model by studying a single day in

detail. All of the example simulation results shown in this section correspond

to March 25, 2009, which was chosen as a reference day because Jicamarca ran a
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long pulse/Faraday experiment which achieved excellent data coverage on this day.

This day was also exceptionally quiet; the daily and 81 day averaged F10.7 solar

radio fluxes were 68.2 and 69.2 Wm−2Hz−1 respectively, and the Ap geomagnetic

index was only 4.0 nT. Each simulation is for the magnetic longitude passing over

Jicamarca (−11.95◦,−76.87◦ geographic), uses 151 points along a field line, uses 90

field lines extending to a maximum altitude of 1650 km at the magnetic equator,

and begins at local midnight on the previous day (i.e. 5 UT on March 24, 2009).

The first 24 hours of the simulation are ignored because they potentially contain

transient behavior created by the assumed initial conditions.

The reference case uses eight pitch-angle bins, the model of Scherliess and Fejer

[1999] for the electric fields, the HWM93 model for the neutral winds [Hedin et al.,

1991], and the NRLMSISE-00 model for the neutral densities and temperatures

[Picone et al., 2002]. Fig. 6.1 summarizes the state of this simulation at 5:48

LT, which is during sunrise. The top eight panels show the photoelectron fluxes

in all eight streams for the energy bin between 20 and 21 eV. The bottom four

panels plot the total photoproduction rate, the electron heating rate, the electron

temperature, and the electron density. At sunrise the heating rates peak first

between 300 and 400 km. The photoelectron fluxes at high altitudes are lower

for lower absolute values of µ, i.e. particles at higher pitch angles. This is both

because higher pitch-angle particles take a longer time to travel along a field line,

and thus make more collisions, and because the hyperbolic term in the transport

equation which enforces the conservation of the first adiabatic invariants moves

flux from higher pitch angles to lower pitch angles as the field lines spread apart.

High pitch angles and high altitudes correspond to the section of phase space where

the trapped orbits exist. The only ways for particles to be on a trapped orbit are if

they are produced locally or scattered from a low pitch angle to high pitch angle by
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Figure 6.1: Summary of the reference simulation at 5:48 LT, during sunrise.
The top eight panels depict the photoelectron fluxes in the 20-21
eV bin. The top four panels are for photoelectrons traveling to
the north (positive µ) and the middle four panels are for photo-
electrons traveling to the south (negative µ). The bottom four
panels plot the total photoproduction rates, the electron heating
rates, the electron temperatures, and the electron densities. The
horizontal axis of each plot shows the geographic latitude; Jica-
marca is located at −11.95◦ latitude. The dotted curves in each
panel show the positions of a few magnetic field lines.

a collision. Both collisions and photoionizations are relatively infrequent at high

altitudes due to the relatively lower neutral densities.

Fig. 6.2 summarizes the state of the same simulation at 15:15 LT using the

same format as Fig. 6.1. The photoelectron fluxes are in general lower than at

dawn because both the electron density and the neutral densities are higher in the

afternoon. This is especially true for the field lines connected to the equatorial arcs.

In the afternoon the fountain effect creates regions of high electron density in the
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Figure 6.2: Summary of the reference simulation at 15:15 LT in the same
format as Fig. 6.1. The most notable features of this snapshot
are the “shadows” of the equatorial arcs in the fluxes.

F -regions ∼ 15◦ north and south of the magnetic equator known as the equatorial

arcs. The photoelectron fluxes display pronounced local minima in the afternoon

located on the same field lines as the equatorial arcs and the formation and evolu-

tion of these minima parallels the formation and evolution of the equatorial arcs

themselves. These minima can be thought of as “shadows” of the equatorial arcs.

The shadows appear in the conjugate ionosphere from their controlling equatorial

arcs and are more pronounced for higher pitch angle particles which take a longer

time to travel through an equatorial arc.
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6.1.1 Photoelectron spectral shapes

The above plots have only shown fluxes for the 20-21 eV bin. As an illustration

of the shape of the photoelectron flux spectra the total fluxes at the magnetic

equator as a function of energy and altitude are plotted in Fig. 6.3 for the reference

simulation at the same local time as Fig. 6.2. The total fluxes plotted are defined

in terms of the discrete fluxes as

φtot,i,j =
1

∆Ej
∑

k

gkφi,j,k, (6.1)

such that they have the same units as the continuous fluxes, Φ, integrated over all

solid angles. At altitudes below ∼ 200 km transport effects are negligible, so the

structure of the photoelectron spectrum is entirely determined by the structure

of the production and loss functions. The increased flux between 20 and 30 eV

exists because the exceptionally bright 30.4 nm (41 eV) line in the solar spectrum

primarily produces photoelectrons in this energy range. The depletion between 1.5

and 3 eV is the result of vibrational excitation of N2, and the edge appearing at 2.5

eV comes from the quenching of N(2D). At high altitudes very few photoelectrons

are produced locally. The high altitude spectra are smooth functions of energy

because the photoelectrons make many different types of collisions before reaching

these altitudes. Unlike the low altitude spectra which generally have increasing

fluxes with decreasing energy since photoelectrons constantly move downwards in

energy, the high altitude spectra have maxima between 15 and 20 eV. The lower

energy photoelectrons have much more difficulty escaping to high altitudes. The

fluxes at medium and low energies also show local minima as a function of altitude

around 800 km which is a direct consequence of the equatorial arcs as discussed

above.
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Figure 6.3: Top: Total photoelectron flux spectra as a function of energy
and altitude above the magnetic equator at 15:15 LT for the
reference simulation. The edges of each pixel are placed at the
locations of the upper and lower boundaries of each energy bin
in the discrete grid. Bottom: Total photoelectron flux spectra at
a few representative altitudes.
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6.1.2 Pitch-angle distributions

When discussing the pitch-angle distributions it is intuitive to look at average

pitch-angle cosines for the northwards and southwards traveling portions of the

photoelectron population. The discrete analogues of Eqs. 2.54 and 2.55 are

〈µ〉+i,j =

∑nst

k=nst/2+1 µkgkφi,j,k
∑nst

k=nst/2+1 gkφi,j,k
(6.2)

〈µ〉−i,j = −
∑nst/2

k=1 µkgkφi,j,k
∑nst/2

k=1 gkφi,j,k

. (6.3)

These quantities must be specified a priori in a two-stream code. For example,

the FLIP two-stream code assumes 〈µ〉 is 0.577 at low altitudes and only changes

as a result of the magnetic mirror force. In a multi-stream model like SAMI2-PE

the mean pitch-angle cosines can be computed self-consistently including transport

effects. For a perfectly isotropic distribution the average pitch-angle cosines are 0.5.

Higher numbers indicate the photoelectrons are more likely to be propagating close

to parallel to B. Fig. 6.4 plots the average pitch-angle cosines for three different

energies. In general, the mean pitch-angle cosines of the two streams are not equal

and are functions of both position and energy. As expected, at low altitudes the

distributions are almost perfectly isotropic as a result of frequent collisions. In

the plasmasphere the average pitch-angle cosines become closer to 1 because the

magnetic mirror force decreases the pitch-angle cosine as the magnetic field lines

spread apart and because photoelectrons with higher pitch-angle cosines can more

easily escape into the topside. The higher pitch-angle cosine particles undergo

fewer collisions per distance traveled along the field line. This transport effect is

more important at lower energies than higher energies, thus the average pitch-angle

cosines in the topside are closer to 1 for lower energy particles. This transport effect

causes the average pitch-angle cosine to become closer to 1 than one would expect

from the effect of the magnetic mirror force alone. Furthermore, small regions

145



Figure 6.4: Average pitch-angle cosines for the northwards traveling (〈µ〉+,
top row) and southwards traveling (〈µ〉−, bottom row) streams
for three different energy bins. This plot corresponds to the ref-
erence simulation at 15:15 LT.

where the average pitch-angle cosines are less than 0.5 form in the “downwind” F -

regions (i.e. the northern F -region for the northward propagating photoelectrons)

as a result of an additional transport effect. Photoelectrons from the conjugate

hemisphere with pitch-angle cosines closer to 1 will penetrate deeper than those

with lower pitch-angle cosines. The lower pitch-angle cosine photoelectrons pile

up at the top of the F -region without being able to penetrate to lower altitudes.
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6.1.3 Comparison to Jicamarca Data

The upper two panels of Fig. 6.5 show the electron densities and temperatures

over Jicamarca produced by the full profile procedure on March 25, 2009 [Hysell

et al., 2008]. The lower two panels of Fig. 6.5 show modeled electron densities

and temperatures above the magnetic equator as a function of local time for the

reference case. Both the data and the model agree on a number of features. The

topside temperatures rise very quickly at dawn to ∼ 3500 K when the neutral and

electron densities are lowest, decrease during the middle of the day as the electron

density increases and the neutral atmosphere expands, then increase slightly again

in the late afternoon as the neutral atmosphere begins to retract.

The modeled electron temperatures in the hot 250 km region are higher than

the data. This remains true even when the quenching of N(2D) is disabled. The

electron density in the model below the F peak is lower than that in the data, which

potentially explains why the electron temperatures at these altitudes are too high.

In this altitude regime the cooling rates are either too low, the recombination

rates are too high, or extra production terms which have been neglected, such as

the ionization of NO by Lyman-α, are significant. Furthermore, uncertainties in

the solar soft X-ray spectrum will substantially impact this region [e.g. Solomon

et al., 2001]. All of the photochemistry at these altitudes in SAMI2 needs to be

reexamined in the future.
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Figure 6.5: Top panels: Electron densities and temperatures derived from full
profile analysis of Jicamarca data. White areas indicate missing
data. The layer around 150 km is not a layer of enhanced electron
density but rather coherent scatter from 150 km echoes. Bottom
panels: SAMI2-PE electron densities and temperatures at the
magnetic equator plotted as Range-Time-Intensity (RTI) plots
like radar data from the reference simulation.

6.2 Importance of N(2D)

The quenching of N(2D) is a dominant heat source for the thermal electrons in

the lower F -region [Richards , 1986]. Fig. 6.6 shows temperature profiles both with

and without quenching enabled and the electron temperature maximum at 250 km

changes by over 50%. The heating from N(2D) scales with the density of NO+,

which itself depends on the density of neutral NO. The blue curve in Fig. 6.6 shows

the effect of dividing the neutral NO density in the model in half when quenching

is enabled. The electron temperatures in the hot 250 km region are highly sensitive
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Figure 6.6: Electron temperature profiles at 15:15 LT over the magnetic
equator with quenching disabled (black), quenching enabled with
the neutral NO density reduced by 50% (blue), and quenching
enabled using the full neutral NO density (red). The red curve
is the reference simulation.

to this quantity.

Including quenching also has an effect on the topside temperatures even though

there is no appreciable N(2D) density at high altitudes. In general equatorial top-

side temperatures will decrease slightly when the off-equatorial F -region tempera-

tures are increased due to an important feedback mechanism between the densities
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and temperatures, which is illustrated in Fig. 6.7. The left panels show the elec-

tron density, heating rate, and temperature for a simulation without quenching.

The center panels show the same quantities for the reference simulation (with

quenching), and the right panels show the change between the two. Red regions

are ones where the values from the simulation with quenching are larger. When

quenching is enabled the temperature in the off-equatorial F -regions are increased,

which creates a pressure gradient pointing up the field line and raises the height

of the F -layer. The electron densities throughout the topside increase when the

F -layer is raised. This causes photoelectrons to lose more energy to the thermal

electrons on their way up into the topside, and thus the equatorial topside heating

rates decrease slightly. The combined effect of having more plasma density in the

topside and slightly lower heating rates is decreased topside temperatures.

6.3 Sensitivity to model parameters

The model is constructed with many degrees of freedom in how the energy and

pitch-angle grids are chosen. To test the sensitivity of the results to these choices

we have initialized the model with conditions from various times in the reference

simulation and solved the photoelectron transport problem for a single time step

using a wide variety of grids. The reference simulation was consistently within 5%

of extremely high energy resolution simulations. Fig. 6.8 shows a few examples of

these one step tests performed at 15:15 LT. The top left panel shows the change

relative to a 64-stream in simulations using fewer pitch-angle bins. The top right

and bottom left panels show the changes produced by constructing the energy grids

in different ways. The top right panel changes the width of the energy bins below

10 eV. The bottom left panel changes the location of the transition from 0.25 eV
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Figure 6.7: Comparisons of simulations with and without the quenching of
N(2D). The left panels show, from top to bottom, the electron
densities, electron heating rates, and electron temperatures from
a simulation without quenching at 15:15 LT. The middle panels
are these same quantities from the reference simulation, which
includes quenching. The right panels show the changes. For the
densities and heating rates the changes plotted are the ratios
of the densities/heating rates with quenching to those without
quenching. The temperature changes plotted are the tempera-
tures with quenching minus the temperatures without quenching.
In each of these three plots white represents no change. Note the
highly asymmetric colorbars used for the change in heating rates
and temperatures.
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Figure 6.8: Fractional changes in the heating rates from one step tests for
the reference case at 15:15 LT. See the text for descriptions of
each of these tests. Each plot only shows the equatorial plane.

bins to 1 eV bins. Finally, the bottom right panel shows the effect of changing the

amount of pitch-angle diffusion by altering the Coulomb logarithm.

6.3.1 Pitch-angle resolution, pitch-angle diffusion, and the

treatment of the magnetic mirror force

The model results are potentially much more sensitive to changes in the pitch-angle

resolution than Fig. 6.8 indicates if less pitch-diffusion is assumed. Fig. 6.9 shows

a polar plot of the pitch-angle distributions from one step tests at 18 LT using 64

pitch-angle bins for the energy bin from 20 to 21 eV at 1534 km at the magnetic

equator. Each of these tests was performed with identical initial conditions but

using different amounts of pitch-angle diffusion. These pitch-angle distributions

are primarily determined by the transport properties of the photoelectrons and
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the magnetic field geometry, not by the pitch-angle distribution assumed for the

photoproduction. When no pitch-angle diffusion whatsoever is used the pitch-

angle distributions have narrow spikes near 0◦ and 180◦, which are the result of

the magnetic mirror force pushing photoelectrons towards µ = ±1 as the field

lines spread apart. Lower pitch-angle resolution simulations cannot resolve these

spikes, and thus the heating rates produced by 4- and 8-stream simulations with

no pitch-angle diffusion can systematically overestimate the topside heating rates

by 20% and 10% respectively compared to 64-stream simulations. This problem

is resolved by including some pitch-angle diffusion. Even a small amount of pitch-

angle diffusion can remove the spike from the pitch-angle distributions. When the

Coulomb logarithm in Eq. 4.73 is set to 10 the biases in 4- and 8-stream simulations

relative to 64-stream simulations are reduced to 3% and less than 1% respectively.

For values of the Coulomb logarithm larger than 10 these biases actually increase

instead of decreasing further. For 8-stream simulations the biases relative to 64

streams are 3% and 4% for Coulomb logarithms of 20 and 30 respectively. In-

creasing pitch-angle diffusion not only removes the spikes near 0◦ and 180◦, but

also increases the number of photoelectrons near 90◦, where magnetic mirroring is

important.

The examples in Fig. 6.9 are all generated without using the higher order

corrections described in Sec. 5.1.1. The effects of these higher order corrections

can be tested using further one step tests. Fig. 6.10 shows results generated by

initializing simulation with results from the reference case at 18 LT, then taking

a single step using 64-streams using different types of high order corrections. The

plot labeled “DCU” using the simple donor cell upwinded method (i.e. no higher

order corrections). All the other plots use higher order corrections with different

flux limiters, and are arranged in order of decreasing diffusivity. These plots show
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Pitch Angle Distrubtions (64 Streams, 20.5 eV, 1534 km) 
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Figure 6.9: Pitch-angle distributions from single step tests using 64 streams
for various different amounts of pitch-angle diffusion. Each test
was initialized with conditions at 18 LT from the reference sim-
ulation. Each plot is for the 20 to 21 eV bin, at the magnetic
equator, and at 1534 km. These plots are on a linear scale and
each dashed semicircle represents a change of 107 cm−2s−1. The
angles 0◦ and 180◦ correspond to photoelectrons traveling parallel
to B northwards and southwards respectively.

the photoelectron fluxes for the energy bin centered at 375 eV as a function of

pitch-angle cosine and the dipole coordinate, qd, along the magnetic field line

whose apex altitude is 1147 km. The colors are on a linear scale which has been

engineered to highlight the subtle differences between these plots. The circular

region in the center of each of these plots corresponds to the trapped region. As

expected, the amount of flux in the trapped region noticeably decreases for the

less diffusive numerical scheme. Fig. 6.11 shows these same results as a polar plot

of the pitch angle distributions at the magnetic equator. The schemes using the

higher order corrections slightly decrease the fluxes near 90◦ and increase the fluxes

in the parallel directions.

The effects of higher order corrections on lower energy electrons are somewhat

more complicated to interpret. Figs. 6.12 and 6.13 show the same information as

Figs. 6.10 and 6.13 for the energy bin centered at 20.5 eV. In the color plots the
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Figure 6.10: Photoelectron fluxes at 375 eV as a function of pitch-angle co-
sine, µ, and the dipole coordinate, qd, along the field line with
an apex altitude of 1147 km. The left plot uses no higher order
corrections, and the other plots use the minmod, van Leer, and
superbee flux limiters respectively. In each case the model was
initialized using the reference case at 18 LT and uses 64 streams.

Pitch Angle Distrubtions (64 Streams, 375.0 eV, 1147 km) 
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Figure 6.11: Polar plot of the pitch-angle distributions at 375 eV at 1147 km
above the magnetic equator. The four curves correspond to cuts
through the qd = 0 planes of the four plots in Fig. 6.10.
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Figure 6.12: Photoelectron fluxes at 20.5 eV in the same format as Fig. 6.10
for the same four simulations.

fluxes in the trapped regions appear to increase slightly when the higher order

corrections are applied instead of decrease. However, the higher order corrections

are still increasing the fluxes in the parallel directions, meaning that in a relative

sense the fluxes in the trapped regions are going down. When the higher order

corrections are applied the total amount of flux reaching high altitudes increases

because when the mean pitch-angle cosine is closer to 1 the photoelectrons have

an easier time escaping to high altitudes. Transport effects are not important at

375 eV because the escape probabilities for such high energy photoelectrons are

very high no matter what the pitch angles are.

It is not obvious whether the heating rates in the plasmasphere should increase

or decrease in the plasmasphere when the higher order correction terms are used.

Decreasing the trapped fluxes should decrease the plasmaspheric heating rates,

however increasing the escape probabilities of the lower energy electrons by mov-

ing the mean pitch angle cosines closer to 1 should increase the plasmaspheric

heating rates. In the low latitude ionosphere at altitudes below 1500 km both of

these effects appear to be small, meaning the higher order corrections are unim-

portant in practice. Fig. 6.14 shows RTI plots of the electron temperatures for a

simulation without higher order corrections and a simulation using the superbee
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Figure 6.13: Polar plot of the pitch-angle distributions at 20.5 eV at 1147
km above the magnetic equator for the same four simulations
as in Fig. 6.11.

flux limiter. Each of these simulations was performed for the reference day, but

with quenching of N(2D) turned off and using 16-streams. To save time, the pho-

toelectron transport solutions were only computed once every 60th time step, and

were assumed to be constant for the time steps in between. Sec. 7.4 discusses this

method for accelerating the code in more detail. It produces small errors in the

middle of the day, but introduces significant biases around sunrise and sunset. The

bottom panel of Fig. 6.14 shows the arithmetic difference between the tempera-

tures in these two simulations. The differences are almost 0 at low altitudes, as

expected. At high altitudes the plasmaspheric temperatures decrease by 20-30 K

when higher order corrections are added, which is a ∼1% change. The decrease is

somewhat larger immediately after sunrise. The additional computation expense

of an iterative solver is substantial, so given the small sizes of the temperature

differences adding the higher order corrections is not worthwhile.
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Figure 6.14: RTI plots of electron temperatures produced by a standard 16-
stream simulation (top), a 16-stream simulations using higher
order corrections with the superbee flux limiter (middle), and
the arithmetic difference between the two (bottom).

6.4 Sensitivity to drivers

The modeled topside temperatures are also sensitive to changes in the many empir-

ical models used as inputs to SAMI2-PE. Fig. 6.15 compares the measured electron

temperatures to the SAMI2-PE results above the magnetic equator for several runs

with adjusted drivers. The left panel shows the temperatures at 1005 km as a func-

tion of local time and the right panel shows the temperatures at 15:15 LT as a

function of altitude. The blue curves correspond to the reference case. The green

curves show the effect of replacing HWM93 with the more recent HWM07 model

of the neutral winds [Drob et al., 2008]. The HWM07 winds result in less electron

density in the topside and corresponding higher temperatures, especially at dawn.

The NRLMSISE-00 model does not accurately reflect just how low the neutral

densities become during solar minima, especially during the unusually quiet solar
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minimum during late 2008 and early 2009 [Emmert et al., 2010; Solomon et al.,

2010, 2011]. The cyan curves show the effect of adjusting the NRLMSISE-00 model

to use an exospheric temperature which is 14 K lower, 12% lower atomic oxygen

density at the lower boundary of the thermosphere, and 3% lower density of all

other species at the lower boundary of the thermosphere, as recommended by Em-

mert et al. [2010] from analysis of satellite drag measurements. These adjustments

also result in less electron density and higher electron temperatures in the topside.

The magenta curves show the effect of decreasing the vertical drifts predicted by

the model of Scherliess and Fejer [1999] by 25%, which also results in less topside

electron density and higher topside electron temperatures, especially in the after-

noon when the equatorial arcs are fully formed. In this case the inflection in the

temperature profile around 800 km from the shadowing effect of the equatorial arcs

disappears because now the neutrals are controlling photoelectron escape. Finally,

the red curves in Fig. 6.15 show the effect of using HWM07 winds, the adjusted

NRLMSISE-00 neutral densities and temperatures, and the reduced electric fields

simultaneously. All of these simulations produce nearly identical temperatures be-

low 400 km, where everything is local, but the topside temperatures vary by over

30%. Uncertainties in the winds, electric fields, and neutral densities are thus the

dominant source of error in the model in the topside.

Also shown in Fig. 6.15 are temperatures from a simulation using the old em-

pirical electron heating model for two different values of the free parameter, Cqe,

(dashed lines) and the temperatures from the empirical plasmasphere tempera-

ture model of Titheridge [1998] (dash-dotted line). During the day the Titheridge

temperatures have reasonable values and the correct slope with increasing alti-

tude, but they do not capture the local time dependence correctly. The local

time dependence in this model was constructed using a simple harmonic expan-
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sion which made no attempt to capture the large temperature increases at dawn

at the equator [Titheridge, 1998]. The simulations using the old electron heating

model can capture the qualitative shape of the temperatures with local time, but

are quantitatively much further from the data than the Titheridge model. These

temperatures are consistently much too high at dawn and too low in the afternoon

for most values of Cqe. These temperatures also increase with increasing altitude

too quickly.

The mechanisms by which changes in the neutral winds, electric fields, and

neutral densities affect the equatorial topside electron temperatures can be more

throughly understood by looking at changes in the off-equatorial F -regions. The

following subsections explore the connections between the topside electron temper-

atures and neutral winds, electric fields, and neutral densities and temperatures

respectively in more detail.

6.4.1 Neutral winds

Fig. 6.16 compares the reference case to a run with the HWM93 winds multiplied

by two at 15 LT. The left column shows the electron density, electron thermal

energy density, and electron temperatures from the reference case. The electron

thermal energy density is defined as

We =
3

2
kBNeTe. (6.4)

The center column of Fig. 6.16 shows the same quantities for the run with the

winds doubled, and the right column shows the amount of change between the two

runs. In March at the longitude of Jicamarca the meridional component of the

HWM93 winds is predominantly southward. Thus increasing the winds causes the
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Figure 6.15: Comparison of temperatures from many different simulations to
the Jicamarca data. The left panel shows temperatures at 1005
km as a function of local time and the right panel shows temper-
atures at 15:15 LT as a function of altitude. The solid curves are
all SAMI2-PE runs. The solid blue curve is the reference sim-
ulation. The green curve replaces HWM93 with HWM07, the
cyan curve makes modifications to the NRLMSISE-00 model
as described in the text, and the magenta curve uses electric
fields which have been reduced by 25%. The red curve uses all
three of these modifications simultaneously. The dashed curves
are SAMI2-PE runs with the photoelectron model disabled and
the old empirical heating model from SAMI2 used instead with
two different values of the free parameter, Cqe. Finally, the red
dashed-dotted curve is the Titheridge [1998] empirical plasma-
spheric temperature model.

F -region ionosphere in the southern hemisphere to be pushed downwards. At lower

altitudes neutral molecular species are more prevalent. These neutral molecular

species charge exchange with atomic ions to produce molecular ions, which recom-

bine faster than the atomic ions via dissociative recombination processes. Thus

decreasing the altitude of the F -region also results in a decrease in the electron

densities. This effect is most obvious on the field lines containing the equatorial
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arcs. The increased winds will raise the F -region in the northern hemisphere and

slow the recombination rate in the north, however the increased recombination in

the south outweighs the decreased recombination in the north. The field line inte-

grated electron densities decrease as a result of the increased winds. The electron

densities in the topside will also decrease with the increased winds such that these

high altitudes remain in diffusive equilibrium with the off-equatorial F -regions.

The affect of the increased neutral winds on the topside electron temperatures

are more complicated because there are multiple effects involved. If all of the heat

flows into and out of the topside remained constant then one would expect the

temperatures to increase as the electron densities decreased such that the electron

thermal energy densities remained constant. However, the changes to the electron

density profiles affect both the transport of photoelectrons up into the topside and

the thermal diffusion back down to the F -regions. Fig. 6.17 compares the total

photoelectron fluxes at 20 eV, the electron heating rates, and the thermal diffusion

rates for the same two simulations as Fig. 6.16. The decreased electron densities

make it easier for photoelectrons to reach the topside, especially on the field lines

connected to the equatorial arcs.

The increased photoelectron fluxes do not necessarily imply increased electron

heating rates, however, since the electron heating rates are roughly proportional

to the product between electron density and photoelectron flux. At ∼ 1200 the

increase in the photoelectron fluxes in small, but the decrease in the total plasmas-

pheric electron densities is substantial, resulting in decreased electron heating rates

at these altitudes. The decreased plasmaspheric density means there are fewer ther-

mal electrons around to “catch” energy from photoelectrons as they travel through

the plasmasphere from one hemisphere to the other. On the field lines connected
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Figure 6.16: Comparisons of the reference simulation to a simulation using
the HWM93 winds times two at 15 LT. In each plot the vertical
axis is altitude and the horizontal axis is latitude. The dotted
lines show the positions of a few magnetic field lines. The left
column corresponds to the reference simulation, the middle col-
umn corresponds to the simulation with the winds doubled, and
the right column shows the change between the two. The left
and middle columns use the color scales on the left hand side.
The right column uses the color scales on the right hand side.
In the right column red colors means the values in the middle
column are higher than those in the left column. The top row
shows electron densities on a log scale and expresses the change
as a ratio. The middle row shows the electron thermal energy
densities on a log scale and also expresses the change as a ratio.
The bottom row shows the electron temperatures on a linear
scale and expresses the change as an arithmetic difference.
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to the equatorial arcs, however, the increase in the photoelectron fluxes outweighs

the decreases in the plasma densities, resulting in increased heating rates on these

field lines.

The temperatures in the topside are primarily determined by the balance be-

tween the heating rates and the thermal diffusion rates back down the field lines.

When the heating rates increase, the magnitude of the thermal diffusion rates must

also increase. In the bottom panels of Fig. 6.17 these thermal diffusion rates are

plotted on a log scale. The values are only plotted above 300 km and only where

the sign of the diffusion rates corresponds to a cooling process. The thermal dif-

fusion rates can be increased by increasing the temperatures and thus the thermal

diffusivities (recall λe ∝ T
5/2
e ) or by increasing the temperature gradients. In the

simulation with increased winds both effects happen; the topside electron temper-

atures increase which both raises thermal diffusivity in the topside and exaggerates

the temperature gradient between the F -regions and the topside. Increased tem-

peratures do not necessarily mean increased thermal energy densities, however.

The increased thermal diffusion down the field lines actually trumps the increased

heating rates throughout most of the topside, resulting in decreased electron ther-

mal energy densities in the topside. It is not a contradiction to say the thermal

energy densities decrease while the temperatures increase because temperature is

a measure of the energy per electron and the electron density is also decreasing in

this case.

Fig. 6.18 compares the reference case to a run performed with the HWM07

neutral wind model [Drob et al., 2008] at 15 LT. The top panels show the pro-

jection of the neutral wind vector onto the direction of B for the two models,

with negative numbers indicating southward flows. The HWM93 winds are uni-
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Figure 6.17: Comparisons of additional parameters from the reference simu-
lation and the simulation using the HWM93 winds times 2 in
a similar format to Fig. 6.16. The top column shows the total
flux at 20 eV, the middle column shows the electron heating
rates, and the bottom column shows the electron thermal dif-
fusion rates. All quantities in the left and middle columns are
plotted on log scales and the changes in the right column are all
expressed as ratios. For the thermal diffusion rates the values
are only plotted for altitudes above 300 km and when the sign
of the thermal diffusion rate corresponds to a cooling process.
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formly southward, but the HWM07 winds change sign at high altitudes such that

they diverge away from the magnetic equator. The as a result the F -regions in

both the southern and northern hemisphere are pushed to lower altitudes where

they recombine faster. The result is a substantial decrease in the electron density

along all of the flux tubes. The plasmaspheric densities must decrease when the

F -region densities decrease to maintain diffusion equilibrium. Like in the case of

doubling the HWM93 winds presented above, this decrease in topside densities is

accompanied by a substantial increase in the topside temperatures.

6.4.2 Electric fields

Changes to the electric fields have similar effects to changes to the meridional

winds. Fig. 6.19 compares the reference case to a run with the E×B drifts reduced

by 25% in the same format as Fig. 6.16. The equatorial arcs are formed in the

afternoon via the well known fountain effect [e.g. Schunk and Nagy , 2009; Kelley ,

2009]; the vertical E×B drifts point upwards in the afternoon, lifting the equatorial

plasma to higher altitudes. The plasma then slides down the field lines and piles

up in the equatorial arcs just above and below the magnetic equator. The densities

in the equatorial topside are determined by a balance between the lifting of the

equatorial F -region plasma and diffusion down into the off-equatorial F -regions.

When the E × B drifts are reduced the topside electron densities decrease and

the equatorial arcs which form are less dense and closer to the magnetic equator.

Just like the cases presented above, the decrease in topside plasma densities are

accompanied by increased electron temperatures but decreased electron thermal

energy densities. Like the cases presented above, this result can be understood

as an interplay between changes in the photoelectron transport and the thermal
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Figure 6.18: Comparison of the reference simulation to a simulation using
HWM07 winds at 15 LT in a similar format to Fig. 6.16. The
middle and bottom rows show the electron densities and elec-
tron temperatures in an identical format to the top and bottom
rows of Fig. 6.16. The top row shows the projection of the hor-
izontal winds onto the direction of B, with positive numbers
corresponding to northward flows.

diffusion.

6.4.3 Neutral densities and temperatures

The changes to the neutral densities will also have effects on the electron den-

sities and temperatures. Lower neutral densities will lower the photoproduction
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Figure 6.19: Comparison of the reference simulation and a simulation where
the E×B drifts are multiplied by 0.75 at 15 LT. The format is
identical to that of Fig. 6.16.

rates thus lowering the electron densities, lower the electron and ion cooling rates

through collisions, slightly change thermal diffusivities, and decrease the photo-

electron collision frequencies causing photoelectron to travel further. Fig. 6.20

compares the reference case to a run with the NRLMSISE-00 neutral densities

uniformly decreased by 20%. The decrease in the electron densities resulting from

the decreased photoproduction rates appears to be the most important effect. Even

though photoproduction is negligible at high altitudes, the topside densities also

decrease when the photoproduction rates decrease to maintain diffusive equilib-

rium. Like in the cases above of increased winds and decreased electric fields,
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Figure 6.20: Comparison of the reference simulation and a simulation where
the neutral densities are multiplied by 0.8 at 15 LT. The format
is identical to that of Fig. 6.16.

this decrease in electron density is accompanied by an increase in the electron

temperatures but a decrease in the electron thermal energy densities.

Changes to the neutral exospheric temperature are somewhat more interesting

than changes to the neutral densities. Changes to the neutral temperatures alter

the density profiles because the neutral atmosphere must be in hydrostatic equi-

librium. Decreasing the exospheric temperature decreases the neutral scale height,

resulting in decreases in the neutral densities which become larger with increasing

altitude. Fig. 6.21 illustrates the effects of decreasing the exospheric temperatures
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by 100 K. At low altitudes the decreased neutral temperatures result in decreased

plasma temperatures because the electron-neutral cooling terms are proportional

to Te − Tn. Furthermore, the decreased temperatures alter the chemical reaction

rates such that the amount of N(2D) is decreased, which is a large heat source in

the lower F -region. At high altitudes the decreased neutral temperatures result

in slightly increased plasma temperatures, however. When the temperatures de-

crease the high altitude neutral densities decrease. As in the case presented above,

reduced neutral densities leads to reduced topside plasma densities and higher

topside plasma temperatures.

Fig. 6.22 compares the reference simulation to the simulation using the ad-

justments to NRLMSISE-00 suggested by Emmert et al. [2010]. The adjustments

both reduce the neutral densities at the bottom of the thermosphere and reduce the

exospheric temperature. The reduction in exospheric temperature decreases the

neutral scale height, meaning the percent change in the neutral density increases

with increasing altitude, reaching a nearly 50% reduction at 1500 km. Nonethe-

less, the most pronounced effects on the electron densities appear in the F -regions,

where photoproduction is important. The decreases in the plasma density in the

topside appear to maintain diffusive equilibrium with the decreased F -regions,

not because of a large decrease in the photoproduction at these altitudes. Like

all of the other examples presented above, these decreased topside densities are

accompanied by increased electron temperatures.
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Figure 6.21: Comparison of the reference simulation and a simulation where
the exospheric temperature is reduced by 100 K at 15 LT. The
format is similar to that of Fig. 6.16, except the top panel shows
the neutral atomic oxygen densities.

6.5 Day-to-day Variability

All the results presented so far have been for a single day. The top panel of Fig. 6.23

shows electron temperature measurements from six consecutive days of full profile

data from Jicamarca, which is one of the longest continuous experiments run since

the introduction of the full profile mode. These days are July 8-13, 2008, which

were also geomagnetically quiet and in extremely low solar minimum conditions

(F10.7=67.7, Ap=3.0). The middle panel shows electron temperatures from a

SAMI2-PE run covering the same time period and the bottom panel plots the
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Figure 6.22: Comparison of the reference simulation and a simulation us-
ing the modifications to NRLMSISE-00 recommended by Em-
mert et al. [2010] (see text). The format is identical to that of
Fig. 6.21.

data and model results at a single altitude on the same plot. The model produces

nearly identical results from one day to the next, but the data show a large degree

of day-to-day variability. The daytime topside electron temperatures routinely

differ by 500 K or more from one day to the next. Figs. 6.24 and 6.25 show

the corresponding data and model results for the electron densities and electron

thermal energy densities. These parameters also exhibit a substantial amount of

day-to-day variability which is not captured by the model.

For expediency, the SAMI2-PE run presented here was performed with only 4
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Figure 6.23: Measured and modeled electron temperatures for July 8-13,
2008. The top panel shows the measured electron tempera-
tures as a function of local time and altitude. The middle panel
shows the modeled temperatures in the same format. The bot-
tom panel plots the measured and modeled temperatures at an
altitude of 1370 km. The measurements are plotted as black
dots with 1 standard deviation error bars and the model results
are plotted as a solid blue line.

pitch angle bins and the low resolution 45 bin energy grid. As discussed above, this

resolution results in some systematic bias in the model. This bias is both smaller

than the difference between the model and the data and smaller than the day-to-

day differences in the data. Thus, these low resolution runs are still instructive to

study despite their inaccuracies. Also, the run was performed with quenching of

N(2D) disabled since with the current neutral NO model and nitrogen ion chemistry

enabling this term produces unreasonable overestimations of the temperatures in

the F1-region.
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Figure 6.24: Measured and modeled electron densities for July 8-13, 2008.
These plots are formatted the same way as in Fig. 6.23 except
the top and middle panels are in a logarithmic scale.

Even with heating due to quenching disabled the electron temperatures and

thermal energy densities are consistently higher than the data at all altitudes and

most local times during the day. An easy solution to this is to tune down the solar

flux. Fig. 6.26 shows the effect of multiplying the solar fluxes by 0.66 at 240 km.

These data are taken from ultra low solar minimum conditions where the F10.7

index is lower than any of the days used to construct the empirical scalings used in

the EUVAC and HEUVAC models [Richards et al., 1994, 2006]. Thus it is plausible

the HEUVAC would be overestimating the solar flux during this period. However,

since the F10.7 index is steady throughout the entire week it is unlikely that the

solar EUV flux is varying substantially. Thus this tuning of the solar fluxes fixes

some of the systematic bias between the data and the model, but cannot explain
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Figure 6.25: Measured and modeled electron thermal energy densities for
July 8-13, 2008. These plots are formatted the same way as in
Fig. 6.24.

the day-to-day variability.

The best candidates for sources of variability are variations in the E×B drift

and variations in the neutral winds. Variations in the neutral densities and temper-

atures could also play a role, but Sec. 6.4.3 showed that relatively large variations

in the neutral densities and temperatures (i.e. 20% density and 100 K) can only

produce temperature changes of 100-200 K. Realistically variations in the neutral

densities and temperatures cannot be large enough to explain the observed changes

of ∼500 K or more from day-to-day.

The Jicamarca data presented were collected with the antenna in an oblique

pointing position, meaning no direct measurements of the drifts are available from
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Figure 6.26: Comparison of two simulations at 240 km. The panels show the
electron densities, the electron thermal energy densities, and
electron temperatures respectively at 240 km altitude above the
magnetic equator. The black dots are the Jicamarca measure-
ments. The blue “reference” curve is from the same simulations
presented in Figs. 6.23, 6.24 and 6.25. The red curve is the
simulation with the solar fluxes multiplied by 0.66.

the incoherent scatter radar itself. However, the vertical drifts can be estimated

from magnetometer data. The JRO staff maintain several magnetometers in South

America, including one at Jicamarca on the magnetic equator, and one in Piura,

which is a few degrees away from the magnetic equator. During the day, the

difference in the horizontal components measured by these two magnetometers,

called ∆H , is primarily related to the current flowing in the equatorial electrojet,

which is in turn related to the zonal electric field which are responsible for the

vertical E × B drifts. A neutral network is used to estimate the vertical drifts

associated with ∆H measurements made at Jicamarca [Anderson et al., 2004]. The
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bottom panel of Fig. 6.27 shows these estimates along with the Scherliess and Fejer

[1999] model values for the week of July 8-13, 2008. A SAMI2-PE simulation was

performed for this week with the solar fluxes multiplied by 0.66 and using vertical

drifts which were interpolated from these data. At night when the ∆H estimates

are not available the Scherliess and Fejer [1999] model is used instead. The top

three panels of Fig. 6.27 compare the results from this simulation to the simulation

where the solar fluxes were multiplied by 0.66 but the Scherliess and Fejer [1999]

model was used at all times (i.e. the simulation used for Fig. 6.26). As expected

from the discussion in Sec. 6.4.2, days were the electric field was higher than the

Scherliess and Fejer [1999] model have lower temperatures and vice versa. This

explains some, but not all, of the observed variability. For the last 4 days the

drifts inferred from ∆H are very similar to the Scherliess and Fejer [1999] model,

so little difference is observed between the two models.

Unfortunately no simple proxy for the meridional winds over Jicamarca is

available for July 8-13, 2008. Richards [1991] created a method for estimating

the meridional winds from the height of F -peak determined by a mid-latitude

ionosonde. In principle this method could be employed in the future using off-

equatorial ionosondes on the same magnetic longitude as Jicamarca. A chain of

ionosondes near Jicamarca’s longitude are currently being deployed as part of the

Low Latitude Sensor Network (LISN), however none of these, except the ionosonde

at Jicamarca itself, were in place in 2008. Fig. 6.28 shows results from a variety of

SAMI2-PE simulations using different sets of winds. Like Fig. 6.27, each simula-

tion multiplies the solar fluxes by 0.66 and uses E×B drifts interpolated from the

∆H measurements during the day. The winds used in each simulation are scaled

versions of the HWM93 and HWM07 models. When the scaling factor is negative

the direction of the winds are reversed. The simulation with no winds whatsoever
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Figure 6.27: Comparisons of simulations using measured and modeled E×B

drifts. The bottom panel shows vertical E × B drifts inferred
from ∆H measurements along with those from the Scherliess
and Fejer [1999] model. The top three panels show the electron
densities, thermal energy densities, and temperatures at 1370
km. The black dots with errorbars are the Jicamarca measure-
ments. The blue curve corresponds to the same simulation as
the red curve in Fig. 6.26. The red curve is for a simulation
which uses the ∆H measurements in addition to reducing the
solar fluxes.

matches the data for the electron thermal energy densities best of all. The two most

drastic simulations are those using HWM07 and HWM07 with the sign reversed.

The HWM93 and HWM07 winds in July are similar to those in March presented

in the top panels of Fig. 6.18. The HWM93 winds point predominantly south-

ward, while the HWM07 winds switch sign in the northern hemisphere, resulting

in winds which diverge away from the magnetic equator. Thus in the simulation

where the sign of HWM07 is reversed the winds are converging on the magnetic

178



0 3 6 9 12151821 0 3 6 9 12151821 0 3 6 9 12151821 0 3 6 9 12151821 0 3 6 9 12151821 0 3 6 9
0

1

2

3

4

5
x 10

4

Local Time

D
en

si
ty

 (
cm

−
3 )

Electron Densities at 1370 km

 

 

HWM93 X 2
HMW93
0 Winds
HWM93 X −1
HWM93 X −2
HWM07
HWM07 X −1

0 3 6 9 12151821 0 3 6 9 12151821 0 3 6 9 12151821 0 3 6 9 12151821 0 3 6 9 12151821 0 3 6 9
0

5000

10000

Local Time

E
ne

rg
y 

D
en

si
ty

 (
eV

 c
m

−
3 ) Electron Thermal Energy Densities at 1370 km

0 3 6 9 12151821 0 3 6 9 12151821 0 3 6 9 12151821 0 3 6 9 12151821 0 3 6 9 12151821 0 3 6 9
500

1000

1500

2000

2500

3000

3500

Local Time

T
em

pe
ra

tu
re

 (
K

)

Electron Temperatures at 1370 km

Figure 6.28: Comparisons of simulations using many different neutral wind
profiles at 1370 km in the same format as Fig. 6.26. In each
simulation the fluxes are reduced and the ∆H measurements
are used. Thus the magenta curve labeled “HWM93” is the
same simulation as the red curve in Fig. 6.27.

equator the winds push plasma up into the plasmasphere from both hemispheres.

The switch from diverging winds to converging winds increases the plasmaspheric

electron densities by a factor of 3 and lowers the electron temperatures by nearly

500 K. Thus changes to the meridional winds can have dramatic effects on the

densities and temperatures in the plasmasphere.

In general the temperatures in Fig. 6.28 are consistently higher than the data.

None of the runs can reproduce the cold temperatures observed on the first day.

This probably indicates that SAMI2-PE systematically overestimates the plasma-

spheric temperatures. The section on future work in Ch. 7 will discuss possible

reasons for this problem in more detail.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE

WORK

This thesis revisited the old problems of photoelectron transport and ionospheric

energetics to interpret recently improved plasma temperature measurements made

at the Jicamarca Radio Observatory. These efforts have produced an extended

version of the 2-D SAMI2 ionospheric model, called SAMI2-PE, which includes

photoelectron transport. The new electron heating model is a significant improve-

ment over the semi-empirical model used in SAMI2. The electron temperatures

above the F -peak from the modified model qualitatively reproduce the shape of

the measurements as functions of time and altitude and quantitatively agree with

the measurements, even during the rapid temperature increase at dawn. For the

reference day (March 25, 2009) the modeled and measured temperatures in the

topside are within ∼30% or less during the entire day. In the topside the modeled

temperatures can change by ∼30% or more when the background winds or electric

fields are changed. Sec. 7.3 discusses additional sources of uncertainty and bias

which may still be present in the model.

The photoelectron transport model created for SAMI2-PE is yet another addi-

tion to the long history of suprathermal electron transport modeling. Sec. 7.1

reviews the similarities and differences between SAMI2-PE and other existing

suprathermal electron transport models. This section also speculates on the future

evolution of photoelectron transport modeling. The greatest advantage of SAMI2-

PE is the ability to run 24 hour or longer simulations on a 2-D grid and produce

plots that look like Jicamarca data. The numerous simulations presented in Ch. 6

with slightly differing inputs have illuminated ways the thermosphere, ionosphere,
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and plasmasphere work together as a system at low-latitudes. Sec. 7.2 summarizes

these lessons. Unfortunately, the computational complexity of the model currently

prohibits transitioning to 3-D. Sec. 7.4 gives several recommendations for ways to

simplify the computations and accelerate the code. SAMI2-PE was created with

the low-latitude topside ionosphere specifically in mind, however it has many other

potential applications. Extending the model to auroral latitudes would be straight-

forward. The energy grid would need to be extended to higher energies, provisions

for anisotropic scattering would need to be included, and the boundary conditions

at the top of the field line would need to be changed properly. Given the de-

tailed studies of electron aurora which have already been performed [e.g. Solomon,

1993; Lummerzheim and Lilensten, 1994], however, there is little motivation to do

this. SAMI2-PE can also be used to predict the effects of suprathermal electrons

produced during ionospheric modification experiments.

7.1 Relationship of SAMI2-PE to other suprathermal elec-

tron transport models

This thesis comes 44 years after Nisbet [1968] published one of the earliest photo-

electron transport models. Sec. 2.4 shows that the equations solved by previous

photoelectron transport models are either equivalent to, or approximations of, the

equations solved in SAMI2-PE. One physical effect which is neglected in SAMI2-

PE but included in several other existing suprathermal electron transport models

is the effect of parallel electric fields. The discussion in Ch. 4 justifies the omission

of parallel electric fields in the low-latitude ionosphere.

Most of the past photoelectron transport models were made to perform the
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calculations once in a specified background atmosphere instead of doing the cal-

culations self consistently for every time step and field line inside an ionospheric

model like SAMI2-PE. Currently ionospheric models with embedded photoelectron

solvers are relatively rare, but given the increasing computer power and the impor-

tance of photoelectron calculations, some kind of photoelectron transport routine

will likely be a standard element of most ionospheric models in the future. Hope-

fully the synthesis of the literature on photoelectrons presented in this thesis will

be pedagogically useful to future students wishing to work with future ionospheric

models which contain photoelectron transport routines.

Time dependent single field line ionosphere-plasmasphere models with embed-

ded photoelectron transport routines began to appear in the mid-1980s with the

development of FLIP [Young et al., 1980; Richards and Torr , 1983; Torr et al.,

1990; Richards and Torr , 1990, 1996] and the model of Khazanov et al. [1984].

SUPIM [Bailey and Balan, 1996] then used the same two-stream photoelectron

model as FLIP in a 2-D model ionosphere-plasmasphere model. Most recently, the

Ionosphere-Plasmasphere-Electrodynamics (IPE) model [Maruyama et al., 2011]

has become the first 3-D global ionosphere-plasmasphere model to contain an em-

bedded photoelectron transport routine. IPE is a 3-D Lagrangian generalization

of the FLIP model. At each time step IPE runs the FLIP model, including its

two-stream photoelectron transport routine, on every field line, then solves for the

electrostatic potential with a 2-D potential solver, and finally advects each field

line according to the resulting E×B drifts. In principle the photoelectron routine

from SAMI2-PE could be inserted directly into SAMI3 to produce another global,

electrodynamic model with an embedded photoelectron transport solver, but the

strategies for accelerating the code discussed in Sec. 7.4 need to be explored more

fully before this is practical. The photoelectron solver is SAMI2-PE is slower than
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that from FLIP because it includes more physics. FLIP uses a two-stream model

and uses the average energy loss approximation introduced by Richards and Torr

[1983] for inelastic collisions, whereas SAMI2-PE uses a multi-stream model and

considers 39 different types of inelastic collisions using the Swartz [1985] energy

degradation algorithm for each type. The use of multiple streams in particular

introduces a substantial computational penalty because the matrix inversion in

Eq. 5.22 is O(n2
stnz), and thus an eight-stream model is 16 times slower than a

two-stream model. In the topside ionosphere, however, the extra complexity of

a multi-stream model is worthwhile because anisotropic pitch angle distributions

will form due to transport effects and the mirror force. The FLIP two-stream

model assumes the mean pitch-angle cosines change in the plasmasphere the same

way the pitch-angle cosine of a single collisionless electron would in a changing

magnetic field, but Fig. 6.4 illustrates that the pitch-angle distributions are more

complicated than that because of transport effects.

Like SAMI2-PE, the model of Khazanov et al. [1994] is a multi-stream model

which includes the mirror force, but unlike SAMI2-PE this model treats all colli-

sions as continuous processes with operators of the form

1

v

δΦ

δt
=

∂

∂E [L(E)Φ] +D(E)
∂

∂µ

[

(1 − µ2)
∂Φ

∂µ

]

. (7.1)

Nonetheless, Khazanov et al. [1994] use a different numerical treatment of the mir-

ror force. SAMI2-PE uses a fixed pitch-angle grid at all positions where the bin

centers and widths are chosen such that the integrals over the pitch-angle distri-

butions follow Gauss-Legendre quadrature rules. This “finite ordinate approxima-

tion” is believed to be optimal for radiative transfer problems [e.g. Chandrasekhar ,

1950; Stamnes et al., 1988]. When the collision operators are approximated in the

form of Eq. 7.1, however, there is no advantage to using a Gauss-point grid. Khaz-

anov et al. [1994] instead construct their pitch-angle grid to eliminate numerical
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diffusion. The equations are transformed from the true pitch-angle cosine, µ, to

the pitch-angle cosine the photoelectrons will have when the reach the magnetic

equator, i.e.

µ0(ℓ, µ) ≡ µ

|µ|

√

1 − B0

B(ℓ)
(1 − µ2), (7.2)

which is an invariant quantity along the phase-space trajectory of a collisionless

photoelectron. The grid in µ0 is then constructed such that different numbers

of points are used at different positions. This variable transformation completely

eliminates numerical pitch-angle diffusion. The numerical methods in SAMI2-

PE, however, contain some numerical pitch-angle diffusion and thus can cause

particles to become anomalously trapped. At the altitudes of interest in this study

(below ∼ 1500 km), real pitch-angle diffusion due to collisions is always present and

significant, meaning some numerical diffusion is not a serious problem. Sec. 5.1.1

introduced a higher-order scheme which partially removes the numerical diffusion,

but the tests in Sec. 6.3.1 demonstrate that this higher-order scheme only changes

the results by ∼1-2% at altitudes below 1500 km. The model of Khazanov et al.

[1994] was designed with much higher altitudes in mind where collisions are less

frequent and thus numerical diffusion would be a more serious issue.

The optimal treatment of the pitch-angle grid for coupled ionosphere-

plasmasphere models is probably a hybrid approach which switches between dif-

ferent kinds of grids in different regions. Relying on the higher-order transport

scheme to extend SAMI2-PE to much higher altitudes in the plasmasphere is not

an efficient option since the iteration required for the higher-order scheme slows

down the computations. A Gauss-point grid is not expected to be helpful at high

altitudes in the plasmasphere since the collision operator for Coulomb collisions

does not contain any integrals over the pitch-angle distribution. A more practical

solution is to use a Gauss-point grid up to ∼1000 or 1500 km, then switch to using
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a grid like that of Khazanov et al. [1994] at higher altitudes. This hybrid grid

would have all the benefits of the finite ordinate approximation at altitudes where

large-angle elastic collisions with neutrals are important while simultaneously elim-

inating numerical pitch-angle diffusion at high altitudes in the plasmasphere where

the plasma is nearly collisionless.

7.2 Lessons learned about the low-latitude thermosphere-

ionosphere-plasmasphere system

The numerous simulations performed throughout this thesis give insights into the

ways the thermosphere, ionosphere, and plasmasphere work together as a system.

The tests performed in Ch. 3 suggested that the topside plasma temperatures

would respond to changes in the neutral winds and electric fields, even though the

neutral winds have no direct connection to the nearly collisionless topside plasma.

Neutral winds and electric fields will rearrange the distributions of electron density

in the off-equatorial F -regions, especially on the field lines connected to the equa-

torial arcs. The off-equatorial F -regions are in turn connected to the equatorial

topside ionosphere through material diffusion, thermal diffusion, and photoelec-

tron transport effects, all of which are impacted by changes in the electron density

distributions. Although the phenomenological photoelectron transport model in

the original SAMI2 is not sufficient to reproduce Jicamarca data, the tests with

SAMI2-PE in Ch. 6 show that the conclusions about the effects of neutral winds

and electric fields from Ch. 3 are qualitatively correct. At low-latitudes the thermo-

sphere, ionosphere, and plasmasphere form a simple system which is diagrammed

in Fig. 7.1.
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Figure 7.1: A simple diagram of the low-latitude thermosphere-ionosphere-
plasmasphere system.

This simple and intuitive picture provides an easy explanation for how char-

acteristics of the neutral thermosphere manifest themselves in the plasmasphere

even though the neutral densities are negligible at plasmaspheric altitudes. For

example, Pedatella et al. [2011] has shown that COSMIC total electron content

(TEC) measurements both above and below 800 km exhibit wave 4 variations in

longitude, which is a well known feature of the non-migrating tides. The system

diagram in Fig. 7.1 not only provides a possible explanation for how wave 4 signa-

tures could appear in the high altitude TEC measurements, but also suggests that

similar longitudinal variations in the temperatures should also be present.

The sensitivity of Jicamarca temperature measurements to thermospheric

winds suggests the tantalizing possibility of one day estimating winds by assimilat-

ing Jicamarca data into a model like SAMI2-PE. This task potentially suffers from

observability problems which would need to be resolved. Obviously the entire prob-

186



lem is symmetric about the magnetic equator (e.g. a constant northward wind and

a constant southward wind have the same effects on the equatorial plasmasphere),

so either the wind directions would need to be known a priori, or off-equatorial data

(e.g. from ionosondes or GPS receivers) would need to be incorporated. Further-

more, the effects of electric fields and neutral winds are impossible to differentiate

when looking at the magnetic equator, thus direct measurement of electric fields

would be needed. Currently the electric fields can be estimated from magnetometer

data. Planned future upgrades to Jicamarca’s phased array will permit electronic

beam steering. A mode which alternates between perpendicular and oblique beam

positions would allow for simultaneous measurements of temperatures and E×B

drifts. Finally, uncertainties and systematic biases in the model would need to be

carefully studied and characterized to do an error analysis of the derived winds.

7.3 Remaining sources of uncertainty and bias

While the agreements between SAMI2-PE and Jicamarca data are a promising im-

provement over the original SAMI2, a few types of discrepancies appear frequently

which might indicate systematic biases remaining in SAMI2-PE. Firstly, the mod-

eled topside temperatures are frequently higher than the measurements, indicating

the fluxes in the plasmasphere are too high. One possibility is anomalous mag-

netic mirror trapping due to numerical pitch-angle diffusions, but the tests with

and without the higher-order corrections performed in Sec. 6.3.1 suggests that this

effect is relatively minor. Another possibility is an overestimation of the quasi-

trapped plasmaspheric fluxes caused by an improper treatment of elastic collisions

with neutrals. As explained by Mantas et al. [1978], elastic backscattering from

the neutral thermospheres on either end of the field line can cause photoelectrons
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to become quasi-trapped in the plasmasphere. The elastic cross sections used in

SAMI2-PE are empirical fits to old data, and other models (e.g. GLOW) use

different sets of cross sections. If the elastic cross sections are too high then too

many photoelectrons will be quasi-trapped. Furthermore, SAMI2-PE only con-

siders isotropic scattering whereas the proper phase functions for elastic collisions

are somewhat peaked in the forward direction. Thus the backscattering of photo-

electrons is likely being somewhat overestimated, leading to excess quasi-trapped

photoelectrons in the plasmasphere.

Another problematic region for SAMI2-PE is the lower F -region (∼240 km).

Standard SAMI2 simulations, which use the empirical Swartz and Nisbet [1972]

heating efficiency model at these altitudes, and SAMI2-PE simulations with the

quenching of N(2D) disabled appear to produce reasonable agreement with Ji-

camarca data. However, simulations with quenching enabled overestimate these

temperatures by as much as 50%, suggesting the model is producing far too much

N(2D). Aponte et al. [1999] performed detailed studies of Jicamarca temperature

measurements in the F -region and concluded that quenching of N(2D) was a sig-

nificant heat source in the lower F -region. However, Aponte et al. [1999] had no

measurements of the densities of the minor ions N+
2 and NO+ available, both of

which are crucial to determining the concentration of N(2D). These ion concen-

trations had to be estimated from the major ion concentrations using a chemistry

model. Both the chemistry models used by Aponte et al. [1999] and in SAMI2 will

produce NO+ through charge exchange with neutral NO, and thus are sensitive

to assumed background neutral NO profile. Sec. 6.2 illustrates that the tempera-

tures in the lower F -region produced by SAMI2-PE with quenching enabled can be

changed significantly by changing the neutral NO profiles. A better model of the

neutral NO density at ∼240 km is needed, along with a thorough reexamination
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of the chemistry in SAMI2-PE at these altitudes.

7.4 Accelerating the computations

The reference simulation presented in Ch. 6 took a single processor roughly 18.5 h,

whereas the original SAMI2 can run the same conditions in 28 min. The compu-

tation time is also dependent on the resolution chosen. A simulation using only 45

energy bins and 4 pitch angles can run in 4.5 h and the temperatures differ from

the high resolution simulations by only 5%. Given these relatively long computa-

tion times for a 2-D model, a few other strategies for simplifying the computations

should be considered before attempting to put photoelectrons into SAMI3.

Firstly, performing photoelectron heating calculations at night is a waste of

time. SAMI2-PE can calculate the photoelectron spectra at night associated with

the scattered radiation in the nighttime ionization model used in SAMI2, but the

associated heating rates are negligible compared to the electron-neutral cooling

rates. For the reference case switching off the photoelectron transport solver for

all times when no point on the field line was in sunlight decreased the computation

time from 18.5 h to 12.5 h.

A simple and effective way to speed up the code during the day is to not perform

the photoelectron calculations at every single time step. Ionospheric models such

as FLIP and TIE-GCM typically use time steps of 2-5 min. SAMI2, however,

includes the nonlinear ion inertia term in the ion momentum equations and finite

differences this term explicitly. Thus the Courant conditions in SAMI2 are set by

the ion velocities. Typically the model uses 10 s time steps throughout most of the

day, but these become as short as 1-2 s during sunrise. Figs. 7.2 and 7.3 illustrate
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the effects of performing the photoelectron calculations once every n time steps

for n of 10, 20, 40, and 60. A zero-order hold on the electron heating rates is used

for the intermediate time steps. In each of these simulations photoelectron effects

are ignored at night, so the first time step on which photoelectron calculations are

performed each day is the one immediately after sunrise. The computation times

for 48 hour simulations are 2 h 12 min, 1 h 38 min, 1 h 20 min, and 1 h 15 min for

n of 10, 20, 40 and 60, respectively. Thus skipping every 10th time step results in

a factor of ∼6 speed up of the entire program, and there are diminishing returns

for skipping more steps. When photoelectron calculations are performed for every

time step they dominate the computation time, but they become a smaller fraction

of the total computation time as the number of steps skipped is increased. During

the middle of the day, even when skipping 60 steps, the modeled temperatures only

change by 10 K or less. Significant errors appear at sunrise and sunset, however.

During sunrise the electron heating rates are rising rapidly, so using a zero-order

hold results in systematic underestimation of the temperatures. Similarly, during

sunset the heating rates are decreasing rapidly so a zero-order hold results in

systematic overestimation of the temperatures. These problems can be avoided

by not skipping time steps near sunrise and sunset. The red curves in Figs. 7.2

and 7.3 come from a simulation where photoelectron calculations are ignored at

night, done for every time step from sunrise to 9 LT, done for every 60th time step

from 9 to 17.5 LT, done for every time step from 17.5 LT to sunset. This 48 hour

simulation took 7 h 31 min, most of which was spent on the sunrises on the two

days.

In addition to skipping time steps, the code could be accelerated further by

changing how the photoelectron calculations are performed. Currently collisions

with neutrals are included at all positions, but at very high altitudes they should
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Figure 7.2: Left panel: Model electron temperatures at 1370 km as a func-
tion of local time for the second 24 hours of 48 hour simulations.
Each simulation is for the reference case considered in Ch. 6,
but ignores photoelectron calculations at night and skips differ-
ent numbers of time steps (see text). Right panel: Differences
between the modeled electron temperatures computed with and
without skipping time steps.

be negligible compared to collisions with the ambient electrons. Ignoring inelastic

collisions at high altitudes would allow the code to skip the energy reapportionment

calculations in those cells; however, this is not expected to produce a substantial

speed up because the reapportionment calculations are relatively fast and the un-

even spacing of the grid points causes there to be fewer cells at high altitudes.

The slowest part of the algorithm is the matrix inversion needed for the trans-

port calculations. Ignoring elastic collisions at high altitudes would not make the

matrix smaller, but it would make it sparser. The differential operator describ-

ing the pitch-angle diffusion caused by Coulomb collisions only couples adjacent
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Figure 7.3: Same as Fig. 7.2 but for 244 km altitude.

pitch-angle bins, whereas the integral in the elastic collision term couples every

pitch-angle bin to every other. The matrix could further be made both smaller

and sparser by allowing the pitch-angle resolution to change with altitude. Fig. 6.4

suggests that the pitch-angle distributions below ∼400 km are always isotropic be-

cause of frequent elastic collisions. If the pitch-angle distributions are known to

be isotropic, then multi-stream computations are a waste of time; the two-stream

equations with 〈µ〉 = 0.5 are exact in the special case of isotropic distributions.

Thus the portion of the grid with the highest spatial resolution could be using a

lower pitch-angle resolution.
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7.4.1 Empirical heating rate calculations

An alternative to accelerating the photoelectron transport model in SAMI2-PE to

the point where it can be practically incorporated into 3-D models is to instead

use SAMI2-PE to create better empirical models. The photoelectron population

is coupled to the fluid equations governing the rest of the plasma through the

secondary production and electron heating terms. Secondary production is most

important at low altitudes where it is easily treated in a local empirical fashion

by tabulating secondary to primary production ratios for each wavelength [e.g.

Solomon and Qian, 2005]. Thus all that is needed is a new empirical heating rate

model.

The electron heating rate in Eq. 4.85 is dominated by the final term

Qphe =

∫ ∞

Et

dE L(E)

∫ 1

−1

dµΦ(E , µ), (7.3)

which is a particular moment of the photoelectron distribution function. Consider

the time dependent photoelectron transport equation written in the form

∂Φ

∂t
+

√

2E
m

{

µB
∂

∂ℓ

(
Φ

B

)

− δB
∂

∂µ

(
1 − µ2

2
Φ

)}

= (7.4)

√

2E
m

{

q +
∂

∂E [L(E)Φ] +D(E)
∂

∂µ

[
(
1 − µ2

) ∂Φ

∂µ

]

−
∑

n

(σ̄an + σ̄en)NnΦ(ℓ, E , µ)

+
∑

n

σ̄enNn
1

2

∫ 1

−1

dµ′Φ(ℓ, E , µ′)

+
∑

n,p

Nn

∫ ∞

E

dE ′σp
an(E ′, E)

1

2

∫ 1

−1

dµ′Φ(ℓ, E ′, µ′)

}

,

and apply the operation
∫∞

Et
dEL(E)

∫ 1

−1
dµ to the entire equation. The result is a
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PDE governing the evolution of the electron heating rate of the form

∂Qphe

∂t
+B

∂

∂ℓ

(
FQphe

B

)

= P − αNeQphe −
∑

n

βnNnQphe (7.5)

where

F ≡ 1

Qphe

∫ ∞

Et

√

2E
m
L(E)

∫ 1

−1

dµ µΦ, (7.6)

P ≡
∫ ∞

Et

dE
√

2E
m
L(E)

∫ 1

−1

dµ q (7.7)

α ≡ 1

Qphe

∫ ∞

Et

dE  L(E)

Ne

√
2Em

∫ 1

−1

dµΦ (7.8)

βn ≡ 1

Qphe

∫ ∞

Et

dE
√

2E
m
L(E)

∫ 1

−1

dµ {σ̄anΦ (7.9)

−
∑

p

∫ ∞

E

dE ′σp
an(E ′, E)

1

2

∫ 1

−1

dµ′Φ(ℓ, E ′, µ′)

}

.

Note that the mirror force, pitch-angle diffusion, and elastic collision terms drop

out after integrating over all pitch angles and that it has been assumed that Et is

small. The production term P is simply a moment of the photoelectron produc-

tion distribution, and thus straightforward to compute. It is proportional to the

photoproduction rate. The other terms cannot be computed without knowing Φ

itself. However, since Qphe is a linear transformation of Φ, the terms F , α, and

βn are constants with respect to Φ (i.e. scaling Φ by a constant factor at all ener-

gies and pitch-angles would leave these numbers unchanged). If a large library of

SAMI2-PE runs were generated for many different conditions empirical expressions

for these “constants” could be determined. With these constants known, solving

Eq. 7.5 in steady state is as easy as solving the parallel component of one of the

fluid equations.

Eq. 7.5 reduces to other empirical forms in various limits. The time dependent

term will probably always be negligible. At low altitudes transport effects, and
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thus F , will be negligible and the equation reduces to

Qphe =
P

αNe +
∑

n βnNn
, (7.10)

i.e. the electron heating rate is directly proportional to the photoionization rate,

just as Swartz and Nisbet [1972] assumed. At very high altitudes direct production,

and thus P can be neglected, and the neutral densities become negligible compared

to the electron densities. Eq. 7.5 then reduces to a simple transport equation of

the form

B
∂

∂ℓ

(
FQphe

B

)

= −αNeQphe. (7.11)

If it is furthermore assumed that B, F , and α are constants along the field line

the solution to this equation is of the form

Qphe = Qphe(ℓ0) exp

[

−Cqe

∫ ℓ

ℓ0

Ne(ℓ
′) dℓ′

]

, (7.12)

where Cqe = α/F .
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APPENDIX A

NUMERICAL METHODS FOR THE STEADY STATE

TEMPERATURE MODEL

The steady state temperature model uses the same two-dimensional non-uniformly

spaced grid in dipole coordinates as used by SAMI2-0.98 [Huba et al., 2000a]. The

steady state temperature equations, Eq. 3.40, for electrons, H+, He+, and O+ are

discretized around the point (i, j) as follows. The first coordinate, i, denotes the

direction along B, and the second denotes the perpendicular direction. Terms 1

and 2 only need to be evaluated at the point (i, j), but they will in general involve

the temperatures of all four species at that point and they are highly nonlinear.

Term 5a only depends on Tαi linearly. The divergence of u‖ is computed from the

E×B drift at the magnetic equator, ueq
⊥ , and curvilinear factors which are specific

to the dipole geometry. In terms of the spherical coordinate system centered on

the eccentric dipole and the dipole coordinates,

∇ · u⊥ =
6ueq

⊥

pdRE

sin2 θe(1 + sin2 θe)

(1 + 3 cos2 θe)2
. (A.1)

Terms 3, 4b, and 5b only involve the temperatures of species α at (i − 1, j),

(i, j), and (i+ 1, j). Term 3 is discretized using a similar finite differencing scheme

as in SAMI2.

∇‖ · λ∇‖T ≈ b2s

[
λi+1/2

∆si

Ti+1 − Ti
dsi

− λi−1/2

∆si

Ti − Ti−1

dsi−1

]

(A.2)

where the α subscripts and j indices have been omitted for simplicity, dsi is change

in the s coordinate between the points (i, j) and (i−1, j), ∆si is half of the change

in the s coordinate between points (i + 1, j) and (i− 1, j), and

λi+1/2 =
1

2
(λi+1 + λi) (A.3)

λi−1/2 =
1

2
(λi + λi−1). (A.4)
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The dependence on λi−1, λi, and λi+1 means that term 3 depends nonlinearly on

Tαi−1, Tαi, and Tαi+1.

Terms 4b and 5b can be combined and rewritten as two different terms.

uα‖∇‖Tα +
2

3
Tα∇‖ · uα‖

= ∇‖ · (uα‖Tα) − 1

3
Tα∇‖ · uα‖ (A.5)

The second of these terms is finite differenced as

−1

3

1

∆si

[
1

2
bsi(ui+1 − ui−1)

+
1

4
ui(bsi+1 − bsi−1)

]

. (A.6)

The first of these terms is approximated using an upwind scheme.

∇‖ · (uα‖Tα) ≈ A

∆si
Ti−1 +

B

∆si
Ti +

C

∆si
Ti+1, (A.7)

where the coefficients A, B, and C depend on the signs of the parallel velocities.

First the effective velocities at the left and right sides of the cell are defined.

ur =
1

2

(
bsiu‖i + bsi+1u‖i+1

)
(A.8)

uℓ =
1

2

(
bsi−1u‖i−1 + bsiu‖i

)
(A.9)

If ur ≥ 0 and uℓ ≥ 0

A = −uℓ (A.10)

B = ur (A.11)

C = 0, (A.12)

if ur ≤ 0 and uℓ ≥ 0

A = 0 (A.13)

B = −uℓ (A.14)

C = ur, (A.15)
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if ur ≥ 0 and uℓ ≤ 0

A = 0 (A.16)

B = ur − uℓ (A.17)

C = 0, (A.18)

and finally if ur ≤ 0 and uℓ ≥ 0

A = −uℓ (A.19)

B = 0 (A.20)

C = ur. (A.21)

Both of these terms are linear in Tαi−1, Tαi and Tαi+1.

Only term 4a couples adjacent field lines, but it is completely linear. It is

discretized as

aTαi,j−1 + bTαi,j + cTαi,j+1, (A.22)

where the coefficients a, b, and c are also computed using an upwind scheme, and

thus depend on the signs of u⊥. These coefficients are identical for all four species

since the E×B drift is the same for all species. If u⊥i,j ≥ 0 and u⊥i,j+1 ≥ 0

a = −Ai,j

Vi,j
u⊥i,j (A.23)

b =
Ai,j+1

Vi,j
u⊥i,j+1 (A.24)

c = 0, (A.25)

if u⊥i,j ≤ 0 and u⊥i,j+1 ≥ 0

a = 0 (A.26)

b =
Ai,j+1

Vi,j
u⊥i,j+1 −

Ai,j

Vi,j
u⊥i,j (A.27)

c = 0, (A.28)
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if u⊥i,j ≥ 0 and u⊥i,j+1 ≤ 0

a = −Ai,j

Vi,j
u⊥i,j (A.29)

b = 0 (A.30)

c =
Ai,j+1

Vi,j
u⊥i,j+1, (A.31)

and finally if u⊥i,j ≤ 0 and u⊥i,j+1 ≤ 0

a = 0 (A.32)

b = −Ai,j

Vi,j
u⊥i,j (A.33)

c =
Ai,j+1

Vi,j
u⊥i,j+1. (A.34)

In each case Vi,j is the volume of the cell at (i, j) and Ai,j is the area of the face of

the cell at (i, j) whose normal is perpendicular to B.

The discretized temperature equations are nonlinear, and thus must be solved

iteratively. Let Eα,i,j be the the evaluation of the discretized temperature equation

for species α around the point (i, j) for the current guess of the temperature profiles.

Clearly the problem is solved when Eα,i,j = 0 for all i, j, and α. This problem can

be solved with Newton’s method by iteratively solving

∑

β,k,ℓ

∂Eα,i,j

∂Tβ,k,ℓ
δTβ,k,ℓ = −Eα,i,j (A.35)

for the changes to the guess of the temperatures, δT , subject to the boundary

conditions. Contributions to the partial derivatives of E which come from the

linear terms are trivial to compute, and contributions from the nonlinear terms

are approximated using forward differences. Clearly this problem can be cast as a

matrix equation of the form Ax = b where the A matrix is very sparse.

Initially all of the temperatures are set equal to the neutral temperatures.

Then Eq. A.35 is solved with the perpendicular advection terms (term 4a), and
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the condition that the derivative at the top be 0 omitted. This corresponds to

solving a one-dimensional problem along each field line. In this case the matrix

is band diagonal with no non-zero entries more than 4 elements away from the

main diagonal. Such systems are simple to solve by Gaussian elimination followed

by backsubstitution [e.g. Press et al., 2007]. The iteration continues until the rms

change in the temperatures from the latest step is less than 1 K. The solution to this

one-dimensional problem is then used as the initial guess for a more complicated

two-dimensional solver.

Directly inverting the matrix with the perpendicular advection terms included

is numerically unstable due to rounding errors. This difficulty is overcome using

Tikhonov regularization. Instead of solving Ax = b we attempt to minimize ||Ax−

b||22 + ||Γx||22, where the matrix Γ = αI is an extra condition which encourages the

solution vector to be small. The x which minimizes this quantity is the solution

to

(
ATA + α2I

)
x = ATb. (A.36)

This is again a band diagonal system which can be solved using the same technique

as before. After some trial and error, a regularization parameter of α = 10−6 was

chosen. Again the problem is iterated until the rms change in the temperatures is

less than 1 K.
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APPENDIX B

PHOTOABSORPTION AND PHOTOIONIZATION CROSS

SECTIONS

The figures below show the various photoabsorption and photoionization cross

sections used in SAMI2-PE. The data sources for the various cross sections are

indicated in the caption. The methods used to integrate these cross sections onto

the wavelength grid used in SAMI2-PE and to combine partial and total cross

sections from multiple sources self consistently are described in secs. 4.2.2 and

4.2.3.
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Figure B.1: Photoabsorption cross sections [Fennelly and Torr , 1992].
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Figure B.2: Partial photoionization cross sections for atomic oxygen. The
legend refers to the state of the resultant O+ ion (see Conway
[1988]).
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Figure B.3: Partial photoionization cross sections for non-dissociating reac-
tions with molecular oxygen. The legend refers to the state of
the resultant O+

2 ion (see Conway [1988]).
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Figure B.4: Partial photoionization cross sections for dissociating reactions
with molecular oxygen. The legend refers to the state of the
resultant O+ ion (see Conway [1988]).
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Figure B.5: Partial photoionization cross sections for non-dissociating reac-
tions with molecular nitrogen. The legend refers to the state of
the resultant N+

2 ion (see Conway [1988]).
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Figure B.6: Partial photoionization cross sections for dissociating reactions
with molecular nitrogen. The legend refers to the state of the
resultant N+ ion (see Conway [1988]).
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Figure B.7: Total photoionization cross sections. Helium cross sections come
from Kirby et al. [1979]; all others come from Fennelly and Torr
[1992].
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APPENDIX C

PHOTOELECTRON-NEUTRAL COLLISION CROSS SECTIONS

The elastic cross sections used are the same as those in the FLIP [Richards and

Torr , 1996] source code. In cm2 they are.

σ̄e,O =







5.3 × 10−16E0.146

5.3 × 10−15
[
1 − 0.1

E

]55 E−0.65

(C.1)

σ̄e,O2
=







5.0 × 10−16E0.301

8.53 × 10−15
[
1 − 0.1

E

]64.3 E−0.65

(C.2)

σ̄e,N2
=







1 × 10−15 + 1.5 × 10−15 exp
[

−
(
E−2.2
0.8

)2
]

8.53 × 10−15
[
1 − 0.1

E

]64.3 E−0.65,

(C.3)

where the top expression of each pair is for E < 10 eV and the bottom expression

is for E > 10 eV. These cross sections are plotted in Fig. C.1.

The partial cross sections for inelastic collisions which excite but do not ionize

the neutral are all modeled with analytic expressions of the form

σp
xn(E ′, E) =

q0A

T 2

[

1 −
(
T

E ′

)γ]ν (
T

E ′

)Ω

δ(E ′ − T − E) cm2eV−1, (C.4)

where q0 = 6.51 × 10−14 eV2cm2, T is the threshold energy for the excitation in

eV, and A, Ω, γ, and ν are dimensionless constants which are chosen such that the

analytic expression matches experimental data while still transitioning smoothly

from the cutoff at threshold to the appropriate high energy limit given by the Born-

Bethe approximation [Green and Stolarski , 1972]. All of the excitations considered

and the parameters used are summarized in Table C.1. The corresponding total

cross sections are simply given by the term in front of the δ-function in Eq. C.4,

and are plotted in Figs. C.2, C.3, and C.4.
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Figure C.1: Empirical elastic cross sections used.

The partial cross sections for ionizing collisions are modeled with a similar

analytic form;

σp
in(E ′, E) =







q0A
W 2

(
T
W

)P [
1 −

(
W
E ′

)γ]ν (W
E ′

)Ω
cm2eV−1 T ≤ W < E ′+T

2

0 cm2eV−1 otherwise

(C.5)

where q0 is the same constant as before, T is the ionization threshold in eV, W =

E ′ − E is the total amount of energy lost by the primary electron in eV, and

A, P , Ω, ν, and γ are dimensionless constants [Banks and Kockarts , 1973]. To

conserve energy W = E ′ −E = T + Es where Es is the energy of the secondary. An

ionizing collision begins with one free electron and ends with two. By convention

the more energetic of these two electrons is labeled as the degraded primary and

the less energetic is labeled as the secondary. Thus Es must lie between 0 and
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Figure C.2: Total inelastic cross sections for collisions involving excitations
of atomic oxygen. These curves are computed using Eq. C.4 and
parameters from Table C.1.
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Figure C.3: Total inelastic cross sections for collisions involving excitations
of molecular oxygen. These curves are computed using Eq. C.4
and parameters from Table C.1.
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Electron Impact Excitation Collision Parameters
Gas State T (eV) A Ω ν γ
O 1D 1.96 0.01 1.0 2.0 1.0

1S 4.17 0.0042 1.0 1.0 0.5
3S 9.53 0.0465 0.75 3.0 1.0
5S 9.15 0.023 2.0 1.0 1.0
Σ(∆l = 1,∆s = 0) 14.2 0.367 0.75 3.0 1.0
Σ(∆s = 1) 14.7 0.694 2.0 1.0 1.0
Σ(∆l = 0,∆s = 0) 13.5 0.043 0.75 1.0 2.0

O2

∑
vib. 0.25 9.57 × 10−5 2.0 1.0 1.0

a1∆g 0.98 0.0005 3.0 1.0 3.0
b1Σg 1.64 0.0005 3.0 1.0 3.0
A3Σu+ 4.5 0.021 0.9 1.0 3.0
B3Σu− 8.4 0.23 0.75 2.0 1.0
9.9 eV allowed 9.9 0.08 0.75 3.0 1.0∑

Rydberg 13.5 2.77 0.75 3.0 1.0

N2

∑
vib. 1.4 1.5 × 105 16.0 9.0 1.0

A3Σu+ 6.14 0.226 3.0 1.0 1.0
B3Πg 7.30 0.178 3.0 1.0 3.0
C3Πu 11.03 0.28 3.0 1.0 3.0
a1Πg 9.10 0.136 1.0 1.0 1.0
b1Πu 12.85 0.67 0.75 3.0 1.0
b′1Σu+ 14.0 0.33 0.75 3.0 1.0∑

Rydberg 13.75 2.66 0.75 3.0 1.0

Table C.1: Parameters used with Eq. C.4 to compute cross sections for exci-
tation collisions. The O2 vibrational and N2 vibrational terms are
taken from Swartz [1972]. The rest of these parameters appear
in Banks and Kockarts [1973].

(E ′−T )/2. All of the types of ionizing collisions considered and the parameters used

are summarized in Table C.2. The corresponding total cross sections are obtained

by integrating the partial cross sections over all possible secondary energies:

σin(E) =

∫ E−T

(E−T )/2

σp
in(E , E ′′) dE ′′ (C.6)

=

∫ (E+T )/2

T

σp
in(E , E ′′) dW ′′

= q0AT
PE−Ω

ν∑

k=0

(−1)k
(
ν

k

)

E−kγ

(
E+T
2

)kγ+Ω−P−1 − T kγ+Ω−P−1

kγ + Ω − P − 1
,
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Figure C.4: Total inelastic cross sections for collisions involving excitations
of molecular nitrogen. These curves are computed using Eq. C.4
and parameters from Table C.1.

where W ′′ = E − E ′′, and the final equation applies only for integer ν. These total

cross sections are plotted in Figs. C.5, C.6, and C.7.
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Electron Impact Ionization Parameters
Gas Final Ion State T (eV) A Ω ν γ P
O O+ 4S 13.6 0.290 0.85 1.0 0.3 1.2

2D 16.9 0.360 0.85 1.0 0.3 1.2
2P 18.5 0.190 0.85 1.0 0.3 1.2

O2 O+
2 X2Πg 12.1 0.058 0.80 2.0 1.0 1.1

a4Πu 16.1 0.150 0.80 2.0 1.0 1.1
A2Πu 16.9 0.150 0.80 2.0 1.0 1.1
b4Σg− 18.2 0.130 0.80 2.0 1.0 1.1
B 23.0 0.064 0.80 2.0 1.0 1.1

O+ 4S 18.0 0.400 0.93 3.0 1.0 1.1
O+ 2D 22.0 0.250 0.93 3.0 1.0 1.1

N2 N+
2 X2Σg+ 15.58 0.370 0.80 3.0 1.0 1.2

A2Πu 16.73 0.160 0.83 1.0 1.0 1.2
B2Σu+ 18.75 0.073 0.83 2.0 1.0 1.2
C2Πg 22.0 0.056 0.83 2.0 1.0 1.2
D2Σu+ 23.6 0.060 0.83 2.0 1.0 1.2

N+ 25.0 0.380 0.96 2.0 1.0 1.2

Table C.2: Parameters used with Eq. C.5 to compute ionization cross sec-
tions. All of these parameters are taken from Banks and Kockarts
[1973].
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Figure C.5: Total inelastic cross sections for collisions involving impact ion-
ization of atomic oxygen. These curves are computed using
Eq. C.6 and parameters from Table C.2.
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Figure C.6: Total inelastic cross sections for collisions involving impact ion-
ization of molecular oxygen. These curves are computed using
Eq. C.6 and parameters from Table C.2.
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Figure C.7: Total inelastic cross sections for collisions involving impact ion-
ization of molecular nitrogen. These curves are computed using
Eq. C.6 and parameters from Table C.2.
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