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SYNOPSIS

This thesis is concerned with the theory of incoherent scattering by a plas-
ma, i.e., with the statistical description of the electromagnetic waves scattered
by the thermal electron density fluctuations in a plasma which has been il-
luminated by an electromagnetic wave of certain frequency. We have treated the
problem starting from first principles, taking a new approach and removing in the
process some of the limitations inherent in other approaches taken so far for the
solution of this problem. We have used this approach to solve, up to the inclusion
of some numerical results, the pending problem of the effect of ion-ion "Coulomb
collisions" on the ion gyro-resonances predicted by existent collisionless theories;
this is an important aspect of the theory in connection with the application of inco-
herent scattering for the study of the ionosphere.

We can divide this paper into two main parts with different degrees of gener-
ality. The first part (Chapters II and IIT) is more formal and more general in scope,
it is valid for non-homogeneous and non-stationary plasmas. In this first part we
show that:

(a) the time autocorrelation function of the scattered wave is a functional of the
space-time electron density autocorrelation function of the plasma, and

(b) that the latter in turn can be written as a product of two densities; the density

viii



of the plasma in question and the electron density of the same plasma but un-

der certain hypothetical initial conditions.

This reduces the problem to that of solving an initial value problem for the set of
coupled kinetic equations of the plasma. In the second part (Chapters IV to VI) we
carry out the solution of such an initial value problem but under less general condi-
tions. We assume thermodynamic equilibrium and that the ion mean free path is
larger than the scale sizes considered. These conditions are normally met in ion-
ospheric applications. We use a simplified Fokker-Planck collision term, and show
that under the above conditions only a few terms from a more complete model pro-
posed by Dougherty are necessary. The effect of a constant magnetic field is in-
cluded.

We present a computer technique used to obtain the time~autocorrelation of
the scattered wave without computation of the frequency spectrum, avoiding in this
way lengthy numerical Fourier transformations. We have evaluated in this way the
autocorrelation function under a variety of conditions showing the effect of ion-ion
Coulomb collisions, changes in ion composition and variations in the angle between
the wave vector and the magnetic field. Using typical ionospheric parameters and
wavelengths used by the Jicamarca Radio Observatory we conclude that they should
be able to observe the gyro-frequency resonances for [He]+ and [H ]+ under their
normal concentrations, and the [0 ]+ resonance only in those regions where the con-

centration is of the order of 10* ions/cm® or less.

ix



CHAPTER 1

INTRODUCTION AND DEFINITIONS

1. Introduction.

When a plasma is illuminated by an electromagnetic wave, each electron
is forced to oscillate at the incident frequency plus or minus an increment due
to the Doppler shift caused by the thermal motion of the electrons. Thisoscilla-
tion in turn causes each of the electrons to re-radiate in all directions at a fre-
quency equal to the forcing one corrected once more by the Doppler shift due to
the velocity component in the scattered direction. It is only in the direction of
the incident wave that the frequency of the scattered wave is equal to the incident
frequency and adds up coherently to it. The dielectric properties of the plasma

are a consequence of this "coherent scattering"” of the electrons. In any other

direction the scattered waves have a frequency which is different from the fre-
quency of the incident wave by an amount which depends on the random velocity
of the particular scattering electron and consequently add up incoherently, i.e.,
with a random (but not independent) phase. In this thesis we afe mainly inter-

ested in the statistical description of this "incoherently scattered” waves and its

relationship to the macroscopic properties of the medium such as density, com-

position, velocity distribution, temperature, etc.
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There is already a considerable amount of theoretical work dedicated to
this problem (references 1-18, for review papers, see 19-21), and the informa-
tion contained in the frequency spectrum of the scattered wave is currently being
used for the study of ionospheric plasmas using powerful radar observatories
like the ones installed in Jicamarca, Peru; Millstone Hill, Massachusetts, U.S.A.; and
Arecibo, Puerto Rico. Most of the theoretical work done so far has been moti-
vated by this application and so is the work presented in this thesis.

One of the main conclusions of the theory is that the pa;'ticle—to-particle
correlations play an important role, especially the electron-to-ion correlation.
Although the electrons are the ones that do the scattering, the spectrum of the
scattered signal is in most cases determined by the dynamics of the ions. The
spectrum of the signal has a characteristic width which corresponds to a Doppler
shift of a thermal ion rather than of thermal electron as one would expect from
pure electron Thomson-Rayleigh scattering (where the contribution of each elec-
tron has a random- an.d independent phase). An important feature of the spectrum
is the occurrence of resonant lines at approximately multiples of the ion gyro-
frequencies. In terms of the corresponding autocorrelation function the gyro-
resonances show as peaks at time delays approximately equal to multiples of the
gyro-period. This feature of the spectrum is advantageous for ionospheric ap-
plications since it allows one to deduce ion composition from incoherent scatter
observations.

Despite the extensive amount of theoretical work done on the problem of



incoherent scattering, this is still not complete. In the sense that, with the ex-
emption of two papers, one by Farley5 and the other by Dougherty6 which we
shall briefly discuss, no one has included the effect of ion-ion interaction or so-
called Coulomb collisions. Ionospheric plasmas, even in their most dense re-~
gions (Fma.x peak), have an effective ion-ion collision frequency of the order of
7 sec™!, which is small as compared to other characteristic frequencies like the
ion gyro-frequency and the thermal characteristic frequency (inverse of the time
it takes an ion to travel one wavelength). These frequencies are of the order of
160 and 2000 radians/second (for A = 1.5 meters) respectively. Thus, initially
it appeared that neglecting the effect of this type of collision was justified. A
more careful analysis shows that this is not the case, especially in predicting
the effects of the magnetic field and ion gyro-resonance phenomena. A more
careful analysis was stimulated by the fact that [0]+ ion-gyro-resonances pre-
dicted by the collisionless model were not observed experimentally.

In the paper by Farley5 mentioned above, he estimated the amount of proba-
bilistic diffusion that any ion suffers after a gyro-period when subject to Coulomb
collisions. From this he concluded, as we shall also see, that the effect of
Coulomb collisions is indeed important and responsible for the failure of the ex-
perimental observation of oxygen gyro-resonances.

The other paper which considers the effect of Coulomb collisions is the one
by Dougherty.6 He presents a Fokker-Planck type collision model for the

Boltzmann equation and its analytical solution. He considers a single component



plasma and no self-consistent field. The incoherent scatter problem, regardless
of the approach, requires the solution of Boltzmann-like equations, but with the
inclusion of at least two species (ions and electrons) and the inclusion of the self-
consistent field. So in regards to this problem this paper can be considered as
an important step towards its solution, but yet not complete. By discussing his
solution, he also demonstrates the importance of the collision term for typical
ionospheric parameters.

We were motivated to study the incoherent scatter problem (and the as-
sociated one of plasma density fluctuations) because of the incompleteness of the
solutions offered so far in regard to the effect of Coulomb collisions. Our final
goal is to investigate the effect of such collisions, mainly on the ion-gyro-re-
sonances predicted by the collisionless theory. But, the contributions presented
in this thesis are not limited to the inclusion of the effects of such collisions in
our solution. We present a solution to the problem taking a new approach, start-
ing from first principles, and removing in the process some of the limitations of
the other approaches taken so far. We present a technique which formally could
be used even in the case of non-homogeneous, non-stationary plasmas. We have
used this technique here to solve the important practical case of a homogeneous
plasma in thermodynamical equilibrium (collisions included), with the inclusion
of some numerical results. We also investigate numerically the effects of dif-
ferent ion composition and the direction of the magnetic field.

There are different steps in the solution of the incoherent scatter problem,
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the task being: to obtain a statistical characterization of the scattered wave,
i.e., its autocorrelation function,(*) at any given location and as a function of
those statistical parameters or functions which are sufficient to determine the
state of the illuminated plasma.

The first step is taken in Chapter II where we show under very general con-
ditions that the time autocorrelation function of the scattered wave field, or of the
signal it produces in a (linear) receiving instrument, is given as a functional of
the space-time density autocorrelation function of the illuminated plasma, and
that under certain common and justifiable assumptions it is merely proportional
to the spatial Fourier transform of this function. This close and simple relation-
ship reduces the statistical problem to that of finding the space-time density auto-
correlation function. The rest of the paper is concerned with this problem. It
should be emphasized that the density autocorrelation shows up not only in this

particular problem but in most fluctuation problems, so the rest of the paper should

be considered, in this regard, more general in scope.

) Throughout this work the reader will notice a preference for the use of auto-
correlation functions instead of power spectrums. There are several advan-
tages and reasons for doing so. Although they are directly related to each
other as a Fourier transform pair (Wiener theorem), this is true only in the
case of stationary random process (homogeneous in the case of spatial fluctua-
tions); whereas the concept of autocorrelation is still valid even in the case of
non-stationary (arnd/or non-homogeneous) random processes. In most cases it
is the autocorrelation function which is obtained experimentally, and therefore,
it is convenient to have theoretical predictions in this form. It is also usually
easier to give a physical interpretation to autocorrelation functions than it is
to power spectrums. We shall see that in this particular case it is also faster
(in terms of computer time) to obtain autocorrelation functions directly, by a
method developed by the author and briefly described in this thesis.
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The second step consists in deriving the mathematical equations that the
space-time density autocorrelation function should satisfy. That is, the mathe-
matical formulation of the problem from the physical properties of the medium.
Each of the different authors who have treated this problem have taken at this
stage a different approach; we take here one more different approach. This, we
feel, is another important contribution to the incoherent scatter problem or more
generally to the plasma fluctuation problem. All of the approaches presented so
far, at this point, have their advantages and limitations which will not be dis-
cussed here. To this author's judgment the most rigorous and systematic approach
is the one offered by Rostoker and I‘w‘.osenblutl'x,18 but, the effect of "Coulomb col-
lisions" are not included. They also need to introduce some two-time reduced
distribution functions W,, and W,, and derive the dynamic equations that they are
to satisfy. In Chapter III we present and prove a theorem which relates the space-
time density autocorrelation function to the solution of an initial value problem of
a one particle distribution function £ (.)f. ' Vs t). In its more general form it is valid
even for non-stationary non-homogeneous plasmas. Besides its rigor and gener-
ality, the method has the advantage of avoiding the introduction of new distribution
functions Wi Wyas and of working with the one particle distribution function and
its kinetic equation which has been studied with considerably more detail and has
a behavior with which one has considerably more familiarity. It turns out to be
particularly convenient in the case of plasmas »in thermodynamic equilibrium.

With the help of this theorem the actual mathematical problem is formulated
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in Chapter IV. Necessary assumptions and approximations are taken at this
stage.

From Chapter IV on, we drop some of the rigor and generality of Chapters
IO and III. We restrict ourselves to the thermodynamic equilibrium case. For
the particular application concerning the effect of the Coulomb collisions on the
ion gyro-resonances in ionospheric plasmas (which motivated this thesis), the
equilibrium case is the only one worth considering. At the magnetic equator,
where these resonances can be conveniently observed,(*) thermodynamic equi-
librium normally prevail at heights above 400 km during the day and at all heights
during the night. At heights below 400 km it is possible to have different electron
and ion temperatures. But, in such a region, gyro-resonances cannot be cbserved,
either because of ion-neutral collisions5 or ion-ion Coulomb collisions.(**) In
terms of the autocorrelation this implies that the autocorrelation peak at a gyro-
period does not exist. The autocorrelation function is non-zero only at relatively
short times. In such a case a collisionless model is sufficient. The collisionless

case with different electron and ion temperature, have already been investigated by

0 18
Fejer,9 Salpeter,l Rosenbluth and Rostoker, Buneman,]'4 and more fully (in-

(*)

Theory shows that the ion-gyro-resonances are observed only when the il-
luminating wave is within a few degrees from the perpendicular to the mag-
netic field. The large antenna sizes required and economical considerations
forces them to be installed horizontally and consequently at the magnetic
equator. This is the reason for selecting the location of the Jicamarca Ra-
dio Observatory.

(**)

This we claim based on our computations presented in Chapter VI for equal
temperatures, qualitatively generalizedtothe case of different temperatures.



cluding magnetic field and numerical results) by Farley7 (1966).

In order to get anywhere analytically with the inclusion of a collision term
one has to use a simplified collision model in the dynamical equations for f. We
use a simple model of the Fokker-Planck type which could be considered as an
approximation of the more complete model proposed by Doug,herty,6 valid in the
case of wavelengths smaller than the mean free path.

Dougherty proposes a model of the form:

2
(.a_f) = v—a—-(v——\z)f+\)§1 9 f, 1.1.1

ot v m oJv-oJdv

~

where (af/at)co11 is the collision term, f = f(fﬁ’ v,t) is the one particie distri-

bution function, V and T are the mean velocity and temperature at x and t, de-

fined by:
1 r
V==|vfdv , 1.1.2
SKT 1 (v—if)afdv . 1.1.3
m nv ~

n is the local density defined by

n=ffdv , 1.1.4

K is the Boltzmann constant, m the mass of the particle and v is an inverse re-

laxation time which we shall refer to as the collision frequency. It is easy to
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show that with the terms of the equation so defined, the number density, mo-
mentum and energy at any one point of physical space are conserved and
>t/ at)co11 becomes zero only when f is a maxwellian.

If we consider a small perturbation f;, from a uniform maxwellian f, with
density ny, and temperature T,, and zero drift velocity, equation 1.1.1 reduces

to first-order to:

ot . KT, .2 _ ¥, KT, 3%
(——) =\’<_‘X,f1+ f1>+v<-z——+ ), 1.1.5
ot soll v m Qv-ov v, m QJv-dv

where

KT, n, 3KT,

= a— V2 fl dv - —
~
m Ny Ny m

n, =jf1 dy . 1.1.7

We can also write V as ¥ = 1/n, ['v f, dy.

1.1.6

and

In the case of ionospheric plasmas we have already mentioned that the col-
lision frequency is small, both with respect to the gyro-frequency and thermal
characteristic frequency ku = 2ru/) (for wavelengths A smaller than the mean
free path / =u/v). Under such conditions one can neglect thé second parenthesis
in 1.1.5. Although the first parenthesis in 1.1.5 is also multiplied by the same
small v, it cannot be neglected. The best argument for this can be obtained

from the discussion of the solution of the problem itself including such a term.
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We have used a collision model which is essentially the first parenthesis
in 1.1.5 generalized to multicomponent plasmas. Rough estimates of the mag-
nitude of the neglected terms are given in Chapter IV.

In order to complete the mathematical formulation of the problem we need
the values of v as a function of the medium. In Appendix I we obtain them for
the general case of multicomponent medium, starting from the Rosenbluth,
MacDonald and Judd32 equations.

In Chapter V we present the solution to the mathematical problem. No
further approximations are introduced. It is essentially the solution of an initial
value problem for a multicomponent plasma in a magnetic field, collisions in-
cluded.

The last step in the solution of the problem is the numerical evaluation of
the mathematical solution. We also have something new to contribute at this
stage. In Chapter VI we present a brief description of a computer technique used
to obtain numerical results for the autocorrelation expression derived in Chapter
V. All authors so far give their results as an expression for the power spectrum.
This is given as the ratio of algebraic expressions consisting of sum and products
of complex transcendental functions in integral representation. Each of the func-
tions has to be evaluated by integrating numerically its integral representation.
The autocorrelation function is then obtained by taking the Fourier transform of
the power spectrum which also has to be performed numerically. Because of the

magnetic field the autocorrelation function has under certain conditions an almost
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periodic behavior. This behavior reflects as a very spiky frequency spectrum
which degenerates to a series of delta functions when the wave vector becomes
perpendicular to the magnetic field and demands relatively long computing times,
becoming prohibitively long when the wave vector gets close to perpendicular.
The technique presented in Chapter VI gets around most of these difficulties and
limitations, obtaining the autocorrelation function directly without going through
the power spectrum. It is much faster, and angles close to perpendicular pre-
sent no difficully. We have used this technique to evaluate a few autocorrelation
functions showing the effect of Coulomb collisions, the dependence on the angle
between wave vector and magnetic field (including very small values) and the ef-
fect of different ion composition. We have used typical values encountered in the
ionosphere and an E.M. wavelength corresponding to 50 Mc as used by the

Jicamarca Observatory.

2. Definition of Some Concepts and Symbols.

In order to prove with some rigor, the equivalence theorem presented in
Chapter III, we need some formal definitions of the concepts used, as well as
some of their properties.

Consider a system composed of s different types of particles, these being
N“‘ particles of type p(p=1,2,...,8). Let 2‘(“' denote a set of Np‘ position vec-

B

tors x'. and velocity vectors x"; (i=1,2,.. .,Nu), i.e.,

~
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= xl’ll;”‘;i;’lluq s (p=1,2,...,8)

and let
'}S = <§1,X2, ...,§S>

Then § represents a point in the 6N~dimensional phase space for the system,
where N=N, + N, + ... +Ns. The exact microscopic state of the system at
time t would be represented by a point in this phase-space.

In kinetic theory, the state of the system is described statistically by means
of a probability distribution function F( §,t) . Here, F(?g,t) dZ‘{ is defined to be
the probability at time t of finding the representative point of the system in d§
about l(, i.e., the jth particle of type p in dff.lj about i’; with velocity in dyj}‘

about VL; (i=1, ...,Nu; p=1,...,8). From its definition ¥ is non-negative and

is normalized to unity,

IF(E,t) X =1 .

Moreover, F is required to be symmetric with respect to interchange of the

labels of like particles. The equation of motion for F is the Liouville equation

3F + {HF} =0 , 1.2.0

at
where H is the Hamiltonian of the system of N particles and {H,F} denotes the
Poisson bracket.

The value of any macroscopic quantity at time t is determined as the ex-
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pectation of the corresponding microscopic quantity. Thus, for example, the

microscopic density nu(y,t) of p-particles is defined as

N

_ b
np‘(x,t)—i:a(ij—x) . 1.2.1
=1

The corresponding macroscopic density < nu( Y ,t) > is then given by:

N
_ - W
<nu(:vv,t)> Jnu(x,t) F(X,t) dX Zrdgg F(Z‘(,t)zé(ggi Y . 1.2.2
j=1

We shall also be interested in macroscopic variables that refer to two po -~
sitions and two times. Such macroscopic variables are conveniently expressed
in terms of the joint distribution function, D(g,t ;‘{(’,t’). Here, D(X,t; ’}S',t’)
d§ d}s’ is the joint probability that the system will be found at time t’ in d%’
about §' , and at time t in d§ about X. Itis also advantageous to introduce the
conditional probability, F G( l(,tl —)5/ ,t’) with the interpretation that F G(%,t, )~(’,t’ )
dzg is the probability at time t of finding the system in dZ? about 5 given that it

was certainly at X’ at time t’. It then follows that
D(X,t;X"t') = F(X",t') FG(X,t|§',t') . 1.2.3

It should be noted that the conditional probability F_, is a singular function involv-

G
ing products of delta functions; if the exact microscopic state %’ is given at time

t’ the Liouville equation determines the exact microscopic state X at time t.

An important concept in regard to the incoherent scattering problem, and
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in general with the problem of fluctuations in a plasma, is the space-time density

autocorrelation function <n (z',t) np.(y,’t’)> . This is defined as:
u ~

N N

<R ALt B () )= dzgdx'i ia ~1 'H‘X,> D(X,X't,t/). 1.2.4

i=1 j=1

We shall also use the symbol pu('{,'r;x,t) = <nu(x,t) n“( Y/t > , where r =y -y’
and T=t-t’.

Normally (and fortunately) one can express most macroscopical quantities
in terms of much simpler reduced distribution functions, mainly the one-particle
distribution function fL(LgS 54 ,t) and the two-particle distribution functions:

fg"n(;'i1 X 25V ,xz,t) and fg'“' (.}51 X 25V 4 ,zz,t). These are defined as:

fl"’(xl,vl,t)—N d'X F(X,t) , 1.2.5
. (ul)
2 D vty =N N | a7 F(Xt) 1.2.6
B (Ul’nz)
and
f”u(xl,xz,vl,vg,t)=Nu(N -1| "X F(X.1) . 1.2.7
(py opz)

Here,'[d' X and| d”X denote symbolically integration over all variables other

than xL;.‘ ,v“J" and x¥, v“‘ J‘,vj respectively. Which particles i and j are singled

~i
out is immaterial since FN(Z'{,t) is invariant under interchange of particles of

the same specie. We shall take in general particles 1 and 2.

Using equation 1.2.5 in 1.2.2 and the invariance of FN(l(,t) under particle
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interchange one can write the density < np"( ;,:,t)> in its more common forms:

(nu(x,t)> =fdid25(£‘x) f“(;i,x,t) =fd1f""(x,i,t) . 1.2.8

Similarly time autocorrelation functions can be expressed in terms of two-

time reduced distribution functions Wi"l , Wf‘zu' , Wf‘;] defined by:

wi (x5 x vl v et = N |d’K d'X’ D(X,t, X', 1), 1.2.9
() (uy)
whlt(x b bt v vy = NN -1) |d'X X DXt Xt) 1.2.10
~ ~ ~ P~ p‘ ~ ~ ~ ~
(“'1) (uz)
Wil <, v vl g 1) = N, N (A dK DX LX) - 1.2.11
() (M2)

Where as before the prime in d’ stands for the omission from integration of the
particle in the parenthesis underneath. In terms of these functions one can ex-

press <nu(yy,t)nu(x’,t’)> as:

_ ’ ’ _ - K 7 ’
(nu(};,t) nu(x’,t')> —jdgdi dv dv’ 6(x-y) 8(X'~y") Wo(%,x/, v, v/, t,t’)

* ) dedd drdy s0x-y) 8-y W X, vy Xt
1.2.12
It is these functions Wf’lu, Wf‘:‘ ) ng and their corresponding dynamic equa-
tions that we referred to before and that we avoid by means of the equivalence

theorem presented in Chapter III.
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We say a system is time-stationary whenever its statistical properties

(mainly F and D) are invariant under a time displacement, i.e.:
F(’}S,t) =F(X,t+t;) and D(X,t X',t’)= D(X,t+ty, X', t" +15)

for any t,. This implies that we can write F as well as any reduced distribu-
tion or macroscopic quantity derived from it as independent function of time, and
D as well as any two-time reduced distribution or macroscopic quantity (space-
time correlations) as functions of their time difference T =t-t’ only. In prac-
tice we say a system is time-stationary in a less strict sense, when the system
is practically stationary within the time scale of interest. In this sense the sys-
tem may not be in thermodynamical equilibrium.

We say a system is spatially homogeneous whenever its statistical proper-
ties, given mainly by F and D are invariant under a coordinate displacement in
physical space, i.e., when F(X,t) =F(X+ {g},t) and D(X,t,X’,t") =D(X+ {a},
t,§'+ {2} ,t’), where {?:.} is any 6 xN dimensional vector with components

"

x" =a and v = 0 for all i's and u's. In a strict sense only a system that is in-

~i
(time) (time-stationary)
finite in extent can be spatially homogeneous. Dealing with such a system usually

brings some difficulties with the normalization and definition of the reduced dis-
tribution functions. This difficulty can be avoided if we consider the system as
the limit of a locally homogeneous system confined in a volume V, in which N,,

Noyeoos Ns as well as V go to infinity in such a way as to keep nu= NH- /V con-

stant for all p's. Inpractice a system is considered locally homogeneous when
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it is practically invariant under space displacements within a region of interest.
In this sense the system can be finite in extent (which is usually the case). The
space invariance condition implies that all reduced distribution functions depend
on the physical space coordinates 35? and 35;] through their differences if‘ - ijn
or x ':‘ - i,jn’ and that the one particle distribution function f* as well as any

macroscopic observable related to it are independent of x. This corresponds to

the intuitional concept of homogeneity.



CHAPTER II
RELATIONSHIP BETWEEN THE AUTOCORRELATION OF THE

SCATTERED WAVE AND (n_(y,t) n(y,t)>

Let us consider a general configuration as the one shown in Figure 1. A
transmitting antenna A illuminates a plasma with an electromagnetic wave of
frequency w, and a receiving antenna B "looks" at some region of the illumi-
nated plasma. We shall find a functional relationship between the statistical
properties of the signals received at B and the electron space-time density cor-
relation function of the plasma. For the particular ionospheric applications of
interest, it is possible to assume that the plasma is homogeneous and stationary
and that the fields of both antennas are plane waves in the common region. For
the sake of generality we shall not initially assume homogeneity and stationarity.
This latter case will appear as a particular case of the more general situation.

The electromagnetic fields at any given point due to the presence of the il-
luminating antenna can be represented as the sum of two fields: a coherent field
and an incoherent field. By coherent field we mean that part of the field whose
frequency is equal to the transmitter frequency, and a phase which depends on the
macroscopic properties of the medium. The determination of such a field is a

wave propagation problem. It implies the knowledge of the dielectric properties
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of the medium and we shall assume these to be known. By incoherent field we
mean that part of the field due to scattering of the coherent field by the individual
electrons in a direction other than the direction of the coherent field. This field
is stochastic in nature due to thermal motion of the electrons and has a frequency
spectrum with some finite width. The frequency spread is due to the Doppler
shift imposed on the scattered signal by the moving electrons. Strictly speaking
there is a contribution to the incoherent field due to the re-scattering by the elec-
trons of the already incoherent field. We shall assume that such "secondary scat-
tering” has a negligible effect. We exclude from our treatment scattering in the
direction of the coherent field, since in such a case £he scattered signal is of the
same frequency as the incident field and forms part of the coherent field. The
evaluation of the dielectric properties of a medium is in fact equivalent to deter-
mination of the effects of the scattering (by the electrons) of the field in this direc-
tion. To obtain these properties, one takes a completely different approach. We
are not concerned with that problem here. We also neglect the ion contribution
to the scattered field.

Under these assumptions we can write that the incoherent electric field
EB(t) at B is due to the superposition of the scattered fields due to each one of
the electrons. To this field there corresponds a scalar field E(t) across the
terminals of the receiving antenna; this scalar field can be written as the real

part of a complex quality:



N .
E(t) =Re E x(ii,t)e . 2.1.1.
i
Here x(y,t) is some function which linearly relates the signal at the receiver
terminals, due to the presence of one electron at Y with the driving field

—iwat+e
E_ e somewhere across the transmitter terminals. In writing equa-

T
tion 2.1.1 we implicitly assume that the electron can be considered as a scatter-
ing center, i.e., the s;cattering oscillation of the electron is much smaller than
the wavelength. We shall use the physically real signal E(t) since some of the
following operations with E(t) are non-linear and the complex notation loses its
convenience. We show explicitly the time dependence of X to take care of any
possible macroscepic changes of the medium. In order to be able to talk about
coherent fields we have to limit such time dependence to very slow variations
compared to the signal period wo"l . We have introduced for convenience a random
phase cpT with probability distribution P(cpT) =1/2n for 0< cpT < 2m, the reasons
will become apparent soon and physically corresponds to our ignorance of the actual
phase of transmitter signal.

We should emphasize that writing E(t) as a superposition of the contributions
of each of the electrons does not imply that their contributions are statistically in-
dependent (Thomson-Rayleigh scattering). The positions of the different electrons
are in fact strongly correlated to each other, and to the positions of the ions.

These strong correlations will be taken into account by averaging with the proper

probability distribution function which at no time assumes such independence.



The field E(t) is a stochastic function of time, owing to the random nature of the
location of the electrons X ie =X f(t) . Statistically we can characterize it by its

autocorrelation function < E(t) E(t+ 1) > given by:
N

(=]
CE® Et+m) =J21§ ax’ [de eer(ggf) e

i=1

-i(wot"('pr)

N .
e e ‘l(wot'*'on*CPT)
x|Re S x(xf) e X DK/t + 7, K1) P(9) »
=1 2.1.2
en

where X(ﬁf) = x({:;t) and X/(}ff) = x(i’i ;t+ 7). We can write equation

2.1.2 in the form:

N N
. e e
(E® E(t+m)Y =§:€e e“”“fd;g dggz Z | x(x2)| Ix'(zg';’)l

i=1 j=1

x e[ p(x) -01x)] DX L+ X 1)

. -i2¢
-1 (W,T + 2 ,
+lpe e H Wt T2%N 1 140 o Tjdxdx'lx(x?)HX’(x’.e)l
2 PAsi
e ' €
xem[ p(x)+9(x7)| DX 41K 2.1.3

cenn e
where we have written x(ii ) = IX(,’E,?)I exp [ﬁp(gg_f)]. The second integral does
2 -i2cpT . . .
not contribute since f e d<pT=o. The introduction of a random phase is
0

a formal way of getting rid of the second integral. In practice averages are taken

with respect to time, in which case the second integral would also go to zero
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because of the e factor. We can write equation 2.1.3 in the form:

CE® Et+T)) =2 Fe ei“’”jdxdg X(y) X*(y’)
2 .

Ne Ne
X [aXax SN Ta(x -y 8(x -y DL

=1 j=1 2.1.4

and using our definition for <ne(¥3 t) n( y/st’) >
<E(t) E(t+ 'r)> =§:€e eiw°7jdxdx’ X(y) x’*(x’)(ne(xl,t) ne(Z,/’t+T)> . 2.1.5

This is a very general relationship. It is valid for general antenna field con-
figurations and for non-homogeneous non-stationary plasmas. This, of course,
within the limitations implied by our original assumptions. Expression 2.1.5
separates the problem into two distinct ones. The first is a wave propagation
problem (in a plasma) to determine the function ¥%( y); that is the determination
of the signal at the receiving antenna terminal due to the scattering of radiation
by a single free electron located at Y and subject to whatever coherent field the
transmitting antenna produces at that location. The second is a statistical
physics problem to determine the density autqcorrelation function <ne( Y.t)
ne( X" ,t7) > . We are mainly interested in the second problem.

Let us evaluate %( Y) in the case, to which most practical problems are
reduced, of a homogeneous plasma in which the antennas have been removed suf-
ficiently far so that their fields can be approximated as plane waves. The oper-

ating frequency, of course, would have to be higher than the plasma frequency
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for the wave to exist. To this approximation the amplitude | x(y) | is a constant
and its phase ¢(y) is given by cp(z) = o + 'lii "X If.r * Yy, where E«i and 'lgr are
wave vectors in direction from and to the transmitting and receiving antenna

respectively and magnitude w, /cp and c, is the phase velocity in the medium.

p
x(x) is in this case then given by

’ 2.1.6

where 1.5,= lf,i - Iir and A is a constant A = IA, e“Po . We will not be concerned*
with the evaluation of A. The only important fact for us is that it is constant. It
may be worthwhile to mention that it is proportional to the classical electron ra-
dius r, = e®/m ¢, and sin 8, the angle between the direction of kr and the di-
rection of the elecirical field E(y) at Y (see Thomson scattering, J ackson23).

Placing equation 2.1.6 into 2.1.5, we obtain the more usual expression:

k(y-x)
dy dy’ e <ne(x‘,t) ne(}:',t+'r)>, 2.1.7

1wt

(E(t) E(t+'r)> = Ke 1 |Al% e
2

and since in homogeneous systems <ne(xft) ne( Y t+T) > = pe(E«’T;t)’ where 1 = Z'Z’
1 iw, T "k L
<E(t) E(t+‘r)>=ﬁe— |A%|e ° dy’|dr e P lL,Tit) . 2.1.8
2
The non-convergent integral dz" is due to our assumption of an (infinite) homo-

geneous plasma and (infinite) plane waves. Physically it makes sense, since such

%*
For a derivation of the absolute value of received Power, see K. Bowles, Gr.

Ochs, and J.L. Green.22



an infinite system would give us an infinite amount of scattered power. In any
case, the usefulness of equation 2.1.8 is in the integrand which is finite, and
can be interpreted as a "per unit volume" contribution to <E(t) E(t+7T) > .

In practice a finite volume, V, is defined by the weighting function of the
intersecting beam patterns or, in the case of transmission and reception from
the same location, by time delay discrimination in a radar fashion. Assuming

an even weighting factor throughout the volume one can then write:
: 1 2 1W,T ~ ~
<E® E(t+'r)>=-—f?e]A, e Vidre p{L,T;t)
2

We notice that the integral expression is the spatial Fourier transform of

~

p(r,7;t):
[+
_i .};
FC(g,T;t) =ldre p(r,T5t) , 2.1.9
~ C ~

evaluated at £= £ Therefore, we can write

CEOE@+n)) ==ke [47] Vim0 . 20110
2

£k



CHAPTER III
ON THE DYNAMICS OF (n_(y,t) n(y’t')>

— AN EQUIVALENCE THEOREM *

We have just shown that the statistical part of the incoherent scattering prob-~
lem is reduced to the evaluation of <ne(x,t) ne( X."t')> . Here, we present a theco-
rem which enables us to solve such a problem in terms of a more familiar one,
mainly that of finding the time evolution of the familiar one-particle distribution
function f from a specified initial value. The statement of the theorem and its
proof are exact, and apply in the most general conditions; necessary approxima-
tions come about only in trying to solve the exactly formulated problem. Although
we shall use this theorem in the following chapters only for relatively simple con-
ditions, mainly homogeneous stationary plasmas, we present it in its most general
form; since its proof, with the exception of more cumbersome notation, is essen-
tially the same.

Let F = F(X,t) be the N-body distribution function which describes our sys-

tem. It has been specified at some initial time t=0 so that:

After | conceived this idea, J. Weinstock brought to my attention a paper of his in
which he derives essentially the same property of (n (y;t) n (Xl’t’)> For a
different approach see reference 25. o ¢



F(§,0)=P(§) . 3.1.1
At any other arbitrary time t, ¥(X,t) is given as the solution of Liouville's equa-

tion,

oF {H,F¥} =0 . 3.1.2

ot
Let us construct a hypothetical system with N-body distribution function
F/=F/(X’,1). Itis to evolve in time T in a 6N-dimensional space Z‘(’ according

to a Liouville equation,

oF . {H,F'} =0, 3.1.3

o7
with the same Hamiltonian as the actual system. We specify this system by its

initial condition at time T=0:

N

g o)
Z 8(x,°- y) F(X"t)

F/(X’,0) = — , 3.1.4

<no( Yt) >F

where

N
J
<)
<9°(X}t)>F =Jd;526(3gi-x) F(X,t) 3.1.5
i

is the macroscopic density of the actual system. We note that to each point y in
physical space and to each time t there corresponds a different F’ (25,0). We shall

display this parametric dependance explicitly by writing:*

Arguments after a semicolon are to be taken as parameters.
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F/(X',miy,t) = F(X,T) . 3.1.6

It should also be noted that F'(}'S,O) is non-negative, normalized to one, and in-

variant under particle interchange of the same species. Therefore, it conforms

with the requirements for it to be a physically acceptable distribution function.
At any point X: =y+r in physical space and time t’=t+T the macroscopic

density of the hypothetical system <n; (y+ r,T;y,t) > is given by definition as

N
g
<“;(X+£’T‘Y~’T)>Fri]”d§l Z 5(35?" (y+r)) FAX,T5y.t) . 3.1.7
J

To avoid confusion we shall write F and F’ by the expectation bracket to in~
dicate with resbect to which distribution function they are defined. We shall also
prime those functions which refer to the hypothetical system. We claim the fol-
lowing:

THEOREM: — "The space-time density autocorrelation function of species o:

pc(;;,'r;x,t) = <no(x,t) nc(x+£,t+'r)>

in a multicomponent plasma (or statistical system) with N-body probability distribu-

tion function F(X,t) can be written, for T >0, as the product of two densities:

p°(£,T;x,t) = <nc(’¥-’t)>F <n;(x+£,7;x,t)>F’ ; 3.1.8

the density <nc(x,t)> of species ¢ of the actual system, and the density
F

<n;( YHI,T ;X,’t)> of the same species in a hypothetical system as defined above
FI
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(equations 3.1.3 and 3.1.4)."

The proof of the theorem is based on identifying the conditional probability
FG( ,}S"t'l X,t) with the Green's function of the Liouville equation 3.1.3.

The Green's function G = G(’)v(','r;}&(’) in the 6N-dimensional space )~(’ is de-

fined as the solution of

€, (16 = 8(X'-X) 6(r) for T=20, 3.1.9

oT
where G is operated on through the 2..(' variable, and satisfies the "casuality con-
dition"
G=290 for T<0 . 3.1.10
By integrating over a infinitesimal time around T=0, one can show that for

7> 0, G is also a solution of the initial value problem

L, mG) =0 for T>0 3.1.11
oT
G=6(X-X) at r=0. 3.1.12

We can interpret G as the probability at time t’=t+ T for the system to be
found at dX’ about X’ given that it was certainly at 25’ at time t (T=0). But this
is the definition of the conditional probability F G( X/t | Z(, ,t)(see page 1-13). Thus,

we can write the joint distribution function (equation 1.2.3):
D(§’,t+7,§,t) = F(X,t) G(Z,(l"r;.}f) for T>0 . 3.1.13

We are able to write the time dependence of G through the difference 7 =t/-t
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because of the time invariance of the Liouville operator (we assume H to be time
independent).
We can formally write the solution of equation 3.1.3 with initial conditions

3.1.4 in terms of the Green's function G(X’,T;X) *

al

FAX',T5x0t) = | dX G(X/,75X) F/(X,03y,t)

NG
N PINLETRF R6.55
= dX G(X’; 7;X) L . 3.1.14
N (nc(x,t)>F

Now, the space-time density autocorrelation function po_( r,T;y,t) is by defi-

nition given by

N N
[+ o
. = g_ o_
LT = AT TS (- y) 6(x]- (LrE) DKL+, X ). 3.1.15
i

Using equation 3.1.13 and reordering terms we can write 3.1.15 above as:
Nc
M = (4 ,0_
PLLTIL ) <nc(x,t)>FJd§ :: 6(351. (X“’E))jdl(
j

NO’
> la(x]- P F(X)

X G(X,T;X) — for 7> 0, 3.1.16

where we have multiplied and divided by <nc(x ,t)> . Here, we recognize our
F

*
see Balescue's24, §4.



expression for F/( )~§’ »T3Y,t) as given by the formal solution 3.1.14 of the hypotheti-

cal initial value problem. In terms of this function we can write:

N
o
. - ’ 1O _ 1S .
PLLTIYt) (nc(x,t)>FJd§ D 6(x7- (yrr) FUXLTig) for T> 0
j 3.1.17

and in terms of the macroscopic density <n;I (y+r,t; x,t)> » of the hypothetical
FI

system as defined in 3.1.7:

. - ’ .
pc(;;,'r,x‘,t) <nc(x,t)>F <nc(x+£,'r,x,t)>F’ for 7>0 , 3.1.18

which is the main statement of the theorem.

We reduce in this way the problem of finding the dynamics of po( .73y ,t) to
that of finding the densities of two initial value problems: the density of the actual
system and the density of a hypothetical one "prepared" at the initial time in accord-~
ance with the initial conditions 3.1.4. In the case of thne—stationary systems the
problem is reduced to finding the latter density only.

Although we have written in the process of proving the theorem, a formal so-
lution in terms of the Green's function, it ié essentially impossible to find such a
function. On the other hand, as stated in the introduction, densities can be expressed
in terms of the much simpler one particle distribution functiohs, f M (one for each dif-
ferent species). It is one of the main tasks of kinetic theory of gases and/or plasmas
to obtain a dynamic equation for the time evolution of such functions. One of the
main efforts is to obtain them in a closed form so that they depend only on the func-

tions themselves and their initial conditions. That there are some assumptions and
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approximations in deriving such equations does not concern us here. Whatever the
form that they may take, they require (for an unambiguous solution) that the initial
conditions be specified. We obtain this information from our theorem.

For the actual system, with density

n (y,t)S =ldvdx 6(x-y) fAx,v,t) , 3.1.19
<n ¥ v dx 8(x-y) F(X.Y.

the initial distribution fc(i,x,O), as well as the initial distributions fn(i,x,O),
1 # o, for the other species, is the least that we can ask in order to specify the
system.

For the hypothetical system we obtain the conditional density <n; (y*T,

7;x,t)>F, from:
<n;(X+£’T;X,’t)> =J.dld£5(£‘(x+£)) f'c(i,x,f;x,t) , 3.1.20
FI

where {’ c( X,V ’T;X,’t) is the one particle distribution of species ¢ of the hypo-
thetical system. This distribution satisfies a kinetic equation of exactly the same
form as the one for the actual system of the same species (both sysiems have the
same Hamiltonian). This equation is coupled to the kinetic equations of distribu-
tion functions f'n(iﬁ’,‘i’“}:’t) for all other species 7 # o, which are also of the
same form as the corresponding ones in the actual system. They differ only in
their initial conditions and that they evolve in time T rather than t.

We obtain the initial conditions for the hypothetical system by reducing the

6N initial distribution F(X,0 iy ,t) as given in 3.1.4. They have two different forms



depending whether it is the one particle distribution function of the o species, i.e.,
the species in whose density autocorrelation we are interested, or is the distribu-
tion of any of the other species T # 0.

For the ¢ species we have:

xSV T ) =N_[d'X F/(X,055,t)

T=0

NO’
> et - P FXL

=N_|d'X ! , 3.1.21

M ICARER N ) >F

and making use of the invariance of ¥ under particle interchange:

5(xa -

~1 ~

#9(xTy 5Ty t) = —=——— N|d'X F(X.t)
T=0 <nc(x',t)>F (oy)

e

<nc(x,t)>

XN (N -1)| d"X F(X.t) . 3.1.22
¢ 9 (0;,0,)

But by definition (1.2.5 and 1.2.7)

f"x 2 3t) =N_ d’X F(X,t) 3.1.23
(o))

and
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o} o}

2 (x7,x7,vf Vg t) =N ofNg~ D[ d"X F(X.t) . 3.1.24
(0y,0,)
Therefore:
o 8(x7-y) £%x7v It
f/ (x1 ,v1 T3Yst) = +
T=0

<BSLAD
F

1

dx dv 6(x2 y)foo x?,’\g,vc v° t).

Rt D,

3.1.25

Similarly for all other species T # o we get:

N

g
> 18(x7- 1) F(X.t)
i

M1, v, 15y ) =N, larx
=0 (1) <nc(x,t)>
F
———3——-—1\* N, & avd 8(x3-y) | d"X F(X.),
{n x> ° (015M1)
3.1.26
which in terms of the two particle distribution f;nc becomes:
el vyt =|adavd s(x? Ty 1% 1,90, v3 1) 3.1.27

T=0
In the special case of a time stationary* and spatially homogeneous system

the distribution functions fn and fgc are independent of time. The function fn is

We include here systems, which are not necessarily in thermodynamic equilibrium
but which are practically stationary in the time scales of interest, for instance, the
case of electron and ions at different temperatures.



III-10

also independent of i{l: and f'l;lo depends on x'g and xf through their difference
I

Xy - xg . In this case we can write them in the form:

fexl, vl )—nngn(v“) including M=o , 3.1.28

P03 by 0 =nn Jo (e e ) + ™0 10wy ] 301020
and

793, %3, v3,v3,t) =n n[@ (xD) 2 (y2) +p™x5- 22, v5, G)] 3.1.30

The latter two equations are a convenient way of writing f'go- and £°°, They
can be taken as the definition of p'ﬂd and pco. Here, n,n and no are the constant den-
sities of the 1} and ¢ species, and Qn(x) and Qc(i) .are velocity distribution functions
normalized to unity.

fO'O'

In terms of above expressions for fﬂ , fl]o and 7, the initial conditions for

the hypothetical system take a simpler form:

g o _C
PEE

3.1.31

f'c(xl,vl,'r) -5(x1) @(v1)+n @(v1)+nc dv p (x

=0

for the o species and

#Modyln|  =na o +n e ?e®sl vy foran 4o

L
3.1.32

7=0

One gets rid of the Y dependance by selecting a system of coordinates in which
y = 0. The space-time density autocorrelation can be written in this case as p (r,T)
~ c ~~

independent of y and t, and equation 3.1.8 as:

,T) = (r,T . .1.33
plLsT) =n {ni(r )>F, 3
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We notice that in either case, stationary and homogeneous or not, the initial
conditions for the hypothetical system are functionals of the two-particle distribu-
tion functions fg 9 and f;]c of the actual system. In the case of thermodynamic equi-
librium they can be obtained in a relatively easy way by integrating from the equi-
librium N-body distribution function (see Chapter IV, equations 4.1.5 and 4.1.6).
In the general case, the problem of finding the two-particle distribution function
(actually its integral over one of the velocity variables; a somewhat simpler prob-
lem) is perhaps the most difficult part of the problem. This problem has been
treated elsewhere (see for instance, Duppree reference 26 and we will not elabo-
rate on it here. We should mention, though, that under justifiable assumptions the
two-particle distribution function can be expressed as a functional of the one-par-
ticle distribution functions fn; therefore, the space-time density autocorrelation
function is fully specified given only the one-particle distribution functions at a given
time (t = 0).

The thermodynamical equilibrium case is treated in more detail in the follow-

ing chapter, which should also serve as an illustration of the use of the theorem.



CHAPTER 1V
THE THERMODYNAMIC EQUILIBRIUM CASE —

FORMULATION OF THE MATHEMATICAL PROBLEM

1. The Kinetic Equations and Their Initial Conditions.

In contrast with the generality of the previous chapters, from here on we shall
restrict ourselves to the case of a homogeneous plasma in thermodynamical equi-
librium and in a constant magnetic field.

Although we shall include the effects of Coulomb collisions, the model will
restrict us to the case where the mean free path £ is larger than the reciprocal, %,
of the wave number k. In the case of the incoherent scatter .li is the same wave
number as defined in 2.1.6; in the general fluctuation problem the wave number of
the kth component of the spatial Fourier transform of p( T ,T). If it were not for
the presence of the magnetic field, the condition £/ >> 1 would be in general the
condition for the complete omission of the collision terms. As we discussed in the
introduction and we shall see from our solution, this is not generally the case in the
presence of a magnetic field.

We shall also make the usual assumption € =1/n_h << 1 (¢ < 5X 10~ in the
ionosphere) which most plasmas satisfy. Here, h is the Debye length defined as

h'3=E S 4nn z2 e /KT, where K is the Boltzman constant, T the temperature,
p=1



np’ the density of species w, e the charge of an electron, and Z Ak the charge per

B
particle of species p in electron charge units, negative for negative charges.*
With the help of the equivalence theorem and kinetic theory of plasmas we
have reduced our problem of finding the electron density space-time autocorrela-
tion Pe to that of finding the time evolution of an electron one-particle distribution

function f’e(x,v,'r) from initial conditions 3.1.31 and 3.1.32. Or, equivalently

the solution of the set of s coupled integro-differential equations

oo Py Z e E(x,T) Mo S
N S Il R of ZC(f'“f'“) 4.1.1
T ox mpc mu

for all species u, where
E(x,7) _Z dv’ dx’———‘i’ (x-x') M=, v, T) 4.1.2

and initial conditions as given by 3.1.31 and 3.1.32. Here, mu stands for the mass
of species u,c is the speed of light, B the intensity of the magnetic field and
3/335 ‘i’,n (x-x’) the field at X due to a particle of species 1 at x’; in this case

the Coulomb field:

aYn x-x/
—_— =7 e ————— 4,1.3
ax 1 |x-xf°

The terms C(f’™™, f’n) stand for the collisional terms and we shall come back

to them shortly.

*
We are in general interested in Z ,=1. 1Itis convenient to keep Z , even in such

a case as a way of carrying the sign. Electrons and ions are then treated alike.
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In the case of thermodynamic equilibrium we can obtain expressions for i“',
fg’p' and fl“‘" , heeded in our expression for the initial conditions of f* in 3.1.31 and
3.1.32, from equilibrium statistical mechanics. The function $( X.) is then the
maxwellian distribution

m 3/2

7
2 KT

#(v) = oMy) = exp (- /@KT/m ) 4.1.4

and the two-particle distribution function fl;'ﬂ(£ , X, v ,V), or, equivalently the func-

tion P“‘n(gi -X,Vv,V), can be obtained by integrating the N-body probability distribu-

tion function F(X) which in thermodynamic equilibrium is given by:
-H(X)/KT

F(X) =—

-H(X)/KT 4.1.5

dX e

~

H(g) being the Hamiltonian of the system. Guernsey, following such a procedure

(see Appendix A of Montgomery and Tidma.n27) obtains the well-known expression

. -lx-Elm
~

Z Z.e
TR e

P (XX YY) = oMw) oY) 4.1.6

wl KT |x-% |
which is valid for most values of the argument |x —E] with the exception of a very
small volume with radius of the order of = e®/KT (in terms of the small para-
meter ¢ and length h, r,= eh). Equation 4.1.6 is also valid for p =1. Substitut-

ing 4.1.6 in 3.1.31 and 3.1.32 we obtain the following expressions for the initial

conditions
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-[x|A
2
£#%(x,v,7) = [n_+ 8(x) -nef— e ¢ (V) 4.1.7
T=0 KT |x|
for the electrons and
~|x|/h
3 ~
4(x,v,7) =(n +n z — Z— Jo¥(v) 4.1.8
T=0 Wb B g li'

for all the ion species (u # €).

Figure 2 is a schematic representation of the initial density distribution as
given by the parenthesis in 4.1.7 and 4.1.8. It gives a physical picture of the type
of initial value problem we are trying to solve. We can interpret physically such a
configuration as that produced by the presence of one electron (the delta function)
which has been there for a sufficiently long time to produce an equilibrium configura-
tion (just as in the classical Debye problem); with a hole of electrons and a cusp
of ions in the immediate vicinity of the disturbing electron. At t=0 we let the
disturbance go with velocity distributions cpe( v) and cp""( v ). We are interested in
the time evolution of such a configuration and, for the plane wave scattering prob-

lem, in the klch component of its spatial Fourier transform.

2. The Linearized Equation.

We can linearize equation 4.1.1. Following the standard perturbation proce-

dure we write

f""’(i,x,'r) =¥ cp“‘(x) + f'i"(;_{v,x,f) for all u's, 4.2.1
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where f1u(§,’X,’T) is assumed to be small with respect to oM cpu‘(v).
Note we have dropped the prime convention for flu'(x »V,T). This is to keep
notation simple since flu(,’i ,V,T) is the most used function from here on,

We define nf’ (33 ,T) as the density of the perturbation, i.e.:

nf(x,m) =|av il (x,v,m) . 4.2.2
In terms of this density

<n""'(}£,'r)> =+ nl(x,m) . 4.2.3

If the system is stable and fl“'(’}i V,T) is small at an initial time it will be
small at all later times. It would appear from the expression 4.1.7, with a delta
function at X= 0, that this is not the case; but the total charge is only that of one
electron, and in any case after a very small time t 1= (ne)'lla /u,* the time it
takes a thermal electron to travel an interparticle distance d = (ne)"'/ 8, the delta
function would have dispersed to a Gaussian looking pip with an average amplitude

of the order of n,. At a time, let us say, equal to 3t it would have already a

d
small amplitude of the order of 1/27 n,. The regions on the "cusp" and "hole"
within a radius of order r, are even less important since it can be shown they con-
tain ~ €2 particles and smear out equally fast.

In terms of the perturbations f]_u = ff'(x ’X.’T) the set of equation 4.1.1 and

4,1.2 take the form:

In terms of our small parameter, €, and the reciprocal of the plasma frequency
w;l =(4nn e /me)-l, we can write t, = gife w;l.



aflu‘ Bff' afl'"‘ s Z a;pp'(x)
—t vy . —+1XQ . _.__+7w2 __:n_ dx’ dX.I é'(x_xl) flﬂ(il,vl’,r), IR
dT ax B —1 B v
~ ~ 'n ~
2 TN ek 1 p
= C i)y + C(f,',n ) 4.2.4
Z[: (nnCP 1 1 u‘P
nN
and initial conditions
-|x|/n
2
£ (X,7,7) = (8(x) - n, () 4.2.5
T=0 KT |[x]|
for the electron and
-|x |/
2 ~
fl“"(i,yv,'r) =(n Z LA A ;p“'(x) 4.2.6
=0 \" kT |x]|

for the ions (pu # ¢). The parameters wu and gp. are the plasma and gyro-frequen-
cies of component p, defined by w?= 4tn Z°e®/m and Q =BZ e/m e. The
[ b (] ~po~ W B

function (x-x’) is defined as 8(x) = x/4n|x |®.

We have assumed that g S C(n,n cpn,nu 9”') =0 for all u's, a condition that

n

any acceptable collision operator should satisfy since cpn is the equilibrium dis-
tribution. We have also dropped all second order terms including C(flp' , fln) .

We shall not take Fourier transform at this stage, but having linearized the
equation and being interested particularly in the klCh component of the Fourier trans-
bl , . 3 . . . . - .
form <ne(£,'r) > of <ne (x,t) > , it is convenient to keep in mind that this is only

determined by the kth component of the Fourier transform of the initial conditions

of the different constituents. So, for the scattering application, one can think of



our problem as being that of finding the time evolution of an electron\density wave
(with wave vector lf,) which initially has been set up, together with density waves

of equal E for the other constituents, to have relative amplitudes given by the
Fourier transforms of their initial densities and to have velocity distributions cpe(z‘ )

and cp“’(x).

3. The Collision Model.

We shall discuss now the collision model that we intend to use. We shall re-
strict ourselves for a while, for the sake of simplicity, to the case of one ion species
and the electrons. As we mentioned in the introduction we shall use an approximaie.
model of the Fokker-Planck type which can be considered as an appropriate approxi-
mation of the one proposed by Doughertye, generalized to a multicomponent plasma
and valid for the case \/f << 1.

The inclusion of the electrons should not change the collision term for the ions
appreciably and we could write it just as the single component model p;oposed by
Dougherty. From 1.1.5 , using the same notation used there (f =f, + f;), and

after differentiation of f, (a Maxweliian) we have

3 v T, /v
(i) =v[_§_z’f1+u8 G f]+v[v-_:+__1- —_—3 Jfo N 4.3.1
L 3V, v v, u?  To \u?

where u® = KT, /m.

Our point now is that unless one is interested in scale sizes in the hydrodyna-

mic range, i.e., for wavelengths larger than the mean free path (A>>4; £=uv}),



one can neglect the second parenthesis in above expression but not necessarily the
first one.

We can roughly estimate the order of magnitude of the second parenthesis.
Since the distribution function f, is almost zero for velocities which are just a few
times larger than u we can write (v/u) f, < f, and (v®/u®) f, < f,. We can say
the same for f, if initially it was not populated for values of v a few times larger

than u (as in our case), we expect at later times to conserve this same feature so

from the definitions of V and T, we can estimate that

9|2 % )™
u noJu ng
and 4.3.2
T, h, n
_:-1—- .v—zfl dx—___:\.:— ,
To 3noju® n, ng
where
n1'='n1(2§,’t)= fl(z{..’.Y.,’t) dv . 4.3.3

So the second parenthesis in 4.3.1, behaves roughly as
- ¥ T1 V2 nl(i»t)
v|:V'—+-—- —_ Jfo'““—_fo(,‘[) . 4.3.4
u? T, \u® ng
What we have said about f, (x,v,t) holds true for its Fourier transform f,(g,v,t),
provided we replace its density n, ( X,t) by its Fourier transform Hl (€,t). We are
interested in values of g = k (k as defined in 2.1.5), and for what follows it is con-
venient to think of ?1 and ?11 as single wave perturbations.

Now, collision terms are rate terms and their total contribution to a change



in ?1(,15,"’ ,t) is given by their time integrated expression. If El(l,f,’t) were at all
times of the same order of magnitude as its initial value ?11('13,0) then its integrated
contribution after a time T would be of the order of vT('ﬁl(’lg,O)/no) fo or of the
order vT with respect to ?1(1,5,’,‘:’” since (nl(lé,())/no) f, is of the order fl(l,f,’,‘i’t)'
But as we shall see (which can be taken as an a posteriori justification), the ion gas
in the neutralizing background of the electrons behaves almost like a gas of free-
streaming non-interacting neutral particles, with very little collective Coulomb in-
teraction, and in about the time it takes a thermal ion with velocity u to go from
the crest to the trough of the initial wave perturbation, the amplitude of the density
wave ﬁl(li,t), as well as that of other moments, goes down to negligible values.
It is this time, i.e., the life time of Hl(l’g,t) which one shouid take in estimating
the integrated magnitude of 4.3.4.

There are two cases to consider depending if the gyro-radius rg =u/Q is larger
or smaller than the wavelength, A = 2m/k.

In the first case the ion trajectories, for scale sizes of the order of half a
wavelength, can be taken as straight lines and the life time of ;1(1,2,"‘) would then
be of the order of A/2u (the time it takes a thermal particle to travel half a wave-
length) and therefore the second collision parenthesis would be of order vi/2u=2/24¢
which we have assumed small. Later we shall see that due to the spiraling motion
of the ions, and under certain conditions, it is possible for El(li,t), at a time mul-
tiple of a gyro-period, to come back to appreciable amplitudes, but again only a short

time of the order )/u.
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In the second case the ion trajectories are roughly that of the center of gyra-
tion constrained to move along the magnetic field, The life time of Tll('li,t) would
then be of order )A/2u cos 6, where 6 is the angle between k and B, and the magni-
tude of the second collision parenthesis of order A/24 cos 6. We see there that
these terms can also be neglected provided the angle 6 does not get too close to
perpendicular, and at any angle provided one does not carry out the solution to times
larger or of the order of A/2u cos 6. Since we are not going to keep such collision
terms, we exclude this region (time scales > \/2u cos 6 at angles o= (1/2) -6 <
sin~t 2/24) from our solution. The solution would be valid for gyro-frequency de-
tail at all angles since in this second case the gyro-period tg =2n rg/u would always
be less than )\/2u cos 9 since we are assuming r << }A.

The first case, \ <« rg » is the most important for us, since for ionospheric
incoherent scattering applications this is usually the case. At Jicamarca, for in-
stance, A = 3 meters, ]’.‘gz15 meters for O+ and 0.3 gauss, and £ > 200 meters.

Although the first collision term, the one of the Fokker~Planck type, is also
multiplied by the same relatively small v as the term we have just discussed, it
can not be neglected under similar conditions,. especially in the rg >> )\ case. Since
we are going to keep such a term, the best arguments will be given by analyzing
our solution. In any case, we can say at this time that this is due to the fact that
this term depends on the derivatives of £, and not on its short lived moments. In
fact, under certain conditions, its integrated contribution is larger than vT, where

-ik-v t
T is the integration time. This is due to a behavior of vf, of the form ve cp(z)
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which becomes very spiky as time progresses, and upon double differentiation with
-ikev t

respect to v gives terms of the form vk®t°e o( 1) which in turn integrates

in time toterms of order (vT)(k®u® T?). For any given value of VT there will al-

ways be a k for which this term becomes important.

We can generalize our discussion to the case of several ions. After lineari-
zation we can still divide the collision term for each component into two terms, one
as before, consisting of the Fokker-Planck dperator operating on the perturbation
f, of the distribution function in question, and the other proportional to its unper-
turbed distribution f; multiplied by first and second moments of the perturbations
of the distribution functions of all other components. The arguments about the or-
der of magnitude of both terms hold, so we neglect the second term and keep only
the first one with the Fokker-Planck operator. The only difference now between
the single ion and the multiple ion case is the value of v which is now a functional
of all the unperturbed distribution functions.

For the electron equation we can in general neglect all collision terms, the
reason now being the dominance of the self-consistent field. We shall still keep the
Fokker-Planck term, more for the reason of convenience than anything else, since
there is certain advantage in keeping the equations for all of fhe components alike;
besides which we can use it as a warning flag to indicate to us any possible condi-
tion in which this term may become important. In order to estimate the magnitude

of the collision terms being neglected in the electron equation, it is convenient to

show explicitly two time scales in the dynamics of the electrons, a fast one corre-
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sponding to the electron dynamics with the ions stationary, and a slow one corre-
sponding to the dynamics of the ions, which the electrons follow adiabatically. This
can be done in a formal way by making a multitime-scale expansion using two times
t and T =st, where § = (me/mi)llz.

Let -f-le(,lf,’,‘i ,t) and fl i( lf,’fY.. ,t) be the perturbations (from linearization) with
wave number li for the distribution functions of electrons and ions respectively.

We can write

%0Vt = o (Wt T) + 8T 5 (K76, T) + 0(87) 4.3.5

for the electrons and

N (k,v,t) =T (kv b, T) + 6,5 (k,v,t,T) + 0(8) 4.3.6

for the ions (we consider one ion species for simplicity).

For the sake of estimating the magnitude of the collision terms we can take
the zeroth order terms as being sufficiently accurate. To zeroth order in § one
can show (by inserting 4.3.5 and 4.3.6 into their corresponding equations and
neglecting higher order terms) that: 3/3t Ty o(k,v,t,T) = 0; that is that the fons
evolve in the time scale T only, and that the electrons evolve according to

3
—a—+k.v+vx Q- i) Fro(K,v,t,T) +[n1°(k t,T)- nlo(k ,T) —ilk.v % ()

ot 82 'S ue

=y, 2ysu 2 )Eio(l,g,x,t,rnée M (ET) + v .Wz(T) T(Y)-
oV, oy ov, 4.3.7
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Here, u, = kT/me, 7/‘(e( t,T) and Wzi(T) stand for some moments of the electron and
ion distribution functions and are of order ?11e, c,(lh{.‘,t;,T) and Ef,o(li,T) respectively,
similar to the terms we discussed in more detail for the simple ion case; Voo and
vei have dimensions sec™* and correspond to the reciprocal electron-electron and
electron-ion relaxation times. The coefficient (wz /keuz ) li"yv has also dimensions
of sec™ and it is of order (we/kue) we , where -we is the electron plasma frequency;
in terms of the Debye length it can be written as (we/kue) w = (1/2k*n®) kue. Note
that as far as t goes, one can consider all ion terms as independent inhomogeneous
constant terms. This is the reason for carrying the two times scale expangion.

There are two cases to consider: either 1/k®h® is smaller or larger than
unity (that is, the wavelength (actually X/2m) is smaller or larger than the Debye length
h). In the first case the self-consistent field is not an important term and the elec-
tron gas has a diffusive behaviour (the d/3t + lf..'l +V X Q-d/ ov terms predominate)
just as the ion gas which we have just considered, with the important difference
that in this case \)/kue or equivalently A/ 4 would be very small* and so would the
integration times. Our arguments given before for the smallness of the collision
terms other than the Fokker-Planck term also apply in this case. The second case
in which 1/k®h® >> 1 is more important for ionospheric application since in the

ionospheric Debye length is of the order of a few millimeters to a few centimeters

*
Since we are assuming A<h, then X/ < h/4. The order of h/¢ can be estimated

as a function of the small parameter €. Taking Spitzer's formula v3§=m}?(3KT)>/2
8 X 0.714 x mn, €°4n, where A= 3/2 e® K® T3/ ng one can show that h/¢=0(¢ 4n ),
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and the wavelengths used (so far) are larger than that. In this case we group all
ion terms and all electron moment terms on 4.3.7 together, with qpe(v) as a com-

mon factor, and write:

2
—a-+£,x+xx9-—a——v—a--x—vuz G >f$’o(1£,x,t,T)
ot v, v, Av.-dv
KX € e e Ky i i e
+ n1,o(1,§;t’T) —veem (t,T) o (1) +[ nl,o(li,T)+vei77( (T)} (0) (Y.,)‘
2k2h2 | 2k®h*

4.3.8

One can clearly see then that the ion collision terms compare to the ion Coulomb
field terms as (vei/ku)(kehz) and can be neglected, since both vei/ku and k2h3

are small factors. Similarly we can neglect the electron collision terms, involving
moments of foj compared with the electron Coulomb field term. Notice that, for
the electron equation, if 1/k°h® is sufficiently large we can neglect collisions even
in the case that vei/ku > 1, that is, even in cases where the mean free path is less
than the wavelength.

We shall emphasize that although the ion equation also has the large 1/k°h®
factor we cannot use it as an argument for estimating order of magnitudes of the
different terms. The difference is that the ions evolve mainfy in the T-scale, and
in this scale the two densities (r—lf o(l'ga,t,T) and -ﬁzi,o(l,i»T) are 4not decoupled from
each other as they are in the electron equation for fle’ O(E.’X, ,£,T); in fact they almost
cancel each other. This cancelling we have referred to before as the neutralizing

effect of the electrons.
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In terms of the approximate collision operator proposed and discussed above
the problem has been reduced to finding the solution of the following set of s coupled

integro-differential equations:

o oy af 5 32
——tyV.——+VXxQ- —v——yvflp‘-v u® fl""
at ax Ty “’ax o v v
s Z11 : a:f(y)
= W —L ~' dv’/ &(x ~x’) f]TI(X',V,t) . , for all p's,,
o/ ~m T - ;v
n=1 b ~

4.3.9

with initial conditions as given by 4.2.5 and 4.2.6. We are especially interested

in the kth component of the Fourier transform ?11e (g.t) of the perturbation den-

£k

. e ~

sity of the electrons n,; (3& ,£).
To specify our problem completely we need the values of vp' as functionals of

the system distribution functions np‘ cpp'( v). These are obtained in Appendix I by

taking our Fokker-Planck operator with constant \Ju as an approximation of the

more accurate Rosenbluth, MacDonald and Judd 32 Fokker-Planck equation

where v is a v dependent functional of the system distribution functions.
u o d



CHAPTER V

SOLUTION OF THE INITIAL VALUE PROBLEM

1. Solution in Terms of Green's Functions.

We are interested in solving the set of equations 4.3.9 which we write in the
form

s z
2P £R(x v t) = w? E :—ﬂ dx’ dv’ £(x/,vt) 8(x-x').0 (v},  5.1.1
=1 'y

where #£M stands for the operator operating on flu' on the left hand side of 4.3.9
i
and ¢’( 1) stands for a(PM( X.)/ax.; with initial conditions 4.2.5 and 4.2.6 which we
write as
x| =My = M) oMY 5.1.2
t=0

where H“‘( X) stand for the velocity independent factors:

-|x |/
2
He(gs) = 5('}5) -nei- g —_— for p=e 5.1.3
KT [x|
d
N 7, €3 _lil/h
H¥(x) =n,* ° for p#e . 5.1.4
KT x|

Using standard Green's function techniques, we can convert the set of coupled

integro-differential equations 5.1.1 into a set of plain (coupled) integral equations.



Let gp‘( X-X0,V,Vo ,t ~ty) be the Green's function of 2 , that is, the solution of
LM (X -%0,7,Vost ~to) = 8(X-X0) 8(V-Vo) 8(t-t) for t=2t, 5.1.5

and the "causality condition”: gu(i—io,v,vo,t—to) =0 for t<tio.

Then we can write fﬁb(i,x,t) as the solution of

t
B7t) = | dxo Vo 8M(X-Xo,¥,¥0nt) M +J dtoj% dvo
0

5
Z
X gp‘(x—xo,v Voot —t5) w: Z_n E ! n;n(x’,t,) cS(x,—x'),cp""‘(v,). 5.1.6
A Ny M ~ ~ ~ g ~ ~
n=tk

We have made explicit use of the invariance of the LM operator under space and
time displacement in writing the dependence of g”’ upon X,X, and tt, through
their difference X -x, and t-t,.
Ap, Ay, ALl B .
Let 1] (i,x,z), n; (i,z ), and g (i,x,xo,z) be the Fourier-Laplace trans-
form of ff’(i,yv,t ), n,(x,t), and gp'( X,V,V, ,t) respectively defined by:

A " (= -ig-x -izt
fl”(g,z,Z) =1dx dtfl“(g,x,t)e 5.1.7
J Jo

A Mo -ig.-x ~izt
nlp‘(s’,z) =|dx dtn"l"‘(i,t)e 5.1.8

J JO

A " (= -ig-x -izt
gM(5.v.¥o.2) =|dxjdtgM(x,v.voit) e 5.1.9

v JO

and E( €) and 3“’(5,!) the Fourier transforms of g(i) and Jp'(x,x) which we can

readily evaluate from the defining expressions for ,‘?,( X) and Ju(i,x), viz.,



X  -ig-x £
8(x) = e =i , 5.1.10
4ﬂlxl IgJ?
and
~ig-x
THE ) = d(v) | dx HY(x) e = ¢¥(v) B¥E) ; 5.1.11
where -le/h

- 2 ~ -ig-x 2
HY(5) =|ax (s(x) -n <= ¢ e TTe1-X L 50
~ KT |x| hZ 1+n%g?

for the electrons and

—u gV -igx s 1
H¥(g) = e = 5.1.13
* KT |x| LR

for all other species p # e; and where h‘z is a sort of single component "Debye

length" defined as h2 = KT/4r N, zi e? (note that h™= = E :S h~2 and also
u,:
2 =u? /w?),
boow

Taking the Fourier-Laplace transform of 5.1.6 and making use of the convolu-
tion theorem (The first integral with respect to Xo is a convolution with respect to

X, and the double integral with respect to Xo and ff,l is a double concolution with

respect to X. The time integral is also of the convolution type), we get
/%p, Ay -
1 (2’1,Z ) = dz‘o g (E’YV’X:O ,Z ) J ( E,’Xao)

+u Z—“ g Ble)| dve M5 xe) My 5.1.18

=1l u
If we integrate the above equation over v we get the following set of linear algebraiz



. . A

equations in n; (g,z ):
Ay, A T
nl(i’z) = dxdxo g (S’X:xoyz) J (E’X‘O)

2
w A

S
— A
+ L B(e)d dv dvy gM(5.¥,v0.7) RM%)E :Zﬂ n(g.2) . 5.1.15
% n=1

M A
Let us define two functions I (g,z) and S (;;,z) as:

A A —
1¥(g,2) = | dv dy, g (§,v.v0,2) TME,v0) 5.1.16

~

A A A )
Sp‘(i,z) = - gzhiwjg(i). dv dv, gp‘(g,l,z‘o,z) 2’“’(2‘0). 5.1.17

In terms of these functions, equations 5.1.15 become

S
nf(g,2) = TH(g,2) - — §H(§,z)22nﬁﬁ(g,z) : 5.1.18
~ £%hz, -
T n=1

Multiplying 5.1.18 by Z“‘ and summing all s equations, we get an equation for

Z s Zﬂ np(gv,z ) alone, with solution:

n=1 s
z 1M(g.2)
]
Al . - 5.1.19
Z z) = . 1.
Z 7 (22) s, Al
n=1 1+ S (g.2)
§2h2
n=1" 1

A
Inserting 5.1.19 into 5.1.15 and in 5.1.18 we get explicit expresions for flp‘( €,v,z)

Au
and n; (i,z):



A A —
£ (g,v,2) =|dvo 8" (8.v,702) I ¥(E.¥0)

S
Aul A'n
S (g,z)z z, T(5:2)
1 1=1

7 £2h3 S A
WS 1+§: *sT(e )
_1§2h2
n= n

A A
nt(g,z) = 1Mg,2) - 5.1.21

From equations 2.1.10and 3.1.33 we can get an expression for the signal autocor-
relation function R(T) = <E(t) E(t+T) > in terms of the Fourier transform ;le(k, z)

of the perturbation nf (ﬁ ,T) of the hypothetical system, viz.,

-iwoT-¢€, .
° 0y (3,7 5.1.22

I3
for 7> 0
Therefore, as far as the incoherent scattering problem is concemned, we are only in-

R(T) = (E(H) E(t+T) 1 |AZ | n°VRe e
2

terested in Tlle( €,7). This is given by the Laplace inverse

e +co+icA .
n, (§,T) = nle(i,Z) olZT 4y 5.1.23

“o+ig

A
of nle(i,z) as given by equation 5.1.21.
In writing 5.1.22 we have excluded the case I,I.E! = 0 in assuming that the

Fourier transform of the unperturbed density n, is zero. The case ]k | =0 cor-



responds to the scattering in the direction of propagation and has been excluded
from our treatment.

In order to complete our analytical solution for r,:l“( £.2) we need to evaluate
the integrals II\”‘( g ,2) and é\ “‘( £,2) in terms of the defining parameters of the me-
dium; this in turn involves evaluation of the Green's functions, which is our follow-

ing task.

2. Evaluation of the Green's Function.*

We are interested in the solution gu'(')s,l,xo ,t) of equation 5.1.5 for the case
Xo = 0, t, = 0. We shall drop for simplicity the superscript to be recovered later
when needed. It can be shown that g = g(x,v,v,,t) is also a solution of the more

convenient initial value problem

£Lg(x,v,vo,t) =0 for t>0 5.2.1

B(X,¥ Y o0t) 8(x) 8(y-Yo) - 5.2.2

t=0
The operator £ is the expression on the left-hand side of 4.3.9. We can write

equation 5.2.1 explicitly in the form

2
§§+Aij—§—g—+Bi.wi——a§+Cg=0 , 5.2.3
ot i awi awj ] awj

This problem has been solved by Dougherty.6 We differ in that we take a Fourier
transform in phase space with the corresponding advantages for our application
discussed in the text. Both methods lead to equations 5.2.12, 5.2.13, and
5.2.14.



X
where w; are the components of a (6~dimensional column vector w =[: ] with
Y
components X,,X;,X;,V,,V,, Vg Aij are the components of a 6 X 6 dimensional

matrix
Axx | Axv 0 | 0
~ | [
A=F~"~-r—-l=F1——--1, 5.2.4a
~ vx | ,vv |
A7 DA 0. -v¥u°I
i _ (=]
where Axx’ Axv, AVX, are null 3Xx 3 submatrices and AW= -vi®I, I being the
~ fos] ~ ~~
3x 3 identity matrix; and Bij the components of a 6 X 6 matrix:
Bxx | va 0 [ 0
' |~ |
B=""rr"""\{=""+~71|, 5.2.4b
P
g™ ! g" 1! "
f 21 (o] =
where Bxx and BXV are 3X 3 null submatrices, B " =1, and
~ = ~ =~
-V =Q; Q,
BV =| o, -v -a,|. 5.2.5
=~
-, Q, -v

Here, Q,,Q,,Q, are the components of the pseudo vector Q. Summation over re-
peated indixes is implied in 5.2.3 and what follows. Let G( z,t Vo) be the Fourier
transform in W space of g( w,tivs) = g( X,V,Vo ,t) defined by

—icviwi
G(a,t;ve) = |dwe g(w,t;vo) , 5.2.6

where ai stands for the 6 components §,,8,,&,, T;,M;,MN; of a 6-dimensional row

vector

= [g:ﬁ]'

IR



-io, w,
Operating with‘rdyg e ' onequation 5.2.3 and initial condition

5.2.2 we get an equation for G = G(a,t;vy)

9—G—-O!.A..cx.G—B..--a—c:f.G+CG=O 5.2.7
i) i j

ot ) ) 3,
i
and the initial condition
G(g,t;xo) =e R 5.2.8
t=0
Xo
where w,; are the components of a 6~dimensional column vector w, =l: with

Vo
Xo=0.

The three dimensional vector matrices X,V, S, Vo correspond to a particular
representation of the same vectors we have introduced previously, énd we will use
the same symbol for the vector and matrix. We shall use for convenience a system
of coordinates in which Q, =Q and Q,=Q,=0, i.e., one in which the "1" axis is
aligned with magnetic field.

Before proceeding to solve equation 5.2.7, we would like to remark that 5.2.7
is not only simpler to solve than 5.2.3 (we have reduced the order of the equation by
one) but since in our particular application we are interested mainly in 'I\( £,2) and
g(s‘,z ), these functions can be evaluated more readily from G(&,t;v,) than from
the inverse g(x,x‘,xo,t) . The functions ’I\(E,z) and g( E,z) involve integrals of the

form:



which can be evaluated directly from G( &,t;vo) by letting 1= 0, since

It
= dld,’f,e g(i’X,’X,O’t) . 5.2.9
a=3 |

G(a,t;v,)

L.et us assume a solution for 5.2.7 of the form

G(a,t;vy) = exp (—K(t) - iqk(t) ak—l o Akm(t) am> . 5.2,10
2.

Inserting it into 5.2.7 we find that it is indeed a solution if the following equation

is satisfied for arbitrary o

3. A
-ﬁ—i i——l—lak am—aiAi.a.+Bi.a.qi
at gt 2 at R
+-1—B . A oz+-1-Bcv A,.,-B..8..+C =0 5.2.11
ij 3 Yim %m ij 5 Ykt Py Tt T Y "

g N 1 im m .,

We can take Alqn to be symmetric since an arbitrary anti-symmetric part

in A does not contribute to the quadratic expression in 5.2.10. Then, to satisfy

km

5.2.11 for all o the coefficients of each independent term of above quadratic ex-

pression in @ must be equal to zero. In matrix notation* we must have
~

& rrB-c=o0 5.2.12
dt ~
(since Tr B =C = -3V),
-—+Bq=0, 5.2.13
a =7

We shall use the symbols () and (T ) to indicate the transposc and Hermitian
conjugate of a matrix.
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-4

e

A+AB+ (A
N RN &

]

) = 2A 5.2.14

~

=3

and to satisfy the initial conditions 5.2.8 we must have
K(t)l =0; A(t)l =0; and q)| =wo - 5.2.15
t=0 ~ t=0 t= 0
A solution of the form 5.2.10 implies that g(w,t ;X,O) at any one time has a
Gaussian probability distribution in phase space (LV space) with mean q(t) and co-
variance matrix A(t). Physically g(w,t;v,) can be interpreted as the probabilis-
N ~ o
tic description of the random walk motion of a particle in phase space knowing it
was at x=0and v=v, at t =0. The 6-dimensional vector g(t) with three-di-
x v *t)
mensional components q (t) and g (1) {i.e., we define q(t) = [gv ]) gives us the
q (t)
expected position in phase space. q (t) is then the expected trajectory of the par-

ticle in physical space and qv(t) the expected velocity at any one time. We can

write A in terms of its 3X 3 submatrices Axx(t), Axv(t), Avx(t), Aw(t), then Axx(t)
(] [ ~ 3 [ ~

~7

is a measure of the uncertainty or the amount of probabilistic diffusion of the posi-
tion of the particle in physical space and ;\’W(t) the corresponding one in velocity
space.

From 5.2.12 and the initial condition for K(t) we get: K(t) = 0; which means
that g(w,t;vo) normalizes to unity at all times.

Equation 5.2.13 represents Newton's equations for the mean position and ve-
locity of the particle and can readily be solved to give:

a'(t) = M - v, 5.2.16



and
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X
q(t) = L) - v, , 5.2.17
where M(t) and 1(t) are 3X 3 matrices:
1 o0 0o |
. -vt
M({t) =f 0 cosQt -sinQt|e 5.2.18
[
0 sin Ot cosQt
and
- -vt -
1-e 0 0
v
t -vt -vt
in(Qt - %) + si -X) -
Lty =| Mty dt = 0 e sin( X) +sinXx e cos(Q2t - X) - cos ¥
i 0‘3 N v+ Q° WALEN S
0 - e-Vtcos(Qt -x)tcos ¥ e_\’t sin(Qt -x) + sin ¥
NASE N NARE o

Here, x= tn~'(v/Q).

To solve 5.2.14 it is convenient to transform it to a representation in which

S

~

va is diagonal. This we achieve with a unitary transformation matrix (6 X 6)

’ 5.2.19

where U is initself a 3x 3 unitary (i.e., U™t =UT) defined by
= ~




V-12

1
U=— 0 ~-i 1 . 5.2.20
~ ,/2'
0 i 1
B v
If we let A’ TAT™, B’=T BT}, and A’=T AT, the transformed equation
RS F=-] N R R ~ RS
for A’ is then
(>3
dAI
———-+A'B'+(A'B')T 247 . 5.2.21
dt ~

Any 3X 3 submatrix of either A,B or A transforms independently of the other sub-
[ ] ~

matrices; for instance, B transforms to B,xx - U B UL, similarly A'
=

AR N

U A U™, etc. The unit matrix I is left invariant; so, A’ is still
N R =3

o: 0
A=fF~-——--- 5.2.22a
~ |
and | 0" -~ \auiid
_” .
B =fF-m---|, 5.2.22b
~ ' vV
| I B’ .
~ 7
with a diagonal B"Y as follows:
s
vV o 0
BV =] 0 v-ia 0 . 5.2.23
=~

0 0 v+iQ

We also note that our assumption of symmetry for A does not contradict
~
5.2.14 since Aandp\.B+ (AAIIB) are symmetric. Furthermore, A must be real since
/) SE- R (-]

A and B are real. A symmetric and real matrix is Hermitian. Hermitian matrices
(-] o]
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transform into Hermitian matrices under unitary transformation. Therefore, A’
~

is also Hermitian, so A/ = A’ T
~ ~

) A'XX=A'XXT, and A,xva,va. Using these
S ~ s 2

-~ ~

properties of A’ and the fact that B’Vv is diagonal we get the following submatrix
s ~~

equations
an’y
L ERRVAARS DA VAR RIS 5.2.24
an™
Ly VA S VA =AY 5.2.25
dt =3 ~
an™
& = AV AT 5.2.26

which one can readily solve in that order. The fourth submatrix AY* can be ob-

(-
tained from A’" = AT . The solution of 5.2.24 is given by
-] ~
IS L 5.2.27
1) 1]

Only the diagonal terms of A'VV are non-zero, since the non-diagonal terms
~

satisfy a homogeneous equation with homogeneous initial conditions. They are

furthermore equal since B+ :0AR)
~

= 2VI and therefore they must satisfy the
~ [

same equation.

The submatrix .A,xv is also diagonal for the same reasons as A’w but the
= s

terms are not equal since it involves B’ with different diagonal terms. Solving

-~

equation 5.2.25 for the diagonal terms one gets
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2 - -
Ay =X [l-e "t]e vt 5.2.28

and

~(v-i)t  -2vt  -(v-iQ) t
t 3 - -
Aoy = <A'3§V> = u® [1 = +2 & ] . 5.2.29

v -1iQ v+iQ

Similarly, the terms of A" are also diagonal and are obtained by direct in-
(=1

tegration of twice the real part of 5.2.29. They are given by

3 _ ‘2\)t
AE < [vt+2(e vty +1—e-—:| 5.2.30
v 2
and.

2 g 2

—2vt
2 1_
AT o g2 [\Jt - 2¢ "V sinx tsin(Qt - x) - 2sin X +__e_]. 5.9 31
\’+Q

Expressions 5.2.27 to 5.2.31 completely define A’. From them one can ob-
~

~

tain A by the inverse transformation A =T~ A’ T. One finds that:
[ e ~ ~

~
A= ™ 5.2.32
23 ~
AV =" 5.2.33
~ (=]
and the components of A =A "~ are given by
~ ~
Ny = A% 5.2.34
2 oV _

A);‘;:A?;”?e A’g=~—-——u 1+e 2V -2 vtcosOt sinx 5.2.35

/\32“*'02'
2 - -
A’;‘;= - A}?;= Jm A’exzv= —u————lz(l-e 2\)t) cosX-2sinxe vt sinﬂ’a

VP 5.2.36

As it has been said before G(a,t;v,) gives us all the information we need,
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in any case we can formally write its inverse transform (see Cramerzs, Chapter

24),

A A
3. Evaluation of I(§,z) and S(E,z),
A —
Inserting the expression for g(i,l,xo,z) and J(E.’X°) as given by 5.1.9

A
and 5.1.11 in the defining equation for I(i,z) and making use of 5.2.9 we can write
A ® izt~
1(g,2) =|dte PT(g,t) , 5.3.1
0

- A
where I(i,t), clearly the Laplace inverse of I(g,z ), is given by

P(vo) - 5.3.2
n=0

I(g,t) = H(E) [dvo G(a,t;v,)

G(aat ;X‘O)

~ 1~
=exp|-ig-q-—@a-A-a
1=0 ( 2 “)

= exp ‘ig‘k(t)'b‘lg'gm(t)'@
1=0 ~ 2~ R
.3

5.3.3

so:
- 1~ xx 1 V§ o~
I(g,t) = H(g) exp (——gA (Mg)|dve ————— exp{-——-ig L) - v,
2T (2mu2y3/2 2u® ~
5.3.4

The integral above can be readily evaluated by completing the squares to give

2
I(g,t) =H(§) exp(— Eg-ﬁxx(t) ‘g - -I-E-E(t) - Ty - i) . 5.3.5
2 ~ 2 ~ -1
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Using the expressions obtained for Axx(t) and L(t) in 5.1.12,5.2.33, and

5.2.34 we get

glzuz § u-
T(g,t) =T(g) exp| - d—(vt-1+e V) -2 (cos2xsvi-e  teos(at -2
s £) exp " X ( X)) |

v v+ QR

5.3.6
where gﬁ =g and gf =2+ g2. Similarly, we can write S( €,t) defined in 5.1.17

A > -izt=
5(g,z) =|dte S(g.t) , 5.3.7
0
- A
where S(i,t), the Laplace inverse of S(i,z ), is given by

— ~ 99(vo)
S(g,t) = -u®|dv, G(a,t;vo) g - ) 5.3.7
'n=0 on
or
S(i,t) = -u® d,‘_ﬁo ii~ — exp (—15 L(t) "Vo-—5%A (t) i) .
v, ~ 2 =

5.3.8
Integrating 5.3.8 by parts we get

v$
S(§ t)—ui L(t) iexp(——i A (t) g) dv, —-——e*cp(———-—li L(t) - vc> .
(2nu2)3/2 2u®

5.3.9
The integral in this expression is the same as the one in 5.3.3. Evaluating the in-

tegral and writing explicitly the quadratic expressions in €, one gets

_ § ot §2 u? ot
S(E,’t) = ————-——[smx+e sin (Qt - x)] (1—e )
VAR ok v

2.2 2,2
§" v -vt g‘I. u -vt
* exp{ - vi-1+e - [cos 2%+ Vvt ~-e cos(Qt-zx)]
Ve v+ 0
5.3.10



V-16b

It is interesting to notice that

S(gt) = -— Lie,t) 5.3.11
H(g) dt
and consequently
A 1 A >
S(§.2) = ——(1-iz I(§,z) 5.3.12
H(§)

a property that does not become apparent until §( g,t) and -I-( i,t) are fully evaluated.
Inserting 5.3.6 and 5.3.10 into 5.3.1 and 5.3.7 one gets the final expression for
A - A
I(g,z) and S(s,z).
One should consider these expressions as one of many possible integral repre-

sentations. For instance, in the case of no collisions and no magnetic field (v = 0,

= 0) they take the form

A _ © s _E3..3,.3
1(g,2) = H(g)| ate e W 2 5.3.13
0
and
A ® L 22,.3.:3
S(g,2) =|die “gruPre S 2 5.3.14
0

Had we performed the t-integration before the Vo integration in their definitions

we would have obtained the following expressions

I(§,z) = H(E) —————dv, 5.3.15
o ig.vo+iz
1 A U AR
S(g.z) = -—if | ————dv, , 5.3.16
£°n° g2 iE-vy+iz
-0 ~~ ~o
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which are more common representations in the plasma physics literature.
A A
Being able to express I( EZ)s S( 5 ,Z) in an integral representation which is
essentially the Laplace transform of an ordinary function of time plays an important

part in the numerical evaluation technique described in Chapter VI.

4.  On the Time Behaviour of I(k,t) and §(1£ ,t)_— Physical Interpretation.

In order to understand and give some physical interpretation to the numerical
results presented in Chapter VI it is appropriate that we discuss the behaviour of
the functions -i(li,t) and —S.(li,t) as a function of time. We are interested in partic-
ular in the first one since we shall see that most of the features in Hle ( ’li,t) can be

explained in terms of qualitatively similar ones in ii( li,t) (i stands for the ion com-~

ponents).
- “ikex
Let us first note that I(k,t) e can be thought of as being the solution of
=£hk(£,t) =0 5.4.1
with initial condition
-il,E,. i
h(xt)|  =Hk)e oY) 5.4.2
t=0

since in terms of the Green's function of £ one can write the solution hk(x,t) as

h (x,t) =]dvdvey dxo g(X-X0,V,V0,t) H(k) e P(vo)

or

|
—
=
~
ot
S
(]

b (x,t) = I(k, -~ 5.4.3
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. "X
by definition of I(l’i,t) e .

Physically then we can interpret -i( li,t) as the amplitude (as a function of time)
of a wave, with wave vector .li’ in a gas without collective Coulomb interactions (the
collective Coulomb interaction term is not included in #£) which has initially been set
with amplitude ﬁ(k) and Maxwellian distribution 9(v). The solution 5.4.3 written
in its integral form can be interpreted as the density produced by the superposition
of the average density produced by single particles in random walk in a magnetic
field (physical interpretation of the Green's function g) which were initially at Xo
with velocity Vo with a distribution H( k) e—lkv. ~ in physical space and a velocity
distribution CP(X, o). Such an interpretation will allow us to explain the behaviour of
( k,t) (and of ﬁle (k,t) later on) in terms of the motions of individual particles in a
magnetic field.

We shall consider two cases depending on whether the wavelength (divided by
2r) is smaller or larger than the gyro-radius or equivalently whether Q/ku is smal-
ler or larger than unity.

Figure 3 shows schematically a typical plot of i('li,t) in the case Q/ku << 1.
This could be taken as a typical -I.( li,t) for the ions under typical ionospheric con-
ditions for small angles o = 90° - 6, (the complement of the angle & between liand
B), and without much collisional effect.

The shape of the curve and the effects of the angle @ and collision frequency
v can be better understood if we consider first the case where =0 (liperpendicular

to B) and v=0. In terms of a non-dimensional time t’=kut/,/2 and non-dimen-
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sional frequency Q’=,/2'Q/ku, we can write 5.3.6 in this case as:
'i(li,t) = H(k) exp [— 2/0/%(1 -cos Q’t’)] . 5.4.4

We are assuming now that Q/ku<<1 or, that Q’<<1, therefore, 2/Q% is a large

factor and .f(l'\;,t) has significant values only for those values of t’ which make

(1 -cos Q’t') small. These correspond to values of Q’/t/ not far from 0, 2m, 4w, etc.
An expansion of (1 -~cos’t’) around those values of t’gives us (1 -cosQ't’) ~

Q= /2 (t’—N(zn/Q'))- 0'3/4(t'—N(2n/o')) ... where N is an integer N=0,1,2, 3, etc.
which depends on the particular multiple of 2m we are expanding around. We can

therefore approximate I(k,t ) for the sake of this discussion as

- _ ® (- ’\2
I(li,t)zH(}g)Ze (t=N 2n/0)° 5.4.5
N=0

which correspond to gaussians centered around t=0, 2m, 4m, etc.
If there were no magnetic field the function T(li,t) would be given by (no ap-
proximations):

- - _t12
T(kt) = (k) e

and the wave would have negligible amplitude in about the time it takes a thermal
particle (with velocity u) to travel half a wavelength, i.e., in atime t’= n/ﬁ.
With the presence of the magnetic field the behaviour of i(}i,t ) does not change
much for values of t’ of order unity, which is to be expected, since under the as-

sumption ku << Q the trajectories of the particles for those short times will differ
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slightly from the straight lines in the non-magnetic field case. But at a time equal
to a gyro-period té= 2n/Q’, the wave will grow again to the same amplitude it had
originally. This is explained by the fact that each particle, regardless of its initial
velocity or position, will come back after a gyro-period to the same projected posi-
tion (projected on a plane perpendicular to B and containing E) it had at t=0, and
therefore, reconstructing whatever wave was initially there before. Any motion
along E, and thercfore perpendicular to Iﬁ,’ does not affect the amplitude of the
wave.

For values of « different from zero, T(l’i,t ) takes the form:
i(li,t) = H(k) expl:—‘c’2 sin®a - 2cos®a /(2 (1 - cos Q’t’)] , 5.4.6

which we can split in two factors, a periodic one as before due to (1 -cos Q’t9,

-t2sin® o

which we can approximate in similar fashion, and an e factor, so
- _ -tZsin®aC  -cos?® « (t'-N 2m/Q’)2
T(k,t) ~ H(k) e S E :e cos® & (t'-N 2m/Q")° 5.4.7
N=0
-t"?sin®a . . .
Because of the e factor the amplitude of the wave at the gyro-periods is

- (D I\2 i
(21/Q’)? sin & por

not as large as before. At t'zté= 2m/Q’ it will be H(k) e
sufficiently small G’, a relative small angle « is suificient to reduce the amplitude
of the "gyro-peaks™ to practically zero amplitude. For a magnetic field of 0.3 gauss,
a temperature of 1000°K, an oxygen ion (typical ionospheric parameters) and a

wavelength of 1.5 meters, this critical angle is of the order of 3°. Physically,

this attenuation is due to the diffusion of the particles along the magnetic field lines,
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which are no longer perpendicular to k, therefore, after a gyro-period a thermal
particle would be displaced from its original position a projected distance along l.i
of the order of (2n/Q’) sina/k. If this distance is of the order of half a wavelength
or larger there is no reconstruction of the wave.

By inspection of 5.3.6 we see that if the collision frequency v is of the order
Q or larger (mean frec path of the order of gyro-radius or smaller), after a gyro-
- period t=2m/Q, the term responsible for any possible periodicity e—\)t cos(t -2%)
would be attenuated by the factor e—vt which for t=2m/Q would be at most e-zﬂ,
a very small number. That there is no periodicity for such values of v is by no
means surprising, since then, one would hardly expect the individual particles to
return to their original projected positions regardless of the angle @. But v2 Q
is not the necessary condition for the (practically) complete attenuation of the "gyro-
peaks." In fact for the case Q/ku<<1l. We are considering now a critical value of
v occurs at a much lower value with respect to Q.

Let us consider a case where v <<, so that ewt: 1 -vt could be considered
a good approximation for times t < tg. Let us also consider the more favorable (as
far as amplitudes of the "gyro-peaks") and simpler case, where @ =0, Under these

conditions we can approximate i(li,t') by
i(k,t) A ﬁ(k) exp[—Z/Q’e(l —cosQ’t/+ vt'+ \J.t'cosQ't’)] s 5.4.8

and by expanding around t’= 0, 2m, 47, ete.
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- _ - 242 "2 =2 - F- NIV "ne
T(k t) ~ Hi() av't’/Q Ze 1/Q%(t’ -N 2n/Q’) ) 5.4.9

N=0

- ? /013 - 2,2 /"2
We see that the first "gyro-peak " is down by a factor e smv/Q or e 4m(v/Q) (5 /0%)

and no matter how small (v/Q) may be, there is always a k for a given Q which
would make that factor sufficiently small to appreciably reduce the amplitude of
this peak to even negligible values. The critical value of v would be clearly given

by:

\Y

= 2 _ 3 4-1 -2
crit--n/4n (Q/kxu)® = 2 tg (kutg) . 5.4.10

We can also interprete this attenuation of the first "gyro-peak"” in terms of
the motion of a single particle. Because of the random field (Coulomb-collisions)
the particle is subject to, we have to describe it in a probabilistic manner. Since
we are considering small values of v as compared to Q, we would expect that in
a gyro-period the particle would have returned in the average to a point close to the
one in the collisionless case, but with a relatively constant probability for it to be
within a sphere of uncertainty. Certainly, if the radius of this sphere, regardless
of how small it may be with respect to the gyro-radius, is larger than half a wave-
length we can not expect any reconstruction of the wave. The exact expression for
the probabilistic description of the particle is given by our Green's functions
g( X,¥:Vo »t) and the radius of the sphere of uncertainty by the square root of the
variance A}icj{ given by 5.2.30 and 5.2.31, which at t=tg and for the small values

of vtg= v21/Q we are considering, would be approximately isotropic and approxi-
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mately given by

AE=2 0% , 5.4.11
j 478 1
and if measured in wavelengths by
XX
Ay 2 1 s
— == — vt3k®u® | 5.4.12
A® 3 4n®

which gives us a critical frequency at A}ic;{/ A® =1 of the same form and approximately
of the same magnitude as (5.4.10).

It is clear now that the actual criteria to decide whether te include the Fokker-
Planck collision term (when ku/Q is large) depend on the value of v/ Vorit ™ 4m (v/Q)
(k®u®/Q%). Notice that, whereas the magnitude of the moment-type collision term

went down as v/ku as k increased, the effect of the Fokker-Planck term goes up

as K®.

The second case to consider is when the reciprocal of the wave number
k™! = 2n/)\ is larger than the gyro-radius, i.e., when Q/ku>>1. (Q/>>1) Letus
consider first the collisionless case. Under these conditions (using non-dimensional

times and frequencies), we can approximate i(’li,t ) in the form

+—cos® oe cos Q’t’.

cos® @ e—t'z sinfa, 2 -t sin® o
012

I(k,t) ~ H(K) é-
~ ~ QIS
5.4.13

Figure 4 shows schematically the shape of this function for different values of «.

It consists of a Gaussian like function of almost unit amplitude with a time constant

of the order of 1/sin«, and a small oscillating function with frequency Q’ and am-
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plitude 1/Q’2 cos® o attenuated in a Gaussian fashion with the same time constant.
When o =n/2, there is no oscillating component and i(l’cv,t ) is of the same form
as in the non-magnetic field case, and when o = 0 the exponential term degenerates
to a constant.

In terms of the motion of the individual particles we can interpret the be-
haviour of i('li,t ) for this case as being due to the diffusion of the particles, but
this time constrained to move along the magnetic field lines with an effective ve-
locity equal to the projection at the actual velocity of the center of gyration in the
direction of the wave vector. The small oscillations are due to the small deviations
of the particles from their centers of gyration (also projected in the direction of the
wave vector).

For values of V' # 0 (but v/ <<1 to be consistent with our assumptions for the
validity of the collision model) we can obtain a somewhat simpler approximate ex-

pression for .I-(li,t )

_ _ . - Y
I('li,t) ~H(k) expl: -2-37—9-3 <\)’t'- l+e v’t)]
_2cos® avit’

Qe cos? 2 -v't’
e |:<1_ osza +20082 ¢ o cos Q't'| .5.4.14
Q’ Q’

The effect of collisions is not appreciable only for small angles « in a region

where sin«o < V/. For instance, at @ =0 we can see that as compared with the col-

- Itl
lisionless case the amplitude of the small oscillations decay as e V" and the "con-
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- 2 ”= r47
stant” term decays (very slowly) as e (2 cos® a/0%%) vt . For all other angles

(sin @ >> V') the expression goes to negligible value in a time of the order of 1/sin o.

In this case we can write

-I-(li,t) mﬁ('li) exp[—t’2(1 - v't’) sin® oz:l

2 2
g -2costa)  2cosca (1 -vt’) cos Qt’ 5.4.15
Q,g 012

which differs slightly from the collisionless case, since befors the terms involving

) - sin® ot’?
vt have appreciable values the factor e becomes very small,

For ionospheric applications and the wavelengths used only the i(‘ls,t) for the
electrons belong to this second class ({1/ku>>1). But we shall see that in most
cases of interest, with the exception of small values of 1/k®h? (in which case
ﬁle(li,t) =ie(£,t) to zeroth order in 1/k® h®) or small angles o << (me/mi)’*/‘?, the
density nf(li,t) bears little resemblance to the function ie(li,t).

We will not have any need for a physical interpretation of é\( li,t) . Its behaviour
for the different conditions discussed above can be obtained by simple differentiation
of T(k,t), since we have seen in 5.3.11 that S(K,t) = -(1/ﬁ(k)) @(li,t)/dt) . In
Figures 3 and 4 we show schematically some typical shapes of §( }i’t) which cor-

respond to the curves for 'i(li,t) depicted in the same figures.

5. Discussion of Ee(k,t) and ?111 ( li,t) in the (me/mi)’-/g = 0 Approximation.

The analytical expression for ‘I_lle(}i ,t) is given by the Laplace inverse of
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5.1.21. It is a complicated expression to be discussed but numerically. Never-
theless something can be said about it, as well as Ele ('kv,t), if we consider the case
when (me/mi) = 0. Since the real value of me/mi is very small, whatever we can
say about the me/mi = 0 case can hopefully be generalized qualitatively to the real
case and help us to understand and interpret the numerical results (using finite
me/mi) obtained in Chapter VI.

As far as the behaviour of Tlle( li,t) around plasma frequencies is concerned,
taking (me/mi) =0 is a good approximation and it will not be discussed numerically.

Let us define a function

2 - 2 g
Y(t; ) = Y(t;Q,v,a) = exp[— sn a(vt—l-l—e vt) LIS éos 2%

\)2 v2+ 02
v -vt
+ vt - e cos(Qt-2x>:| , 5.5.1
and its derivative
d
Y/(t; ) = Y(t;Q,v,0) = —Y(t; ) . 5.5.2
dt

Here, tn™! x = v/0.

We also define their Laplace transforms

A A ® -zt
Y(z; ) =Y@z;OQv,0) = dte Y(t;Q,v,2) , 5.5.3
0
and
A A ® izt
Y(z; ) =Y(z;Q,v,a) =| dte Y/(t;Q,v,o) . 5.5.4

0



In terms of these functions we can write
™(k,t) = BYk) Y(ku t;0 /ku ,v /ku o)
~ ~ M I N VR
_ A
M(k,t) = BYk) Ye/ku 50 Jku v fa Le) |
~ ~ L T VR

and using the relation

g = -

we have that

di“(k t)
HY(k) dt

Sh(k,t)= ~ku Y/(ku t;0 /ku ,v /ku ,a)
~ T T T T

! A
éu(k,z):Y'(z/ku ;Q /ku v /ku @)
~ I

=1 -iz/ku Q’(z/ku;ﬂ flw ,v /ku @)
" P U R T

We shall need the following properties of above functions

Y (t; )—1-“ti+ v—-+[3+(02-v2) cos® « 1:—+0(’c5)

21 3! 4!

Q’(z;)~-l— LI [3+(02—v3)cos o]
iz (iz)® (1z)4

Q’(z; ) ~ 1 -V [:3+(02- vZ) cosoz]
(iz)® ( lz)a (iz)*
also
m2
Y (z; ) = mg - izm, - 2% — + 0(z%)

and
A m, m,
Y(z; )=1-izmg - 2% — +iz2% — + 0(z%)
1! 21!

(iz)®

+ 0(1/25)
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5.5.5

5.5.6

5.5.7

5.5.8

5.5.9

5.5.10

5.5.11

5.5.12

5.5.13

5.5.14

5.5.15
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where

m =f°°tnY(t; ) dt . 5.5.16
o Jy

Let us consider a single ion species i (with charge Z“‘ =1). Usingthe Y
functions defined above and in terms of the parameter § = (me/mi)1’2 = (kui/kue)

we can write 5.1.21 in the form:

I'il.i(ksz) =—1—ﬁi(k) Q(zi;i) + 1

%2 ?r'(zi;i)[aﬁe(@ ?{(azi;e) - 'Hi(E) ?(zi;i)]

oA . ry s 5.5.17
1+# [Y’(zi;1) + Y(6zi;e):]

where zi=z/kui, na=1/k2h2=1/k3hf, and ( ;p) stands for ( ;Q /ku , v/ku , o).
L ]

If we let § go to zero in 5.5.17, we obtain:

A. — A 1
nll(}g,Z) = -LHi(k) Y(z.51) - —
ku, ku,

w2 /(1 + 1) ?{'(zi; i) ﬁi(k) Q(zi; i)

r , 5.5.18
1+ #2/(1+n®) Y'(z;;1)
or .
AL ) " (k) Q(zi; i)
n(k,z) = — A , 5.5.19
~ ku, 1+ %2/(1+4%) Yz ;1)

since Q(O; ) =my and bounded (except when @ =0 with v=0 and Q# 0) and

A
Y(0; )=1.



V-29

Ai Ai
In terms of the functions Il(l‘i,z) and Sl(l'i,z) we can write then, that for

§=0,

1
2 2 Al
1+ 02 /(1+4°) 8 (k,2)

A N .
ny(k,z) = I'(k,2) . 5.5.20

A
We can use our general solution for nlu'( 1£,t) to obtain an expression for a
A
hypothetical case of a single component plasma. The density n;(k,z) in such a
case is given by

1

o, (k,z) = .
1+ 8(k,z)

A
I(k,z) . 5.5.21

Comparing 5.5.21 with 5.5.20 we note they differ by the factor 1/(1+4#°) multi-
plying §(Ii,z ). Fromthedefinitions of g(l‘i,z ) (5.1.17), we seethat §( l’i,z) is pro-
portional tothe charge squared of the particles e®. Forthepurpose of giving a phys-
ical interpretationio 5.5.20 we can associate the factor 1/(1 +»%) with e®. Inmost
c.ases of interest the wavelength 2n/k is much larger than the Debye length, making

#° averylargenumber. Therefore, we caninterpret5.5.20by sayingthat the ion gas
inthe presence of the electronsbehaves as a single component plasma but vﬁth reduced
charge e/(1+»%)*? (asfarascollective Coulomb interactionsgo). Thischarge ismuch
smaller than the actual one, so we can also say that the presence of the electrons effec-
tively (almost) neutralizesthe charge of theions. Alternatively, wecanassociate

1/(1 + %) with the Fourier transform of the Coulomb field é(k) =1'\<'/k2 in the definition of
§(l£,z ), and redefine an equivalent §’(k)=k/k®-1/1+x°= (li/kz) . (kth/(l +k2h‘°é)
-t/h /r).

which is the Fourier transform of (1/4m)(3/3r)(e Thus, working from the
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solution to the equation, we see that in the limit me/mi = 0 the dynamics of the ions
are given by a single plasma equation (decoupled from the electron one) but with ef-
fective interparticle potentials given by e—r/he/ r, i.e., the Debye shielded poten-
tial. Clearly for wavelengths larger than the shielding distance he the collective
interactions are going to be greatly reduced. This shielded behaviour of the ions
explains the aimost direct relationship between -ﬁli ( k,t) and ill (li,t), i.e., between
the behaviour of the actual ion gas ?11i ( l‘i,t) and the behaviour of a hypothetical ion
gas with no collective Coulomb interaction, that we shall find from our numerical
calculations* and that we claimed in discussing our collision model. We can illus-

trate this without numerical computation, by considering the relatively simpler par-

ticular case in which Q=0 and v=0. In this case

Ai o 42 3

8'(k,2) =|dtku, te B2 -zt Lo 5.5.22
0 2

where Z(z) is the "plasma dispersion function" tabulated by Fried and Conte .29
. 2 2, M Aj .

For large values of » we can write 1+x°/(1+%°) S (l::v,z) ~ 1+8 (li,z). Figure

As
5 shows a Nyquist diagram for S 1( li,z) from which we can obtain graphically
Aj As
1+Sl(’l§',z). The point to notice is that the absolute value of 1+Sl( k,z) does not
deviate more than 50% from a mean value. These deviations are by no means

negligible but tell us that ﬁl(£,t), the Laplace inverse of 5.5.20, is not going to

- Aj
deviate much from Il(l’g‘,t) the Laplace inverse of Il( li,z).

Actually the numerical calculations are for -ﬁle (’li,t) but we shall see soon a
direct relationship between the two (in the me/mi = 0 approximation).
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Let us now consider the density of the electrons. Using the Y functions and

A .
the same frequency scale z, as for the ions we can write nle(k,z) from 5.1.21 as

-€

A H (k) A

nle(l,g,Z) =6 —==-Y(6z;¢) =
Kui kui

n® Y'(8z;;€) [ﬁi(g) !)\((zi;i) - éﬁe(lf) Q(Szi;e)]

b

A A
1+ nz[Y(zi;i) + Y’(azi;e):l
which for § = 0 becomes,

—i. A
H (k) Y(z.;1)
A 3 Ry
af(k,z) = — 2 - . 5.5.23
ku, 1+#2 1+ x2/(1+n3) Y'(z;51)

Since as before Y(0; ) is a constant and Y/(0; ) =1.

As
In terms of n; ( li,z) as given by 5.5.19 we obtain that

A 2 Aj
n,(k,2) = —— n,(k,z) , 5.5.24
~ 1+x2
and obviously
—-— 2 —.
o (K, t) = ———n,(k,t) , 5.5.25
~ 14+#°

which for large » becomes -ﬁle( lf..’t) S ?11i ( lf,’ t)! This relationship together with the
close relationship between -r—xli(’lg,t) and ii( lf..’t) justifies the importance we have
given to ii(}i,t) and the motion of single non-interacting ions, even though our in~
terest is in the electron density.

The expression 5.5.23 does not give a complete picture for Qle (’lg,z) since
in the process of going to the limit § = 0 and keeping kui finite we have indirectly

sent all frequency detail of scale kue to infinity. In order to recover the high
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frequency behaviour we write 5.5.17 in terms of a non-dimensional frequency Z=

z/kue,

H Sz i 4 . e, A
AC i 2) g br sy s L Y 1/6 B Ya,/051) - Fo) Y(ze’e)]
1V ku € ku 1+n2[§'(z /5;i)+§~r(z ;e)]
) ° © © 5.5.26

Using the leading terms of the expansion of Y(z; ) and Y’(z; ) for large z and let-

ting 6 go to zero, we obtain:

—e 2 =1 5€0 O
H (k) WYz ;e)lH (K /iz -H (k) Y(z ;e)
22(k,z) = —== ¥z ;e) +— e [ - ~ ° ] , 5.5.27
~ ku © ku 1+ Yz ;e)
[ e e
or
Ac -_1 Ae
W S(k,z){H(k) 1/iz -1 (k,z)
ns(k,z) = 1%(k,2) + —— [ c = ] . 5.5.28

1442 8° (k,z)

This has the well-known dominant conjugate poles at a frequency close to the plasma:
frequency (provided » is large and Qe/ we small). Using the asymptotic expansion
of Y/(z; ) for large z and assuming that ve/ we,Qe/ w, and kue/ w, = 1/ # are much
smaller than one, we find an approximate expression for the location of the poles
zp= wp+ iy in the z-plane

1 @kg uz+ 0% cos? a) v

zZ =W +iy=12w |1+= +i— . 9.5.29
p P e

2 wz 2

A
In the vicinity of this pole, we can approximate the expression for ne(k ,Z2) as:
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Ao w2 [ﬁe(k) - ﬁ‘(k)] )
n,(k,z) ~ — =, 5.5.30
(z +iy)® - w; iz

which corresponds to a damped sinusoidal oscillation in the time domain of ampli~
tude [I_Ie(k) —ﬁi(k):’ . Note that, within the validity of the asymptotic expansion for
g"(z ;e), collisional damping will override Landau damping terms.

In the case of an arbitrary initial value problem, the excitation of this mode
would depend on the arbitrary difference between the ion and electron initial wave
amplitude ﬁi(k) and I—{e(k) . But in the fluctuation problem this is fixed, given by

(from 5.1.12 and 5.1.13):

- -1 2 2 2
By -figy =1-2 L B 1 B 1 oo

h‘z 1+h®Kk? hf 1+h®k® 1+h3®K® 14243

which is a very small amplitude for the usual case e >>1 (i.e., large wavelengths
as compared to the Debye length) as compared to the low frequency part as given

by 5.5.25 (in the & = 0 approximation) which at t=0 has amplitude:

-]
n (l:,t)l L ) 5.5.32
t

or to the total amplitude (at t=0 and for any §) of the wave

A 2
nle(li't)l =11 % 5.5.33
t=0

2 14+u°

which goes to 1/2 as % - «.
One can combine the two expressions for 5.5.23 and 5.5.26 valid for low and

A
high frequencies and obtain an expression for nle(li,z) valid for all frequencies,
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provided we subtract the singularity at z=0 from the high frequency expression
which also corresponds to the first term in asymptotic expansion (for large fre-
quencies) of the low frequency term (otherwise the region of intermediate frequen-
cies, kui <Z <kue » would be twice accounted for). This expression can be con-
sidered as the zeroth order term in an expansion in 8 uniformly valid for all fre-
quencies. It is given by:

Ae =i Ae
#2 S (k,z)|H (k) 1/iz -1 (k,z)
By (k.2) = 1%k ,2) + ——= L )

1+ #25°(k ,2)

",
1'(k,z)

i
n2 Hg n? 5.5.34
. A. . L] L]
142 iz 1+%% 1+#2/(1+42) §'(k,2)

Although ¢ is small, in order for the expansion to be useful, one has to check
the order of magnitude of at least the next term in the expansion. For the non-mag-
netic field case the next term is indeed of order §. With the magnetic field, one
finds that there is some value of o at which the first order terms in the low fre-
quency expansion start to become large. Take for instance, the term %(\"(Gzi ;) &
1-i6z, m, - 82 zi2 m, + ... and the case Q /kue >>1, \)/kue << 1 which corresponds
to typical parameters for ionospheric applications. The function Y(t;e) behaves

- (t? sin® @/2)

+
roughly as e with an 0 order moment m_ of the order of (1/sin a)" 1.

Therefore, the small parameter § is associated with the factor 1/sin @ and
the expansion can be considered asymptotic only when &/sin & <<1. This imposes a
condition o >> (me/mi)1/3 . One should, therefore, expect the conclusion deduced

here from the § = 0 approximation, mainly the close relationship between the dyna-
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mics of the electron wave and the dynamics of free streaming ion waves, to hold
only outside this angular range. We shall see from our numerical calculations

that this transition does occur at around « = (me/mi)ll2 . For oxygen this angle is
equal to 0.34 degrees. The conclusions about the high frequency behaviour still hold

true.



CHAPTER VI

COMPUTING TECHNIQUE AND NUMERICAL RESULTS

1. Computing Technique — A Linear Simulator of Plasma Dynamics.

We shall déscribe here the technique used to evaluate -1-119 ('li,t) the Laplace
inverse of ﬁle( ’li,z) as given in 5.1.21. Itis bésically 2 simulation technique. The
function ;le(li,t) is obtained by simulating in real time a system which has the
same dynamics as the electron density we are considering. It avoids having to
perform numerically Laplace transforms and their inversion,taking advantage of
the fact that the functions II\(E',Z) and g(li,z) are defined in integral representa-
tions which are the Laplace transforms of the cumbersome but elementary functions
i(li,t) and §(1i,t) . The simulation is performed digitally but we will not be con-
cerned here with the digitalization problems and techniques. Inclusion of such de-
tails would take us too far afield.

For the benefit of the reader not familiar with the theory of linear systems
we introduce here some of the concepts and properties that we need. The most
general relationship between the input e, (t) and the output ey(t) in a physically
realizable, linear, time invariant system is given by

+co
eolt) =| e (t') b (t-t) dt/ , 6.1.1
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where h+(t) is a characteristic function of the system. The condition of physical

realizability imposes a condition on h+(t): h+(t) =0 for t<0. This function is re-
response

ferred to as the unit impulse of the system since if e, (t) = §(t) then ey(t) =h +(t).

Taking the complex Fourier transform of 6.1.1 with a transforming operator

f “at ™%, with Jm 2z within a strip of analyticity, we obtain:

-

A A
&(z) = h,(2) e, (2) , 6.1.2

A A
where e, (z) and e,(z) are the Fourier transforms of the input and output respec-
A A
tively, and h+(z) the Fourier transform of h+(t). But since h+(t) =0 for t<O,

we can write

A ® izt
h(z) =| die h (b , 6.1.3
0

which corresponds to our definition for the Laplace transform used before; we
shall, therefore, also refer to it as such. The Laplace transform }?+(z) is called
the transfer function of the system, and when evaluated for real z = w (when it
exists) the frequency response of the system. Either the unit impulse response
or the transfer function ﬁ +(Z) completely characterizes a system.

It is standard practice to represent a system schematically by a rectangular
box with the unit impulse and or the transfer function inscribed in the center and
two arrowed lines representing the input and output.

If several systems are connected in series so that the output of a system is

the input of another one can show that the overall transfer function for the new sys-
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tem is given by the product of the transfer functions of each of the system elements.
If they are connected in parallel, that is, sharing the same input and adding the out-
puts, the new transfer function is given by the sum of the transfer function of each
of the system elements.

If one takes the output of a system and subtracts it from the input, one ob~
tains a new system (an elementary feed-back loop) with a different transfer func-
tion. It can easily be shown that the "closed loop" transfer function §+(z) is re-

A
lated to the transfer function of the original system h +(z) (open loop transfer func-

tion) by:
A h+(z)
g.(2) = ——F— 6.1.4
1+ h+(z)
so that
A
h_(2)
eo(z) = —-—;—el(z) . 6.1.5
1+ h+(z)

One can also show that the "error" ee(z) = ei(z) - €,(z) is related to the in-

put by

A A
e (z) = +e1(z) . 6.1.6

1+ h+(z)
With above simple rules in mind and by simple inspection of the system re-
presented in Figure 6 one can show that the overall transfer function of such a sys-

tem C +(z) is given by:
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s 6.1.7

which is the expression for sle( l,.{,,’z) as given by 5.1.21 (Zn= 1 for N#e, and
Z =-0. Therefore G .(z) = no(k,2) and & (1) =no(k,t).
e + 1~ + 1Y~
If we "build" such a system (simulating it numerically or otherwise) and ex~
cite it by applying a unit impulse to the input; its time response would give us the
desired function -ﬁle (k.’t) . We are not limited to a unit impulse excitation, this
gives up some flexibility which we have taken advantage of and would like to discuss.
In the previous chapter we have scen that, for the wavelengths which we are
mainly interested in (i.e., those much larger than the Debye length), most of the
features of ;le (k,t) involve time constants of the order of (kui)'l or larger,
which correspond to the dynamics of the ions. We would like to concentrate on them
and filter out higher frequency detail, mainly the plasma frequency oscillat ions and
the electron gyro-frequency. Furthermore, experimentally, for reasons of sensi-
tivity of the instruments, one would like to limit the bandwidth of the system to in-
clude only the frequencies of interest. In Chapter II we obtained a relationship be-
tween the received signal autocorrelation R(7) = < E(t) E(t+71) > and the density
autocorrelation of the medium. There, we implicitly assumed that the system had
no bandwidth limitations. If the signal E(t) is fed to a relatively narrow filter char-

acterized by an impulse response Fw (t), then the autocorrelation function
]
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R/(T) = <E’(t) E/(t+ 'r)> of the output E’(t) is given by (see Y.W. Lee30, Statis-

tical Theory of Communications, p. 323)
R(T)=F @)« F _(-t)«R(T) , 6.1.8
We Wy

where the asterisks imply a convolution operation. (Notice a double convolution
instead of the single one for the signal proper).

Let C(1) be an even real function of T so that

C(r) = C (1) = 1, (K,T) for T> 0
6.1.9
C(Tt) = C+(—'r) = for 1< 0 .
Then we can write R(T) as given by 5.1.22 in the form
R(T) = B C(T) cos woT for all 1's , 6.1.10

where B =(|A%]|/2) nﬁv. Here we have made use of the evenness of the function
R(T). For a narrow filter centered around w, the response Fwo(t) can be written
in the form F wo(t) = F+(t) cos Wyt, where F +(t) is a slowly (the slower the nar-
rower the filter is) varying function of time (time scale of the order wgl). Because
of the slowness of F +(t) with respect to cos Wyt it can be shown that, to a very

good approximation:
R'(7) = B[G(T) x O(r)] cos uoT 6.1.11

where G(T) = F+('r) * F(-T); an even function of T.



The function G(T) has a certain time width depending on the function F+('r)
chosen for the filter. Its effect on C(T) is to smear out any high frequency detail
in C(7) that has a time scale much smaller than the width of G(T) and on the
other hand to leave all slower frequency detail unmodified (providing we normalize
G(1), i.e.,fm dt G(T) = 1).

o _
We can express the new "envelope" of the autocorrelation function C(T) =

G(7) * C(7) in terms of C+('r) . From the definition of C(T) and using the fact

that C+('r) =0 for T < 0 we have that:
C(T) = 2 Even C+('r) R 6.1.12

where Even C (T) implies the operation Even C (1) = 1/2 I:C+('r) + C+(—'r)] . And,

since G(T) is even, we have that
c(1) = 2 Even[G('r) * C+('r)] i 6.1.13

We can obtain G(T) * C+('r) from the simulator by applying to it an input*

e, (t) = G(t). The output would then be:
eo(t) = G(r) * C+(T) . 6.1.14

Besides being able to simulate any filtering that may be present in an experi-

mental set up, the function G(T) gives us a controlled maximum bandwidth for the

Notice that the inclusion of a filter in series with the (simulator) system will
not do since G(T) has to be even and therefore, is not physically realizable
[6(r) #0 for 7 < 0) .
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autocorrelation function Ienvelope. In the frequency dqmain we can write 6.1.14
as |
8.(v) = &(w) 6+(w) , 6.1.15

where go(w),é(@) and 6+(CU) are the Fourier transforms (for real z=w) of e, (t),
G(‘.c)‘and C+(t) respectively. This allows us to make some convenient approxima-
tions on some of the functions, mainly the electron ie( k,t) and §e( k,t), before
simulation; by smearing out any high frequency detail with frequency higher than
the "cut-off" frequency of é(w), for instance, the e.lectron gyro-frequency. It
“also determines a minimum and optimum sampling fate in the process of digitali-
zation, since for accurate representation of a funétion the isampling rate shoﬁld be
at least twice and for practical reasons not much higher than, the "maximum" fre-
'quency of the sampled function. It also allows to modify the functions §e(}i,t) and
-S-i(l'g,t) (mainly the first one) at frequencies higher than the cut~off without intro-
ducing appreciable errors in ey(t). This we have found necessary to overcome
some problems of stability.*

We have found the filnction

v -Gt/ )3 |
G($)= 1 [?——(—t—>:|e v 6.1.16
Jrlt L2 o\t '

with real Fourier transform:

A th2 ~(wt_ /2)?
G(w)=[1+<————)]e w , 6.1.17
9 ‘

Although the actual system is stable, necessary approximations in the process
of digitalization can make the system unstable.




particularly convenient. This function 8( w) is very flat at low frequencies w <t;V1
behaving as
4 5]
é(w) =1 -3 ft—w + Ol:fffy :I 6.1.18
2 \2 2

and cuts-off very sharply at frequencies w> 2t")'vl . We have used this function in
evaluating the functions 5(1’) to be described next, using tw's no larger than
1/20 (ku /,/2')™! of the lightest of the ion species. It leaves all features due to
ion dynamics with frequencies of the order of ku /ﬂ or less almost unmodified

and yet provides the desired filtering at higher frequencies.

2. Numerical Results.

Considering the number of parameters involved in the expression for ﬁle( lf{v,'r) =
C+('r), it is apparent that there is a enormous number of possible combinations that
one could discuss. We shall limit them by considering typical ionospheric parame-
ters and selecting a wavelength which corresponds to the Jicamarca Observatory;
the only experimental installation capable of observing ion gyro-frequency phenomena,
in which we are particularly interested. We have investigated numerically the effect
of ion-ion Coulomb collisions, the effects of the angle « (e =m/2-86, where 6 is the
angle between lfgand B) including very small values of « and the effect of several
ion components. The effects of the other parameters: temperature, magnetic field
and wavelength are relatively obvious (provided, of course, we keep them within

some practical and realistic limits).



We have evaluated the function 5(1‘) for the conditions specified above and
the results are displayed in Figures 7 to 11. By normalizing with respect to C(0)
rather than 5(0), we show explicitly how much "power" has been filtered out, and
not accounted for. The signal powers < Ez(t)> and < E’2(t)),before and after the
filter, are given by R(0) and R’(0), and its ratio R’(0)/R(0) by C(0)/C(0). The

amount of relative power filtered out is given by

[0 -rO] g .

R(0) C(0)
which can be obtained from the plots at T=0. In most cases considered, this dif-
ference is smaller than the resolution of the plots.

An absolute value for C(0) =Ele(k,0) can be readily obtained from:

2
c0) = 58(k,0) = Bk = 1-2 —F— 6.2.2

hz 1 + k®h®
this in turn can be considered as a measure of the relative power of the scattered
signal as compared to the power received in the hypothetical case in which there
is no correlation between the particles (Thomson-Rayleigh scattering), in which
case H (k) =1. For all cases considered here k?h? << 1 and C(0) ~ 1/2.

Figures 7a,b, and ¢ show the autocorrelation function envelope, 6(1‘), for
hydrogen, helium, and oxygen ions respectively, under similar conditions and for
different angles of the wave vector and the magnetic field (@ in degrees from per-
pendicular). Collisions have not been included here (v = 0) for the purpose of dis-

cussing only the effects of the angle @. The normalized time is equal to kui/ﬁ t.
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T

We have used the values for B,k, and t shown in the figure and a density of
n®=5x 105, but, provided one stays in the range of small k®h®, the curves are
insensitive to density variations and could correspond to any density higher than
~ 10® cm~2. The first point to notice is the qualitative similarity between these
functions and -I-i(li,t) (Figure 3) for angles (in radians) larger than (me/mi)ll2
(this critical angle occurs at 1.34, 0.68, and 0.34 for H+, HZ, and O+ respec-
tively), the main differences being in the slight oscillatory tendency of (_3('r) as |
compared to ii( li,'r) (see Figure 3) and a shift toward the left of the gyro-periods

(labeled as T_,T

0’ and T o) for the occurrence of the maximums in the auto-
e

H
correlation function. Curves for the different species labeled with the same letter
correspond to angles which are in the same proportion as the square root of the
ratio of their masses and show a very close similarity to each other. Notice that
the gyro-peaks show up only for angles smaller than the ones corresponding to
curve C. As far as the behaviour for times less than the gyro-frequency there is
little change until the angle is reduced to the small value corresponding to curve B.
At exactly the critical angle, o= sin™* (me/mi)ll2 (curve G) a peculiar thing
happens, in that the behaviour of 6(7) for small times is almost exactly that of
ii(l’g,'r). The reason is that at this angle (Qe >> kue) we have that
-k®u? sin® o/2 -KPut?/2

Ikt~ E e © =1 e , 6.2.3

and for times close to the origin we have
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i i kK t%/2
1 ('lg,t)mH(k) e H 6.2.4
therefore, the input to the feed-back loop (point 2 in Figure 6) proportional to their
difference is almost zero (since He(k) ::;Hi(k)) and the only significant contribution
to the output is from ie(’li,t)mii('ls,t) .

For smaller angles than the critical one, the dynamics of the electrons, be-
come important and the roles of ions and electrons (for times less than gyro-pe-
riod) are reversed. (Notice the similarity between the curves A and I when the

‘time scale of the latter is adjusted by a factor (me/mi sin q)llz). The electrons
behave like heavy elements, because of the constraint to move only along the mag-
netic field line, with equivalent mass me/ sin @ in a sea of neutralizing lighter par-
ticles (the ions). At these angles the "gyro-peaks" are broadened and shifted to
the right, this can also be explained in terms of apparent heavy electrons, since
then one would expect the electrons to try to follow the ions but with much higher
inertia, and then, to take a longer time to diffuse out.

Figures 8a,b, and ¢, show the effect of collisions. Here, keeping the angle
and other parameters constant, we have varied the density and used a correspond-
ing collision frequency in accordane with the formula obtained in Appendix I. The
parameters selected, other than density, are typical for the ionosphere and a wave-
length corresponding to back-scatter at 50 Mc as used by the Jicamarca Observatory.
The curves show that for the typical ionospheric concentrations of He+ ard H+ of

the order of 10** cm~2 or less, one would expect negligible attenuation of the
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"gyro-peaks" corresponding to these constituents. On the other hand, one should
not expect to "see™ the oxygen peaks for typical concentrations between 10* and
108 cm~2 unless one goes to sufficiently high altitudes where the density drops
to values of the order of or less than 10*% cm~2. The amount of attenuation with
respect to the collisionless case is very close to the one expected from the be-
haviour of ii( 1i,t) and for practical purposes one could use

E(tg; v)  —am(v /)3 uf /Qf)

—= —=e 6.2.5

c( tg; 0)
as a semi-empirical formula to estimate the amount of attenuation at the first
"gyro-peak."

It is interesting to note, taking a specific example, that for curve B for
oxygen (Figure 8c), the characteristic numbers \)i/kui and \Ji/()i are only 2.1x 10™%
and 2.32x 103, and yet, the effects of collisions are sufficiently high to attenuate
the amplitude of the gyro-peak almost completely.

Figure 9a to f show the effects of different ion composition. They are grouped
in sets of equal amounts of oxygen. A density of 3x 10* cm~2 has been selected
and the effect of collisions is included. Other parameters as'indicated in the figure.
The behaviour is as one would expect from physical grounds. Notice the almost
linear relationship between the amplitude of the gyro-peaks and the percentage of
the corresponding constituents. The use of incoherent scattering technique as an

instrument to measure the ion composition in the ionosphere is evident.
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Figures 10a to e, show the same curves as Figure 9 but grouping them for
a constant amount of hydrogen. The combination of both sets, Figures 9 and 10,
become useful when fitting experimental data. Notice the relative constant am-
plitude of the hydrogen gyro-peaks as the compositions of the other elements is

varied.

3. Experimental Verification.

For that part of the autocorrelation function close to the origin there is a
considerable amount of experimental verification with existent collisionless
theories, which are sufficient in this time range, as shown by the insensitivity of
this part of the curves to the inclusion of collision effects in Figure 8). Figure 11
shows experimental points as obtained in Jicamarca compared with theoretical
curves at bounding temperatures (after Farley)31. Curves obtained using our
theoretical and numerical results agree with the ones given here by Farley.
Clearly a temperature of 2000° with a composition of 40% O'+ and 60% H+ would
produce a very good fit.

It has not been until recently that the "gyro-peaks" have been observed and
even now there are observations only for hydrogen. Although this is not the best
element to check the collision model it does provide a good check for the theory in
general. Figures 12 and 13 show those recent experimental observations at
Jicamarca, Peru (Farley — personal communication). Figure 14 shows the same

experimental points shown in Figure 13 for 759 km (note they are taken at different
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times and thus not necessarily at the same composition) and the theoretical curve
for the expected value of the magnetic field, with composition and temperature ad-

justed for best fit.
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11. Experimental points obtained at Jicamarca for time delays less than
gyro-period showing agreement with theory (After Farley reference 31).
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FIG. 12. Experimental curves showing autocorrelation peaks at multiples of the
gyro-periods of hydrogen (After Farley personal communication).
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FIG. 13. Same as Fig. 12 but up to higher altitudes
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Experimental points from Fig. 13 and theoretical curves with unknown
parameters (temperature and composition) adjusted for best fit. Mag-
netic field has also been connected slightly (~2%) from theoretical
models for best fit. Composition used is 60% [H]Jr and 40% [O]* for
Fig. a and 90% [H]* and 10% [O]" for Fig. b, both at 700°K.



APPENDIX I

A more accurate collision term than the one we have used in the text is that
obtained by M. Rosenbluth, W.M. MacDonald and D.L. Judd.32 We shall use it
to derive an appropriate value for the "collision frequencies,"” vu used in our equa-

tions. They obtain a collision term (of w/ at)eo11 of the Fokker-Planck form, viz.:

> bb 43 2 2
_]l:. .a...f_ =-__a... fu_a_ll__ +1‘. a fp‘ a g“' . I"l
r \at v, Jv, 2 v, v, v, av,
e coll i i i i
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m
n 1
s
gu'z E 1 dX,’ fn(xl)lyv_zrl , 1-3
1
r = et 3
= zn(24nn nd) , I-4
] m= €
T

and M= fp‘( V) = f“’( i’l’,’t) is the local distribution function. Summation over the
indexes i and j is implied.

This equation was derived for the case of non-magnetic field. But, if we



assume that the gyro-radius is much larger than the Debye length, it is reason-
able to expect that the dynamics of the collisions are not going to differ much,
since the trajectories of the particles within the range of interaction (i.e., within
a Debye length) would not differ much from the non-magnetic field case. We shall
therefore, be limited to the condition h <« rg which includes ionospheric plasmas.
Following a perturbation expansion T nu cp“'+ flp' (o= cp(ﬁstands for a
Maxwellian distribution), keeping only the terms involving flu' and neglecting the

ones involving any moments of it as we did for our simplified model we obtain:

ig b 2 eb
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By carrying out the integrations and differentiation we can express the coef-

ficients I‘p'( ah}," / avi) and [‘u( 3 gg'/avi avj) in terms of two functions A, (x) and A_(x)

defined by:
A (x) = 1 evf (x) -—2-x e-xz] , I-8
X3 Jr
A(x) = — [(zx2 - 1) erf(x) + —2—x e”‘z] , 1-9
2x° m
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and plotted in Figure 15, so that:
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These terms correspond to vu \A and \)p‘ u® Gij in our simplified model.
They are referred to as the frictional and dispersion coefficient respectively since
the first is responsible for the slowing down and the second for the probabilistic
dispersion of a test particle.

As far as our particular problem is concerned, we have seen in the main
text that the most important effect of collisions is that of reducing the amplitude
of the "gyro-peaks." This was explained in terms of the probabilistic dispersion
suffered by the particles and for which the dispersion term % vu uz (RtH/ v, avj)
is mainly responsible. We would like to find a value of vu so that the dispersion
coefficient % vu u:' be the best approximation to the more accurate coefficient
given by I-11. We have to ignore the anisotropic terms in this coefficient because
of our ‘isotropic model. It would have been desirable to use an approximate model
with an anisotropic part but the complexity of the problem increases considerably.
If we are going to replace the velocity dependent coefficients Az(v/u,n) by a con-

stant, clearly this should be a value of Ag(v/un) corresponding to those velocities



for which the particle population of the gas in question, ., is the largest. We ob-
tain such a characteristic value by averaging Aa(v/u 1]) over all velocities weighted
by the velocity distribution un' (v). Following this criteria we obtain a value for

vV given by:
M)

r s
v =-2N"n c _, I-12
B2 LY
g
where
'm . \M?2 . \L/2 - . m /e
c -2 By oM(v)A [~ = AR Le ™ A, “MY oxlax.
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" Ul 0 B
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The value of Cuﬂ is non-dimensional and depends only on the ratio m,./m

M

We have evaluated it numerically for the masses of the electron, hydrogen, helium,

and oxygen, and the corresponding values are shown in Table I-1.

TABLE I-1
Values of the Constant C
w1l

n L Hydrogen Helium Oxygen Electron
Hydrogen 0.601 0.853 1.015 0.0176
Helium 0.352 0.601 0.854 0.0090
Oxygen 0.185 0.351 0.601 0.0048
Electron 1.127 1.128 1.128 0.601

In c.g.s. units I-12 takes the form:



v =0.113 A E:
K Ml/z T3l2 M uﬂ

where MH is the mass of the p particles in a.m.u. and A = 247 np‘ hs.
In the case of a single (ion) component plasma it reduces (neglecting the ef-

fect of the electrons) to

which corresponds to the inverse of tc as given by Spitzer.33 He gives a coef-~
ficient equal to 0.0877 instead of 0.0680, this is due to the fact that he takes a
value of v = (1. 5)1/2 uu to obtain a characteristic value for A, (v/uu) whereas we

take an average which weights v = uu more strongly.
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