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Spectral moment estimation in MST radars

Ronald F. Woodman

Instituto Geofisico del Pery, Lima, Peru

(Received February 20, 1985; revised June 25, 1985; accepted June 27, 1983.)

Processing techniques for the estimation of the power, the frequency shift, and the spectral width of
mesosphere-stratosphere-troposphere (MST) radar returns arc presented. The different techniques are
compared in terms of statistical goodness of the estimators and in terms of computational convenience

and simplicity,

1. INTRODUCTION

We are concerned in this paper with statistics of
the returned signals in a mesosphere-stratosphere-
troposphere (MST) radar. MST radar echoes are
produced by fluctuations in the index of refraction of
the atmosphere. In most cases, these are turbulence-
induced fluctuations.

Because of the random nature of turbulence, radar
returns from turbulence-induced fluctuations are sto-
chastic processes and have to be characterized statis-
tically. The returns from any one height form a
random time serics which, for the purpose of this
work, will be considered quasi-stationary (stationary
within an integration time) and Gaussian. Both as-
sumptions are fair and very close to reality; one can
always adjust the integration time so that the first
assumption is true; the second is a consequence of
the muitiscattering nature of the radar return,

A Gaussian and stationary process is fully
characterized by its autocorrelation function p(r), or
equivalently by its Fourier transform, the frequency
power spectrum S(w). In addition, in the case of scat-
tering from turbulence induced fluctuations, the dis-
tribution of velocitics in the turbulent scatter volume
is Gaussian, and consequently the shape of S(m) is
also Gaussian. Thus the processes we will be dis-
cussing are Gaussian stationary processes and, in
most cases, they have a Gaussian-shaped power spec-
trum. The first qualifier refers to the multivariant
amplitude distribution of the signal proper, and the
second to the distribution of the power at different
frequencies, ie., its spectral shape. They should not
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be confused. The autocorrelation function has also a
{(complex) Gaussian shape, since the Fourier trans-
form of a Gaussian is also Gaussian.

We are aware thal the assumption of homogeneity
and Gaussian distribution of velocities may be viol-
ated for certain MST radar returns; for instance,
multiple layers of turbulence are sometimes not re-
solved, and echoes are obtained at times from partial
reflection, from quasi-systematic horizontal ledges in
the index of refraction. Still the deviations from a
Gaussian, or a Gaussian-looking bell-shaped spec-
trum, are seldom. Therefore, whenever we need to
define the spectral shape in our discussion, we will
assume it to bc Gaussian. In most cases the con-
clusions we arrive at are valid, at least qualitatively,
even when these are deviations from this assumption.

A Gaussian power spectrum has the form

Sew) = s exp [ — (w0 — Q?2W?] (1)

(2nWw i
where o is the radian frequency. It is fully defined by
the value of three parameters: P, Q and W. They
correspond to the total power, the frequency shift,
and the spectral width, respectively. Therefore, if the
spectrum is Gaussian, these three parameters contain
all the information we can obtain from the radar
echoes, and they are all we need to know to
characterize the process. They are a measure of three
important physical properties of the medium: turbu-
lence intensity, mean radial velocity, and velocity dis-
persion (turbulent velocity variance, <u?>'/?, under
certain conditions).

These three parameters correspond, also, to the
three first moments of S{w), defined as

P= jS{m) dw (2)
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1t js preferable to take (2), (3), and (4) as the definition
of the three parameters of interest, P, Q, and W, since
they are always well defined, even in the case when
there are deviations from our assumptions and ex-
pectations about the nature of the process.

The scope of the present paper is to review signal
processing techniques which have been used, or
should be used, in MST radars, ie., techniques which
lead to a good estimation of the three first moments
of the spectrum.

The number of possible estimators for P, Q, and
W? is unlimited. Therefore we cannot be exhaustive.
In order to reduce the scope of the paper to bounds,
we shall limit ourself to “good” estimators and to
estimators that are presently in use.

We would like to talk about “best” estimators, but
“hest™ is not easy to define, since there are two cri-
teria for goodness one would like to satisfy: the esti-
mator should be good from a statistical point of
view: ie, the variances of the estimated values
should be as close to minimum as possible; but at the
same time they should be practical. These two cri-
leria are usually not compatible. As one improves the
goodness of an estimator, one increases the com-
plexity of the procedure. It is possible to talk about
best estimaters from a statistical view point, as we
will see when we talk about the maximum likelihood
(ML) estimators, but they are very difficult if not
impossible to implement. In general, one would like a
procedure which one can use in real time. This re-
quirement can be very limitting, not so much because
of the time scales of the processes, which are rela-
tively slow, but because of the need to process a large
number of parallel channels, especially if one 1s after
the whole MST region with high-altitude resolution.

We can limit the scope of our paper if we limit
ourselves to representative techniques which have
been actually implemented in MST radars. We shall
do this but include also some discussion about ML
estimators since they give us a limit in performance
with which we can compare other techniques.

Recently, Zrnic’ [1979] has reviewed the subject of
spectral moment estimation. Although the paper was
motivated by weather radar applications and needs,
it is fully applicable for MST radars. We shall take
advantage of this review, avoiding repetition, unless
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we want to stress important conclusions. This in-
cludes the bibliography. The reader will find a very
extensive list of references in the review by Zrnic’.

In the next section we shall describe straightfor-
ward power spectrum approaches; we shall then de-
scribe and discuss a correlation or covariance ap-
proach and finally the ML estimator concept and
discuss the limits of performance they define.

2. MOMENT ESTIMATORS VIA POWER SPECTRUM

The most straightforward estimators of the three
parameters of interest are suggesied by their defini-
tion, through (2), (3), and (4). We should remember,
though, that we cannot obtain in practice S{w); we
obtain instead statistically estimated values of it,
S$'(ew)), at a [inite discrete number N of frequencies.

The definitions suggest the following estimators,
PO, and W', for P, Q, and W:

N
= Y S(w,) (5)
i=1
1 ¥
Q = » Z‘lwi S'{en)) (6)
1 N
= 7 2 Z o, — QS {w)) (N

We need then, procedures, hopefuily optimum, to
find good estimated values of the power spectra. This
is a very old and gcneral problem for which there is
extensive literature. The reader is referred to the
book by Blackman and Tukey [1958] for an mtro-
duction, and to the section on spectral estimation in
the IEEE book on signal processing for more
modern approaches [Rabiner and Rader, 1976]. We
would like to point out that unless the Nyquist fre-
quency is significantly larger than the mean fre-
quency plus the spectral widths, ' and W%, as given
by (6) and (7), would be biased because of aliasing.
This bias can be reduced if we assume periodicity
with respect to the index i and period N and calcu-
late the moments centered around a good guess of (.
Let «; be a good guess of the actual value of {3; then
we evaluate a correction @, such that Q' = w; + o,
where o, is evaluated from

{ =it
o, =— 3 (@, —w)lS(w) (8)
PoiciTnn

This procedure can be itcrated if desired. The spec-
tral width is better cstimated from

{ i=jrai2
Wo=— 3 (0 — w; + ©)8w) %
P ioiThn
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In practice the problem is complicated by the fact
that the signal is contaminated with noise and echoes
from efficient targets on the ground (ground clutter).
If we have an independent way of evaluating the
noise power spectrum N(w), the algorithms presented
in (5}9) are still valid provided we replace S'(w) by
8"(w) — N, where §"(w) is the power spectrum esti-
mate including noise. Here the noise spectra have
been taken as constant independent of frequency
since usually the receiver bandwidth is much larger
than the pulse repetition frequency (PRF), and there
is no correlation between noise at two different
sample pulses. The noise level can be estimated from
an altitude where there is practically no signal, for
instance from 45 km or from ionospheric altitudes, or
from a few pulses with the transmitter off. The last
approach requires a fraction, fortunately small, of the
observing time, since the noise level is independent of
altitude and one can use an average of the estimates
from all the different altitudes.

The presence of ground clutter presents a source of
bias and an additional problem. Different techniques
have been used to cancel or minimize its effect.
Ground clutter signals have a spectral signature
which consists essentially of a single spectral line at
the origin with a strength which depends on the
ground shielding of the radar. At tropospheric and
stratospheric heights it is at least comparable to the
signal, and often many orders of magnitude larger.
When the clutter is strong enough, it presents, in
addition, a component of the spectrum with a spcc-
tral width comparable to the signal spectral width.
This results from the slight propagation fading of the
clutter and from echoes from vegetation moving with
the wind. As in the case of noise, one should subtract
the contribution of this interference before evaluating
the moments. This contribution can be easily esti-
mated in the case of nonfading clutter. The clutter
adds a constant value to the signal, ie, a spectral
line, and can be estimated by integrating the returns
for as long as the spectral estimation time (usually
one or two minutes). One can then subtract the theo-
retical contribution of this constant component.

The fading component is difficult to estimate inde-
pendently. One way to eliminate its biasing effect is
to ignore the frequencies around zero {dc) frequency.
This is only possible when the spectral offset Q is
larger than its width W. This occurs frequently,
cxcept when one is looking too close to vertical, or
the medium velocity is too slow (horizontal velocities
of the order of 1 m/s or less). Another technique
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takes advantage of the symmetry of the ground clut-
tcr component. The clutter contribution, being sym-
metric, disappears, and the signal contribution gener-
ates a negative image which is set to zero. One then
evaluates the moments of what is obtained [Sato and
Woodman, 1982]. This technique also has difficulties
when the signal is too close to the center or to the
Nyquist frequency,

In using the spectral moment technique the obser-
ver has some freedom in selecting the frequency spec-
trum estimating algorithm, the sampling frequency
(or size of the spectral window), and the frequency
resolution. This freedom has direct implications for
the processing speed. Following are some criteria for
its selection,

As far as the estimating algorithm, most modern
procedurcs use a fast Fourier transform (FFT). This
15 an efficient way of doing it and should always be
pursued, unless one has a hardwircd autocorrelator.
One should always use algorithms specially designed
for 2" samples and, if possible, specially designed for
the particular exponent r selected; there can be con-
siderable savings in time this way.

As far as the sampling frequency and maximum
{Nyquist) frequency are concerned, the MST signals
deserve some special considerations. The maximum
duty cycle and maximum range of interest permit, in
MST radars, pulse repetition frequencies which can
be more than 2 orders of magnitude higher than the
maximum frequency content of the signals. This pro-
duces high redundancy in the sampling and calls for
some signal filtering: not so much to increase the
system sensitivity, as one sometimes reads or hears,
as to reduce the information rate input into the spec-
trum evaluating system and the amount of signal
processing. As is well known, a FFT evaluation takes
N In N additions and computations. A reduction of,
let us say, a factor of 256 in the number of sampled
points speeds up the processing by a factor of 597,
for a resulting spectrum of 64 points with the same
frequency resolution.

The simplest and easiest filter to implement digi-
tally is a boxcar integrator (coherent integration). It
simply integrates N, number of samples from a given
altitude, takes the integrated value as a sample of the
filtered output, and resets the integrator register to
zero, ready for the ncxt integration. The integration
time should not be much larger nor shorter than half
the period of the expected maximum Doppler fre-
quency shift plus the expected spectral width, The
imtegration time defines the sampling rate. Some un-
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dersampling and consequent aliasing can be allowed,
if (8) and (9) are used for the evaluation of Q" and W,
but any oversampling is a waste of effort.

Another processing parameter that the observer
has some freedom to choose is the frequency resolu-
tion. It is inversely proportional to the size of the
time span taken in evaluating the discrete Fourier
transform (DFT) or the time width of the weighting
function (Hanning window, etc.). The latter should be
longer but not much longer than the correlation
width, say 2 or 4 times the half correlation time, since
this will give us four or eight points to sample the
spectral function shape, more than enough to deter-
mine the three parameters that define it. Higher reso-
lution increases the processing effort without much
gain in parameter accuracy.

In order to discuss the goodness of the spectral
moment estimators we need to know the variances
o2, ¢4, o of the estimated values with respect to
their expectations. Here o3 = &(P; — (P;»)*. This in
gencral depends on the algorithm used for the evalu-
ation of S'{w). We will quote here the results obtained
by Denenberg [1971].

He gives simple expressions for the variance oj
and o, for the case of a Gaussian spectrum with no
additive noise. In terms of our notation and units
{(radians instead of hertz),

22
2WT

(10)

o5 =
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and

2 pard
6%,2 = M {11
4wt
Following his procedure, one can similarly find an
expression for oy :
o'%w 3tPw?

4W?2  16WT

oy = (12)

The expressions are valid for a single spectral esti-
mate of a time series of length T. They can be gener-
alized for the case where the spectral estimate §9{w) is
obtained from the average of M, independent esti-
mates Si(w) of nonoverlapping segments each of
length T. In this case, T should be replaced by 1, =
M, T, the total length of the sequence.

In order to compare the goodness of different
moment estimation techniques we have found it con-
venient to define the following figures of merit:

_ ool LWH?

o= W (13)
T, W2
Fy= Tl W)~ EV ) (14)

which normalize the variance of the estimates of 2
and W, ¢, and o,,, with respect to the spectral width
W, and remove the inverse dependence on the square
root of the number of degrees of freedom (number of
possible independent estimates), (ToW)'%, which
should be common to all estimators. Here T; is the
total observation time.

The corresponding figures of merit for (10) and (12}
are

Fq = (m/4)"* = 0.94 (15)

Fy = 2414 = .58 {16}

One can improve on the estimators (5), (8), and (9)
with little additional effort. Following a rule that one
should not use data that carry no information, one
should use only those points in the spectrum, o, for
which there is a significant value for S{w)), especially
when the signal is contaminated with noisc. This can
be achieved with very little additional processing
time once we have a reasonable cstimate for the
mean frequency and its width.

We can, in general, say that the spectral moment
approach provides good estimators of the desired pa-
rameters. It involves the real time evaluation of
DFT’s for every altitude. This is a time-consuming
operation, but fortunately MST echoes change
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slowly, especially at 50 MHz. With proper filtering
(coherent integration) und the use of FFT processors,
it should be possible to perform the nccessary oper-
ations in real time, even in the case of high-resolution
radars. The processing system at the Arecibo radar,
for instance, is capable of processing in real time 32
point spectra, at 256 heights [Woodman, 19807. It is
actually capable of processing at least 4 times more
information, being limited at present by the memory
capacity of an array processor, It should be pointed
out that the frequency of the Arecibo radar is 430
MHz, which produces time series (after proper filter-
ing) close to 10 times faster than a 50-MHz radar
and, therefore, 10 times more demanding. The coher-
ent integration is performed by a special purpose pre-
processor (a decoder). On the other hand, with the
present state of the art, real-time full spectral pro-
cessing of high-resolution radars is not possible with
a simple minicomputer. One needs the help of a spe-
cial purpose coherent integrator and FFT processors.

3. PARAMETER ESTIMATION BY NONLINEAR
CURVE FITTING TECHNIQUES

The processing scheme described and discussed
above implements the defining equations (2), (3), and
(4) and does not take advantage of the knowledge
about the spectral shape. There is a golden rule in
detection thcory that one should make use of as
much a priorl information as one has and ask only
what one does not know, Equation (1) suggests an-
other technique for evaluating the moments, or more
properly, in this approach, the paramecters P, 2, and
W2 We can ask for a set of parameters such that
S(w) = S{w; P, Q, W) best approaches, in a lcast
squares sense, the experimentally determined set
{$(wy}, for all i. This is a standard parameter esti-
mation problem. This approach is more time de-
manding but should produce better estimatcs of £, Q,
and W. In fact we shall see later that with proper
weighting, parameters obtained in this way are maxi-
mum likelihood estimates for a given set of experi-
mental estimates, {S'(w,)]}.

The technique consists in minimizing an ex-
pression of the form

N
5;2 = Z /L[S’((UI-) — S{(U;, P, Q, W):lz

i=1

(17)

The problem is nonlinear in the unknowns, P, ©, and
W, and invelves special techniques. The reader is
referred to the text by Bard [1974] for a comprehen-
sive treatment.
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This approach has been taken by Sato and Wood-
man [1982] to process ST spectra obtained with the
430-MHz radar at Arecibo, In fact, they used the
technique to estimate up to eight additional parame-
ters which define the noisc, N, ground clutter inter-
ference, and if necessary, possible interference from
strong turbulent layers from lower altitudes which
leak to higher altitudes through code side lobes. The
technique includes instrumental and signal pro-
cessing sources of distortion and biases in the theo-
retical function. In this way the parameters of interest
arc evaluated frec of all sources of biasing. Notice
that an estimation of noise level and clutter charac-
teristics are obtained simultancously with the signal
parameters.

This approach involves first the estimation of
§'(w), as in the previous case. The parameter infor-
mation is obtained at the cost of additional pro-
cessing,

Nonlinear automatic least squares parameter esti-
mation involves nontrivial procedures. In the case of
Arecibo, the additional processing is performed off
line [Sato and Woodman, 1982]. This takes (making
use of a floating-point array processor (AP-120)) a
time equivalent to the time it took to obtain the data.
Although it is feasible to perform this additional pro-
cessing in real time by doubling the processing ca-
pacity, for many applications it is not necessary to
perform the nonlinear estimation in real time.

4. THE AUTOCOVARIANCE OR AUTOCORRELATION
APPROACH

Omne of the most efficient techniques, from the
point of view of processing requirements, in obtain-
ing P, Q, and W is the single delay autocorrelation
approach. In this approach the signal power and the
autocovariance at a single delay are evaluated
through the classical estimators

1 M
P=pi0)=— Y x,x¥ (18)
e
P Mo
P’(Tj) =T Z xix?:-j {19)
M—j .=

where x; is the ith complex sample corresponding to
a given altitude and 7; is the time displacement corre-
sponding to j samples. The mean frequency shift and
the velocity spread, @ and W', are then obtained
from

T

Q (20



1190

-100

-0.03 -

F=m

0.0} L1 111
001 003005 0.1 0305 10

W
Fig. 2. Normalized standard deviation of the estimate of fre-
guency spread versus pulse pair spacing [ Miller and Rochwarger,
1972].

i _ ' o) — :
W2 - 2 |p (Tl) ‘f (.Z( ) HOISe) (21)
71

The technique takes advantage of the relationship
that cxists between the r'th derivative of the corre-
lation function evaluated at the origin and the n'th
moment of the frequency spectrum.,

The technique was first used in 1968 by Waoodman
and Hagfors [1969] for estimating the electro-
magnetic drift of ionospheric plasmas at Jicamarca,
and it was first used in 1972 by Woedman and Guillén
[1974] for stratospheric and mesospheric  appli-
cations. The technique is in much use today by the
meteorological radar community, apparently as a
consequence of some independent work by Rummler
[1968] and by Miller and Rochwarger [1972), and
has been subjected to much discussion and evalu-
ation in the literature.

This technique involves only two complex multi-
plications and additions per altitude sample, as com-
pared to In N in the case of spectral moment esti-
mation (where N is the number of spectral points).
The variance of this approach is comparable to that
obtained by integrating the moments of the fre-
quency spectrum [Rummler, 1968; Woodman and
Hagfors, 1969]. But this should not come as a sur-
prise. After all, it is easily accepted that evalnating
the power via the average of the square of the mag-
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nitudes (equation (18)) yields the same variance as
that evaluated by integrating the area of the fre-
quency spectrum (equation (5)). This is only a partic-
ular case, corresponding to the zeroth moment of a
more general rule.

Woodman and Hagfors give us a simple ex-
pression for the variance of the mean angular fre-
quency shift, valid for large values of M and small
resultant values of 1203 (« 1 rad):

pH0) — p*(7)

222Mp7) (22)

a3 =
Here M is the number of independent estimates. It is
interesting to compare the figure of merit of this ap-
proach with that of (13). For large S/N ratios and
Gaussian-shaped autocorrelation functions, (22)
takes its best values at small 7. In this case,

Wz

M (23)

ch =
For a given observation time T, the number of inde-
pendent estimates is approximately M =~ T, W. This
is not quite equal, since contiguous sampled pairs,
sampled at 1/W seconds apart, produce correlated
estimates of the correlation function; therefore the
number of independent estimates is somewhat less.
Hence the figure of merit, Fg, would be somewhat
jarger than 1/2!/2, but in any case comparabie to the
spectral moment approach.

Later on, when we consider the case of using auto-
correlation values at multiple delays, we shall see
that the variances of the estimate using the single
delay technique are close to optimum only when the
signal to noise ratio is high. This relatively good per-
formance deteriorates as the signal to noise ratio
goes down. But it should be mentioned that the same
happens with the spectrum moment approach repre-
sented by (5), (6), and (7), but not with the more
sophisticated algorithm which includes weighting the
spectral density by zero in the regions where there is
no signal (match filter approach), or with the param-
eter estimation technique we have previously dis-
cussed.

Another limitation of this technique is the diffi-
culty in discriminating against fading ground clutter
or any other kind of interference. Fortunately, in
many MST installations there are only nonfading
clutter and white noise to worry about, and the bias-
ing effect they produce can be eliminated by sub-
tracting independent estimates of their contributions
to p(0) and p(r). These estimates can be obtained by
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the same methods described before for the spectral
moment approach.

Going from (3) and (4) to (20) and (21) involves
approximating the derivative of p(r) by finite differ-
ences between p(0) and p(r). This presenis a bias
which could become significant for relatively large
values of © [Miller, 1974]. Fortunately, in the casc of
a symmetric spectrum, equation (20) is an equality,
and the bias disappears [Woodman and Guillén,
1974]. This is impoertant since optimum values of z,
for noisy signals, are not close to the origin.

We are reproducing two graphs here (Figures 1
and 2) from Miller and Rochwarger [1972] which
depict the performance of the single delay auto-
correlation technique, by plotting the standard devi-
ation of the estimates for @ and W as a function of
the sample separation T (=h, in their notation).

From Figures | and 2 we can see that the best

separation for 7 is that around a characteristic width
of the correlation function 1/ and that for noisy
signals the standard deviations of the estimates €
and W’ are inversely proportional to the S/N ratio.
Similar plots were produced by Woodman and Hag-
Jors [1969] but for a typical incoherent scatter auto-
correiation function shape.

It should be mentioned that the single delay auto-
correlation approach, in contrast to the frequency
spectrum approach, is very sensitive to the prefilter-
ing of the time series. Filtering of the signal in this
case does improve the signal to noise ratio and hence
reduces the variance of the estimates. As is to be
expected, optimum results are oblained using a
matched filter, matched to the shape of the signal
spectrum. But a boxcar integrator (coherent integra-
tion) produces similar results and is much easier to
iinplement. It should be kept in mind, in any case,
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that filtering could be a source of systematic biasing
of Q and W. This bias can be computed theoretically
and should be correlated for.

5. COVARIANCE APPROACH AT MULTIPLE
DELAYS

If the covariance approach was so efficient at a
single delay, it is natural to ask how much improve-
ment can be obtained by using more than one delay,
7. Let Q, and o, be estimates of Q and &, obtained on
the basis of equations (20) and (21) for different
values t; of 1. We can always obtain a new estimate
Q, and W, through

(24)

- YW, 03)

j=

where C; and C; are weights properly selected to
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minimize the variances of Q, and W, and normalized
such that ¥ C; =Y C;=1. Woodman [1975] has
treated the problem for the frequency shift ,. He
found an optimum set of values C;, such that <(f2,
— Q)?) is a minimum, and discussed numerically the
effect of averaging for diffcrent signal to noise ratios,
sampling spacing, number of averaged estimation,
and correlation shapes. Figure 3 depicts the optimum
set of weights C; for two signal to noise ratios, for a
Gaussian-shaped autocorrelation function, p(t) = exp
(--0.693r2/c2). Normalization is such that p(z.) = 2.
Lag spacing in this case is 0.1t,, and the number of
lags averaged, n, is 32. The set of weights for low
signal to noise is as expected; it corresponds to the
normalized inverse of the variances of €, a well-
known result for optimum averaging of independent
samples. The resultant set for high §/N ratio is some-
what surprising; it has negative as well as positive
signs, with absolute values which are larger than
unity. This is a consequence of the fact that the dif-
ference estimates are not independent of one another.

Figure 4 shows the standard deviation Qa, normal-
ized with respect to a given observational time T,
and characteristic width t,, as a function of the delay
of the last lag, 1,, used in the evaluation of Q,. The
number of different Q, averaged, i =1, 2, 4, *++, 32,
are labeling the curves. Two cases are considered,
one for high and the other for low signal to noise
ratios, S/N. For every point in the graph there is a
set of weighting coefficicnts such as the ones shown
in Figure 3 for n = 32 and 0.1z, spacing. The first
conclusion we can draw from these results is that,
indeed, for high signal to noise ratios there is not
much difference between the standard deviation with
32 points at optimum delay and a single point close
to the origin. There is a 60% difference in going {rom
one to two points, and an additional 50% in going
from two to 32. This last improvement is certainly
not worth the effert. The increase from one to two
could be justified, especially if the redundancy is used
to check the existence of unexpected interference.

On the other hand, we see that for low S/N ratios
and if optimum sampling time (r, /7, = 1) is used, the
standard deviation improves faster than 1/n'‘%
almost like 1/n. In this case, every estimate €; is
almost completely independent of every other. The
reason for an increase faster than 1/n'/? comes from
the fact that thc number of independent estimates is
increased like n?, first becausc of the increase in n
proper, and second as a consequence of an increase
in M. This latter increase is due to the decrease in
sampling time as n increases. Notc that optimum
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spacing calls for a relatively constant t,, within a
characteristic width, avoiding large uncorrelated lags
which do not contribute information.

In practice, the sampling time is related to the co-
herent integration time. The sampling time cannot be
tess than a given coherent integration time. If the
latter 1s reduced to decrease the sampling time, and
increase M, the S/N increases, canceling any ex-
pected reduction in g,. There could still be an im-
provement due to a larger possible n, but only pro-
portional to its square root. Figure 4 assumes con-
stant S/N ratios and does not show changes due to
different possible coherent integration times.

If for any reason the sampling and incoherent inte-
gration time is fixed at a small value, e.g.,, 7, = O.17,,
an increase in »n improves g significantly as shown
by the corresponding dashed line in Figure 4. The
improvement is fast, as 1/n, until it levels off when 1,
becomes larger than the correlation width. The fast
improvement is a consequence of an incrcase in n
and the involvement of longer delays which give a
better estimate of Q.. The leveling off comes about
when the new delays involved are no longer corre-
lated.

We can conclude then that €', as defined in (18), is
a good estimator from a statistical as well as from a
practical point of view when the S/N is better than 1,
but it is not as good when the signal to noise ratio is
low, and it is far from optimum if the coherent inte-
gration time is much smaller than a correlation
characteristic time (z, or 1/W).

It should be mentioned that the deterioration with
noise of the single delay covariance approach with
respect to optimum should not be held as an argu-
ment in favor of the simple spectral moment ap-
proach. Unless some more sophisticated processing is
performed with the spectra, the single delay auto-
correlation approach yields the same performance as
the straight spectral approach, including the case of
noise signals, as was quoted before [ Rummler, 19687.

Similar computations have not been performed for
the variance of the spectral width estimate, but we
can expect that, qualitatively at least, the same con-
clusions will hold.

6. MAXITMUM LIKELIHOOD ESTIMATORS
AND BOUNDS

Given a set or sequence (random process) of M

observables x; with a joint probability function F(X;
{A}) such that

F(X; {A}) = 2X < x <X + &*X/{4})
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where {A4} is a set of parameters. It is possible to find
practically an innumerable number of estimators of
{4} and estimates {4,} as a function of the observ-
ables. For these estimates to be of practical use these
must meet the condition that {4} = A, and that the
variances a2 = {(4; — 4)*> be small. For a given
sample x of the process, we can form a function Fix;
{A4}) and let {4} vary. There will be a value of {4}
for which F(x; {4}) is a maximum in {4} space. This
value 1s called the maximum likelihood (ML) esti-
mate of {A4}. It can be shown that such an estimate
produces minimum variance among all possible esti-
mators [Cramer, 1946].

Usually, it is not possible to find explicit solutions
or practical algorithms for the ML estimators; on the
other hand, the theory gives us formal expressions for
the ML variances, which can be used to compare the
“efficiency™ of a given estimator. It is possible, in the
case of large M processes with a Gaussian-shaped
spectrum plus white noise, and using justifiable ap-
proximations, to obtain explicit expressions for these
bounds. Zrnic’ [1979], for instance, using a ML ap-
proach, finds the following lower bounds:

DWW T, /21)2

2 = 26
78T M1 — 12W T2 26)
when the noise level is zero, and
WZ
g = M Am) AW T, [2m)N/s)? (27)

when the S/N <« 1 and WT,/2r « 1. He assumes a
continuous sequence of M complex samples spaced
by T..

We should state, though, that we find (26) dis-
turbing, since for a given observation time T, = T, M
we can make the variance arbitrarily small by
making T, as small as possible. This is contrary to
our expectations, since for a given W and no noise,
sampling times smaller than W ! give redundant in-
formation and should not improve the variance of
any estimator. There is no explicit indication in the
reference for the expression not to be valid for small
WT..

If the sequence of observables {x;} is given by M
pairs of independent complex values {xy;, x,;} but
correlated in between, the ML estimator can be
found explicitly for large values of M [Miller, 1974].
[t turns out to be the same as the covariance ap-
proach heuristically described by Rummier [1968]
and Woodman and Hagfors [1969] and discussed in
section 4.

It is also possible to use 2 ML approach starting
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with sample estimates of p'(t;) or §'(w)), of either the
autocovariance function p(r) or the spectrum S(w), as
the set of random variables to be used in a ML esti-
mate of the parameters P, Q, W, and N that we are
interested in. The procedure, then, starts with the set
of observables {x;}, from which we obtained an esti-
mate p'(t;) or S'(w;), of p(ty) or S(w,). using any of the
available algorithms. These estimates, which hope-
fully contain all the desired information about the
process, are then used in a ML approach to obtain
the desired parameters. Levine [1965] has taken this
approach starting with an estimate S'(w) of the fre-
quency spectrum. We refer the reader to the original
reference, or to the review by Zrni¢’ [1979], for the
solution algorithm. There is no explicit formula for
the estimates. They involve the solution of some non-
linear simultancous equations. The lower bounds for
the variances are given by

o> L 225 - 20 (WT) + 180 (WTy* (28)
S M I Y S
3 %
02— — (WT)* (29)
2o
, L4 W 4
W= {(WT) (30)

These
ratios.

We should notice that (29) gives about the same
lower bounds as (26), which mcans that at least for
the frequency shift variance this approach can be as
good as the ML approach which starts with the ob-
servational time series x;. In terms of our figures of
merit we can write

bounds are valid for large signal to noise

172

Fo="—(WT"? (31)

Fy = 45" L (WT)* {32)
2x?
We can see that for sampling times comparable to a
correlation time, i.e., for WT, ~ 1, the performance of
the spectrum and the single delay frequency shift esti-
mators is comparable to both ML estimators. Ac-
cording to (29) and (30) both estimators improve as
we reduce the sampling time spacings, eventually be-
coming much better than the simple estimators we
have mentioned. Again, we find this behavior in the
limit, as T,— 0, disturbing, sincc redundant high
sampling rates should eventually produce redundant
oversampling, which should not decrease the vari-
ance of our estimates. Figure 4, for instance, despite
its sophistication, definitely does not show this im-
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provement; it shows instead some leveling off, as we
expect.

The corresponding variances for the case of small
S/N ratios are

, 3 N?
op =i (Wh (33)
5 2V (WT) oy (34)
62— il
R N
2 = 2 W W, aAY 35
ow =—75 57 WIS (35)

The corresponding figure of merit for the first
moment 1§
Fo

(WTN/S) 36)

= H—L;E
which behaves in the same way, as far as it depen-
dence on T, and N/S, as the multiple delay auto-
covariance approach we have discussed previously
(Figure 4).

7. LEAST SQUARES PARAMETER ESTIMATION
TECHNIQUE AS A ML ESTIMATION TECHNIQUE

We have mentioned before that parameter esti-
mation by a least squares fitting of the theoretical
shape of the spectrum is a ML technique. It is indeed
a ML estimator which starts with the {requency spec-
trum estimates s{w)=s; as the original set of
random variables. Let F(8; {F;}) be the multivariate
distribution function, where S is the set of spectral
values S(w;) = S; in vector form. If s(w;) is obtained
by averaging a sufficiently large number M, of DFT’s
of weighted sections of the original time series, F(S,
{P})) is a Gaussian joint probability distribution
function, and the logarithm of the likelihood function
is given by

L{PY: sy = ~In | Q!
- Z (s; — SNHQiY~ 1{51 — §)) + const

where §; = S(w;; {P,}) is a known function of the
unknown parameters P,. We shall consider the co-
variance matrix Q known. Maximizing the likelihood
function L is equivalent to minimizing the quadratic
expression, namely to solve the set

3
¢P,

S5 — SHQ);Ms; —~ S)=0 V&

i

It is known that if the size of the time window in the
DFT is large with respect to the correlation time, the
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variances of (§; — s;} are independent, and Q;; is diag-
onal with elements 6. The problem is then reduced
to solve the set

bol 2l_
aT)kzi:[Si_Sj({Pm})] gﬁ._o Yk

But this is exactly the starting point of a least squares

estimation technique provided that cach clement (s;

— 8.7 in the quadratic expression is weighted by the
inverse of their expected variance.

Note that the set of parameters is not limited to P,
@, and W. The parameter estimation procedure used
for the Arecibo ST data [Sare and Woodman, 19827,
for instance, fits up to 11 parameters.

8. CONCLUSIONS

The single delay autocorrelation approach is a
very simple and statistical efficient estimator for
MST radars and should be used for real-time pro-
cessing of MST radar signals, whenever the com-
plexity and cost of the installation are to be kept low.
A coherent integrator is indispensable, since this re-
duces the processing capacity requirements and im-
proves the S/N and final estimated variances. Non-
fading clutter and noise should be estimated con-
currently and accounted for. The technique does not
allow for correcting other sources of interference.

If the complextity of the installation allows for the
inclusion of an FFT processor, the full spectrum or
cotrelation function should be evaluated, and the pa-
rameters evaluated using existing sophisticated algo-
rithms. Parameters can be evaluated in this way with
much improvement over the single delay correlation
technique, especially under conditions of low §/N
ratio and existing sources of interference like fading
ground, ocean, or self-clutter. A least squares param-
eter estimation technique appears to be the best ap-
proach. Normally, only the estimation of the spec-
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trum or correlation needs to be evaluated in real
tfime.

REFERENCES

Bard, Y., Nonlinear Parameter Estimation, Academic, Orlando,
Fla., 1574,

Blackman, R. B, and J. W. Tukey, The Measurement of Power
Spectra, Dover, New York, 1958

Cramer, H., Mathematical Methods of Staristics, Princeton Univer-
sity Press, Princeton, N. 1., 1946,

Denenberg, J. N., The estimation of spectra! moments, Tech. Rep.
23, 82 pp., Lab. for Atmos. Probing, Dep. of Geophys. Sei,,
Univ. of Chicago, 1971.

Levine, M. I, Power spectrum parameter eslimation, IEEE Trans.
Inf. Theory, IT-11, 100-107, 1965,

Miller, K. §., Complex Gaussian Processes: An Introduction io
Theory and Application, Addison-Wesley, Reading, Mass., 1974.

Miller, K, §., and M. M. Rochwarger, A covariance approach to
spectrai moment estimation, IEEE Trans. Inf. Theory, IT-18,
588-396, 1972.

Rabiner, L. R.. and N. Rader {Eds.). Digital Signal Processing--
Selection of Papers Edited by the Digital Signal Processing Com-
mittee of the IEEE, Institute of Electrical and Electronics En-
gineers, New York, 1976.

Rummler, W. D., Introduction of a new estimator for velocity
spectiral parameters, Tech. Memo. MM-68-4121-5, Bell Tele-
phone Lab., Whippany, N. J,, 1968.

Sato, T., and R. F. Woodman, Spectral parameter estimation of
CAT radar echoes in the presence of fading clutter, Radic Sci,,
17(4), 817--826, 1982,

Woodman, R. F., Error analysis of multiple delay correlation
function velocily estimates, paper presented at General As-
scmbly, URSI, Lima, Pery, 1975.

Woodman, R. F., High-altitude-resolution siratospheric measure-
ments with the Arecibo 430-MHz radar, Radio Sci., 15(2), 417—
422, 1980,

Woodman, R. F., and A, Guillén, Radar observations of winds
and turbulence in the stratosphere and mesosphere, J. Atmaos.
Sci., 31(2), 493-5035, 1974, '

Woodman, R. F, and T. Hagfors, Metheds for the measurement
of vertical ionospheric motions near the magnetic equator by
incoherent scattering, J. Geophys. Res., 74, 1205-1212, 1969,

Zrnic’, D. S., Estimation of spectral moments for weather echoes,
[EEE Trans. Geosci. Electron., GE-17(4), 113-128, 1979,

R. F. Woodman, Instituto Geofisico del Pert, Apartado 3747,
Lima, Peru.



