Radars: Powerful tools to study the Upper Atmosphere

Jorge L. Chau¹ and Roger H. Varney²

¹Radio Observatorio de Jicamarca, Instituto Geofísico del Perú, Lima

²Electrical and Computer Engineering, Cornell University, NY, USA

Outline

- O How the instrument works?
- Some radar considerations
- Incoherent vs. Coherent Scattering
- What physical parameters can be measured/inferred?
 - Examples from Incoherent and Coherent scatter radars
 - Imaging (resolving space and time ambiguities)
- Data processing and analysis for Underspread targets (by Roger Varney)

Basic Assumptions

- were awake during Prof. Kelley's talk (e.g., no need to introduce the Ionosphere)
- every instrument works under some assumptions. As long as those assumptions are valid, the measurement is representative
- knowledge of basic linear systems (ACF is the Fourier Transform of the Spectrum and vice versa)
- want to explore continuing/becoming a radar student

¿What do we study with Radars?

Radar Equation: Hard target

$$\vec{r}_{r1} = \vec{r}_d - \vec{r}_{Rx1}$$

$$\vec{r}_i = \vec{r}_d - \vec{r}_{Tx}$$

Monostatic

$$P_r = \frac{P_t G_t G_r \lambda^2}{(4\pi)^3 R_t^2 R_r^2 L} \sigma$$

$$P_r = \frac{P_t G^2 \lambda^2}{(4\pi)^3 R^4 L} \sigma$$

Radar cross section examples

- Ordinary ship or airplane: tens to hundreds of (meters)²
- Stealth bomber (U.S.): < or ~ a few (mm)²!! (for backscatter)

- A single electron: 10⁻²⁸ m²
- All the electrons in a column $1 \times 1 \times 10 \text{ km}^3$ in the ionosphere at $h\sim300 \text{ km}$, where the electron density is $\sim 10^{12} \text{ electrons/m}^3$: $(10)(10^9)(10^{12})(10^{-28}) \text{ m}^2 = 10^{-6} \text{ m}^2 = 1 \text{mm}^2$!!! But this can be observed (easily) with Incoherent scatter radars!

Radar Equation: Soft target

- Received power dependence
 - Antenna beam shape (antennas, beam forming)
 - Range resolution (rx/tx bandwidth)
 - Volume scattering cross section [area/volume] (medium)

$$P_r = P_t A \frac{\Delta R}{4\pi R^2 L} \sigma_v$$

$$V = \Omega R^2 \Delta R$$
$$G = \frac{4\pi A}{\lambda^2} = \frac{4\pi}{\Omega}$$

Signal/Noise Ratio

$$SNR \approx \frac{P_r}{k_B T_{sys} B + k_B T_{sky} B}$$

Radar	M	~PA W Hectares	T noise (K)		
Arecibo		14	100	Most	sensitive
Jicamarca		16	20,000	Most	powerful
Sondrestrom		0.1	100		
EISCAT Svalbard		0.2	100		
JULIA		0.16	20,000		

Average Power

- In most radars, finite pulses (τ) are sent at regular intervals (Inter pulse period or IPP).
- The pulse length determines the range resolution ($\Delta R = c\tau/2$), the IPP, the maximun unambiguous range ($R_{max} = c \text{ IPP/2}$)
- Transmitters are peak-power limited and not always uses the available average power

duty cycle =
$$\frac{\overline{P}_t}{P_t} = \frac{\tau}{\text{IPP}}$$

How can we make use of the available duty cycle?

Pulse Compression!

The basic idea of pulse compression

- Can we transform a long, low power, pulse into a short, high power pulse with the same total energy (same number of joules)?
- And if so, how do we do it?
 - Frequency modulation (chirping)
 - Phase modulation (e.g., Barker, complementary code, alternating codes, ...

Range and Frequency Aliasing

- The usual radar practice of transmitting a series of pulses at regular intervals and sampling the return at regular intervals can lead to "aliasing" in range and/or Doppler shift
- To avoid range aliasing we want to use a large IPP. But to avoid frequency aliasing we need a short IPP
- With some targets, we can find an IPP that satisfies both requirements (Underspread)
 - But for other targets, no such IPP exists.
 Such targets are called "overspread"

[adapted from Farley and Hagfors ISR book]

Upper Atmosphere Radar Applications

Туре	Region	Measurements/ Techniques	Examples
Incoherent Scatter Radars	Ionosphere/ Protonosphere	Electron density, ion composition, temperatures and drifts	UAF ISR chain, EISCAT
Coherent Scatter Radars	Lower and Upper atmosphere	Plasma physics, convection tracer, neutral dynamics, interferometry/ imaging	JULIA, SuperDarn, MST, Specular meteor radars, Radar Imagers
lonosondes	lonosphere Bottomside	Plasma concentrations, "drifts"	Digisondes, CADI, VIPIR,

Incoherent vs. Coherent Scattering Radars

Description	Incoherent	Coherent	
Power-Aperture	Large	Varies	
Target	Volume-filling	Varies (volume filling, field-aligned, point-like,)	
Cross-section dependence	N, Te, Ti, Vz, Vx, Vy, %	Varies	
Cross-section "strength"	Equivalent to a dime in the F region	Varies (e.g., EEJ is 40-60 dB stronger than IS)	
Upper atmospheric parameters	Most of them measured	Most of them inferred	
Overspread/ Underspread	Mostly overspread	Both	
Operations	Few days a year	Long term	

Coherent and Incoherent Echoes

What physical parameters can be measured/inferred?

- From "conventional" measurements
 - Power Relative Plasma density
 - Spectrum/ACF shape Ionospheric parameters
 - Spectrum/ACF "moments" ??
 - Multiple beams Vector velocities/Electric fields
- From "unconventional" measurements
 - Polarization Faraday rotation Absolute Plasma density
 - High bandwidth Plasma line Absolute Plasma density,
 Temperature
 - Multiple antennas Interferometry/Imaging Spatial/ Temporal discrimination

Spectra/ACF Fitting

Measured ISR Parameters from Ion line

- Altitude-time plots of
 - Electron density
 - Ion temperature
 - Electron temperature
 - Ion velocity

Ion, Plasma, Gyro lines

Measurable Parameters Flow Diagram

Mapping the global convection pattern

Line-of-sight velocities from first moment

Fitted potential pattern

Coherent echoes below 200 km

- ExB drifts from 150-km first moment.
- Plasma physics from EEJ spectra
- Plasma physics and lower thermosphere winds from nonspecular meteor trails (see highlight talk by M. Oppenheim)
- Mesospheric winds from mesospheric echoes

Imaging with ISR dishes

- Each positions is observed with 1,500 consecutive pulses, i.e., every few seconds
- Main assumption: spatial changes are "slow"
- When assumption is not good, fast beam-steering, multi-volume observations are needed:
 - AMISRs
 - EISCAT 3D (see talk by J. Foster)

ESF RTDI: Slit camera interpretation

Assuming spatial structures are frozen, drifting across the radar at a constant velocity, the RTI maps could represent "Images" (altitude vs. zonal) of such structures.

Slit-camera Analogy and Problems

In some applications like races it is useful

In many other applications it provides misleading results:

- Slow structures are stretch out
- Fast-moving structures are compressed.
 - In general, it is difficult to discriminate space-time features.

Aperture Synthesis Configuration

ESF Imaging: Narrow view

Imaging: Wider View

Underspread Targets

Incoherent

- Perpendicular to B
- Collisionally Dominated (e.g. D-region ionosphere)

115 (W) 110 12.5 11.0 12.5 11.0 9.5 9.5 9.0 400 Radial Velocity (m/s)

Coherent

- Turbulent Layers (e.g. MST Radars)
- Polar Mesospheric Summer Echoes (PMSE)
- 150-km Echoes

Range-Time Diagram

- Assume each range is independent
- The returns from each range form a time series sampled once per IPP

Binary Phase Codes

Code

Transmitted Waveform

Barker Codes

Range Sidelobes

Other Binary Phase Codes

Complementary Codes

Autocorrelation Functions

Pulse to Pulse Spectra

Voltage Samples

r samples

FFT FFT FFT

Length n Length n Length n spectrum spectrum spectrum

- Nyquist Frequency: 0.5/IPP
- Spectral Resolution: 1/(n*IPP)

Typical Numbers

JRO Perp. B

- IPP = 6.66 ms
- Nyquist = 75 Hz (225 m/s)
- N = 64 pulses
- Frequency Resolution = 2.35 Hz (7 m/s)

PFISR D-region

- IPP = 3 ms
- Nyquist = 167 Hz (56 m/s)
- N = 128 pulses
- Frequency Resolution = 2.6 Hz (0.87 m/s)

Example Spectra

Aliasing

- Long tails of the spectra will alias
- When fitting, fold the model to compensate

Aliasing

- Aliasing is more severe at higher altitudes
- Underspread processing is not appropriate

Statistics of Radar Signals

Received voltage is a Gaussian random process

Statistical Quantities

Definitions

- Variance (Power):
- Autocorrelation:
- Power Spectrum:

Estimators

$$\hat{P} = \frac{1}{K} \sum_{i=1}^{K} \left| V_i \right|^2$$

$$\hat{R}(\tau) = \frac{1}{K} \sum_{i=1}^{K} V_{i1} V_{i2}^{*}$$

$$\hat{S}(\omega) = DFT\{\hat{R}(\tau)\}\$$

$$P = E[|V|^2]$$

$$R(\tau) = E[V^*(t)V(t+\tau)]$$

$$S(\omega) = \int_{-\infty}^{\infty} R(\tau) \exp(-i\omega\tau) d\tau$$

Variance of Estimators

$$\hat{S} = \hat{P} - N$$

$$\delta \hat{S}^2 \approx \delta \hat{P}^2 = \frac{(S+N)^2}{K}$$

$$\frac{\delta \hat{S}^2}{S^2} = \frac{1}{K} \frac{\left(S + N\right)^2}{S^2}$$

$$\frac{\delta \hat{S}}{S} = \frac{1}{\sqrt{K}} \left(1 + \frac{1}{SNR} \right)$$

- Strive for SNR=1
- Little benefit from SNR>1
- A single estimate has over 100% error
- Some amount of incoherent integration is always necessary

Incoherent Integration

Useful Links

- ISR Student Workshop (CEDAR 2006)
 - http://cedarweb.hao.ucar.edu/workshop/archive/2006/agenda_2006.html
- 2nd AMISR Science Planning workshop
 - http://www.amisr.com/meetings/2008/
- Incoherent scatter radar book by Farley and Hagfors, in progress.

Radar: Block Diagrams

Incoherent Scatter Radars (1)

Incoherent Scatter Radars (2)

Additional considerations

- Coherent and incoherent signals are caused by refractive index fluctuations on the propagation path of transmitted radar pulses.
- At VHF and higher frequencies the scatter signal is so minor that there is no need to consider secondary scattering of the scattered signals or the extinction of a propagating pulse due to scattered energy.
- Linear superposition methods can be used to establish the relationship between scattered radar signal and the scattering medium [e.g., *Woodman*, 1991]