

Incoherent scatter measurements of F-region temperatures with the Jicamarca radar beam pointing perpendicular to B

P. Reyes, M. Milla, and E. Kudeki

University of Illinois ar Urbana-Champaign Department of Electrical and Computer Engineering

> May 23, 2008 ISEA-12

Outline

- Motivation
- Experiment Setup and Data
- Forward Model
- Preliminary results

Motivation

- Objective of this project:
 - Estimate T_e and T_i of the ionosphere using the ISR technique while pointing the Jicamarca radar beam perpendicular to the Earth's magnetic field.

Outline

- Motivation
- Experiment Setup and Data
- Forward Model
- Preliminary results

Experiment Setup 1

N-S: "DIFFERENTIAL PHASE" "ISCOD" = (DGC) Dr's L.Goncharenko, B.Basu ANTENNAS"CP=2" [Nov. 08 - 13, 2004]

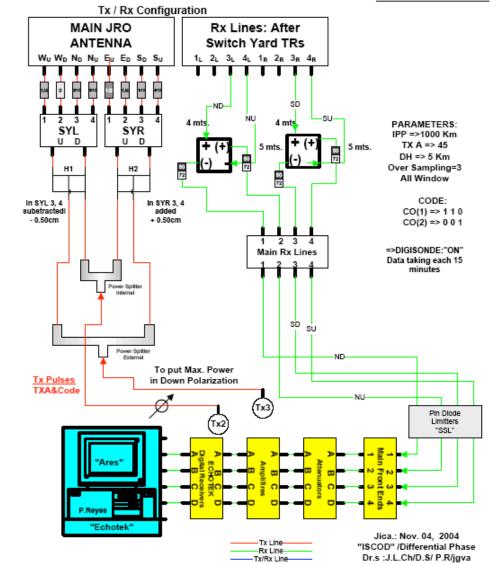
Main Antenna Phasing

North Quarter				 East Quarter			
4/2	4/2	3/5	2/4	5/3	5/3	4/2	3/5
4/2	3/5	2/4	2/4	5/3	4/2	3/5	3/5
3/5	2/4	5/3	5/3	4/2	3/5	2/4	2/4
2/4	2/4	5/3	4/2	3/5	3/5	2/4	5/3
	West 0	Quarter			South (Quarter	
2/4	West C 2/4	Quarter 5/3	4/2	3/5	South (Quarter 2/4	5/3
2/4							
	2/4	5/3	4/2	3/5	3/5	2/4	5/3

Reference to Ochs Original Manual This configuration is relative new, first used by Dr. R. Woodman, 10/06/1996 Know by Jicamarca staff as "CP=2"

Perpendicualr to "B"

"DIFFERENTIAL PHASE":

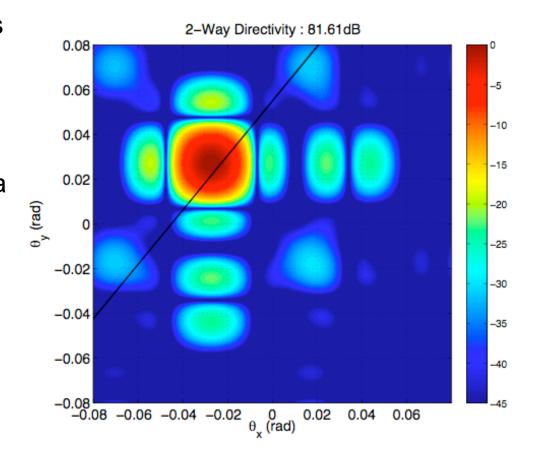

"ISCOD" = (DGC)

Nov. 08 - 13, 2004

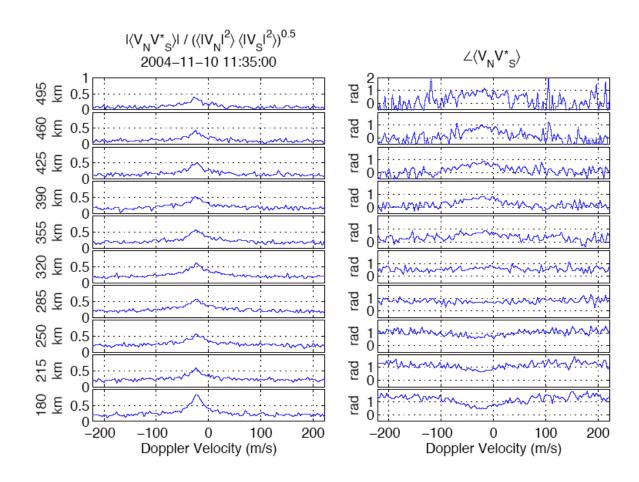
Dr's: L.Goncharenko, B.Basu

ANTENNA: CP = 2 Differential Phase Modif.in U's N-S:Up&Dn

(Tipo: E. Kudeki)



Experimental Setup 2

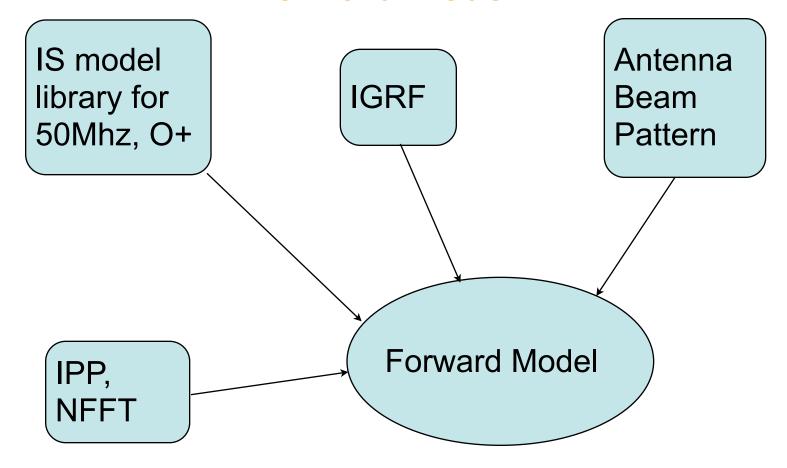

- Transmit linear pol.
- Receive using 2 quarters
 N S, and both pol.
- Meridional and zonal components are synthesized.
- Coherently detected data is acquired in a pulse to pulse basis using matched filter receivers.
- IPP=6.666ms(1000km)
- Tx=15km
- Oversampling =5km
- Range 0-1000km

Sample of coherence Data

- We calculate self spectra and cross spectra.
- 5 min averaged data.

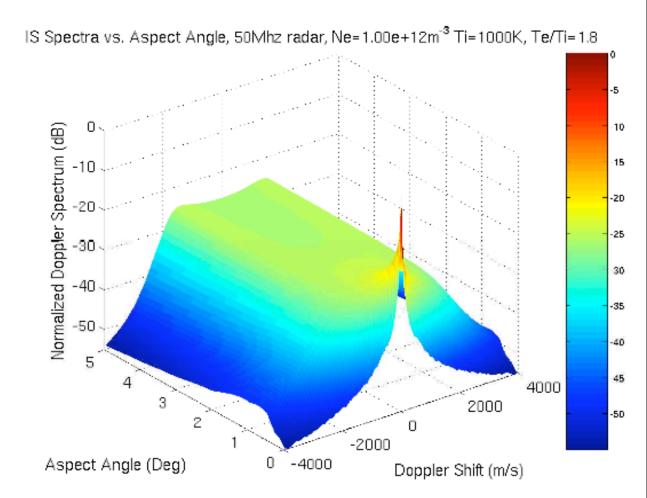
Outline

- Motivation
- Experiment Setup and Data
- Forward Model
- Preliminary results


Forward Model 1

- To built the Forward model for the self- and crossspectra we use:
 - Theoretical ISR Library $\Phi(\alpha, \omega, N_e, T_e, T_i, B_m, O^+)$.
 - Beam pattern of the antenna $G(\theta_x, \theta_y)$
 - IGRF model to get " α " in each direction (θ_x , θ_y) within the beam pattern.
 - Geometry of the Interferometer (N-S Antennas baseline = 34.65 λ)
 - Experiment parameters (IPP=1000km = 6.666ms, NFFT=128)

Forward Model 2



Forward Model 3: IS Spectral Library

Milla and Kudeki
[2008] extended the
previous work to all
α, building a library
based on 3-D
random walk Monte
Carlo simulations for
specific α,B, N_e, T_e
and T_i, f₀ (50MHz),
ion composition (O⁺)

Forward Model 4: Modeling Self-Spectra

Beam-weighted IS spectra received by each antenna:

$$S(\omega) = \iint d\Omega \Phi(\alpha, \omega) G(\theta_x, \theta_y)$$

After discretizing the beam we obtain:

$$S(\omega) = \sum_{x} \sum_{y} \frac{\Delta x \Delta y}{\sqrt{1 - x^2 - y^2}} G(x, y) \Phi(A(x, y), \omega)$$

Where A(x,y) is the distribution of α for every direction inside the beam. The IGRF model was used to obtain B:

$$\Lambda(\hat{\alpha}) = \sum_{x_n} \sum_{y_n} \frac{\Delta x \Delta y}{\sqrt{1 - x_n^2 - y_n^2}} G(x_n, y_n) \cdot \delta_{\hat{\alpha}, A(x_n, y_n)}$$

Using this "weighting-function" we compute the self-spectra with:

$$S(\omega) = \sum_{\hat{\alpha}} \Lambda(\hat{\alpha}) \Phi(\hat{\alpha}, \omega)$$

Forward Model 5: Modeling Cross-Spectra

Normalized Beam-weighted IS cross-spectra from N and S antennas:

$$C_{NS}(\omega) = \frac{1}{S(\omega)} \iint d\Omega \Phi(\alpha, \omega) e^{j\vec{D}\cdot\vec{k}} G(\theta_x, \theta_y)$$

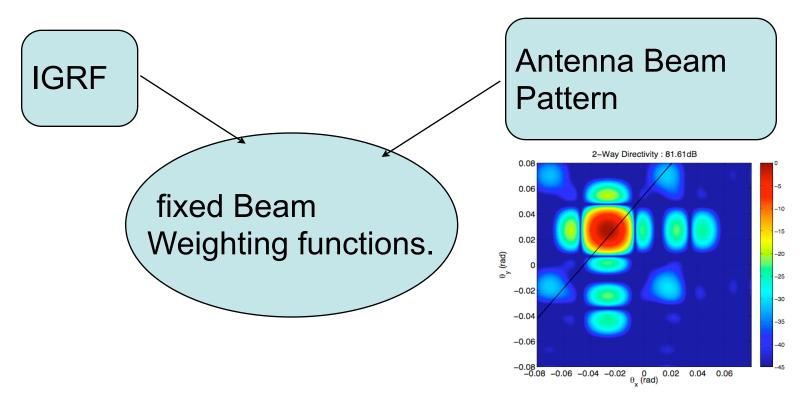
where,
$$\vec{D}=|\vec{D}|\cdot \frac{1}{\sqrt{2}}(-\hat{x}+\hat{y})$$
 ,and the wave vector $\vec{k}=\frac{2\pi}{\lambda}\hat{k}$

After discretizing the beam we obtain:

$$C_{NS}(\omega) = \frac{1}{S(\omega)} \sum_{x_n} \sum_{y_n} \frac{\Delta x \Delta y}{\sqrt{1 - x_n^2 - y_n^2}} G(x_n, y_n) e^{j\vec{D} \cdot \vec{k}} \cdot \Phi(A(x, y), \omega)$$

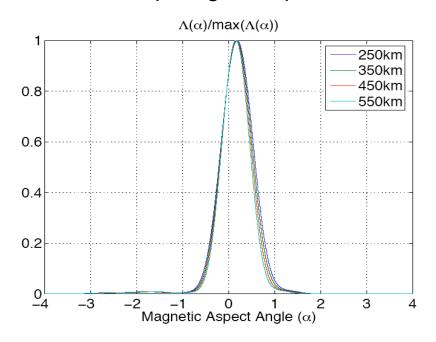
Now we will have a complex weighting-function:

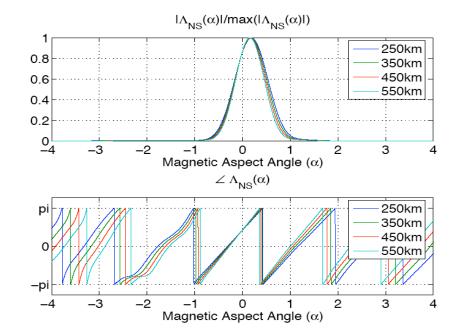
$$\Lambda_{NS}(\hat{\alpha}) = \sum_{x_n} \sum_{y_n} \frac{\Delta x \Delta y}{\sqrt{1 - x_n^2 - y_n^2}} G(x_n, y_n) \delta_{(\hat{\alpha} - A(x_n, y_n))} e^{j\vec{D} \cdot \vec{k}}$$


Final our model for computing coherence:

$$C_{NS}(\omega) = \frac{1}{S(\omega)} \sum_{\hat{\alpha}} \Lambda_{NS}(\hat{\alpha}) \Phi(\hat{\alpha}, \omega)$$

Forward Model 6: Beam Weighting Functions


Collapsing the beam pattern in one dimension, so that we have a one dimensional weighting function as a function of aspect angle.



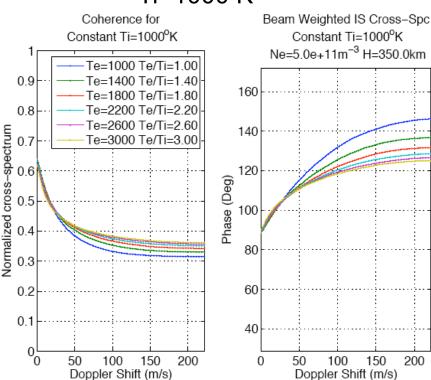
Forward Model 5: Modeling Spectra

Beam weighting function for computing self-spectrum:

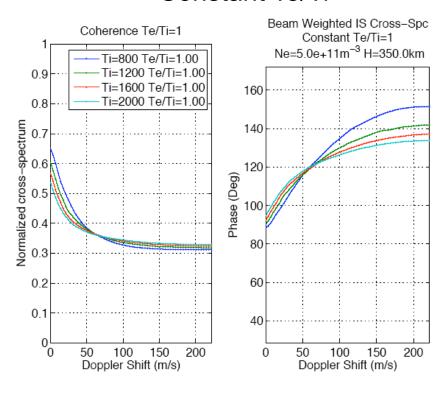
Beam weighting function for computing cross-spectrum:

The Next step is:

- Make the weighting of the IS for a certain ionosphere with the $\Lambda(\alpha)$ and $\Lambda_{NS}(\alpha)$
- Consider the effect of sampling (IPP=1000km)
- Consider the effect of windowing (NFFT=128)


And we obtain ...

Forward Model 6: Some Examples


Coherence Spectrum for Jicamarca on November 10,2004

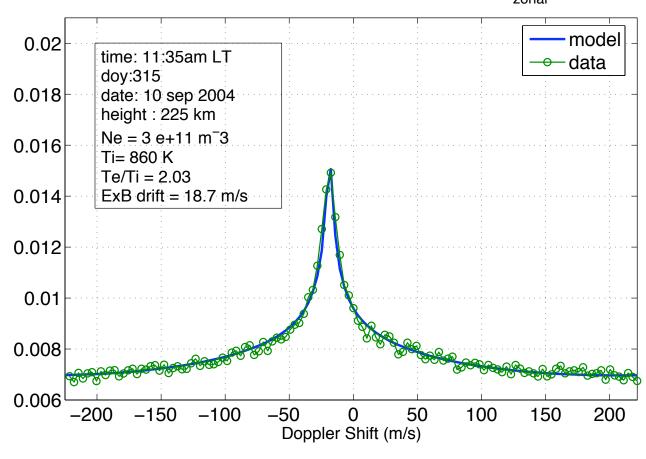
Ti=1000 K

Coherence Spectrum for Jicamarca on November 10,2004,

Constant Te/Ti

Outline

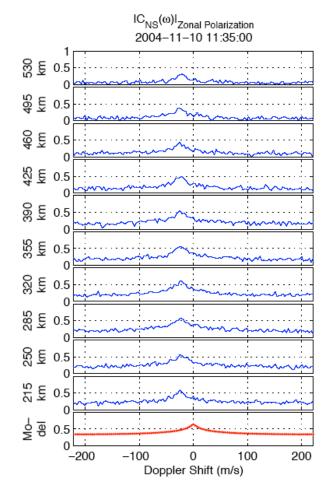
- Motivation
- Experiment Setup and Data
- Forward Model
- Preliminary results

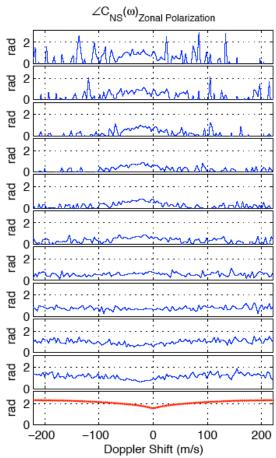


Comparisons between the Data and Model

- Good agreement with the data.
- Temperatures are comparable with IRI model.
- Starting at 225km we don't get contamination of the coherent echoes from 150km

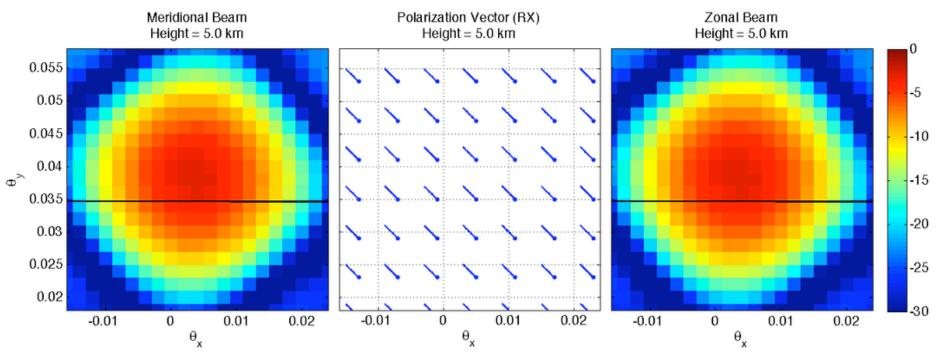
Self Spectrum Normalized by the power N_{zonal}



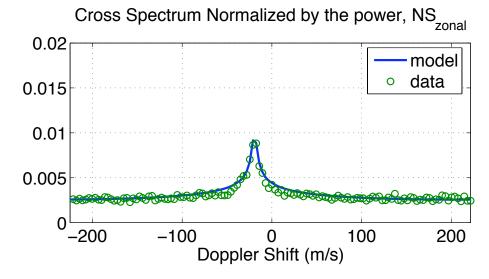


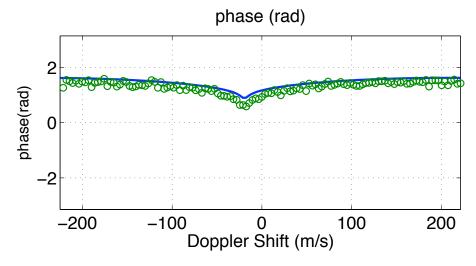
Comparisons between the Data and Model and some Conclusions

- Good agreement in the lower altitudes.
- Phase only matches at lower altitudes
- Different regimes
 of magneto-ionic
 propagation effects
 cause the beam
 pattern to change
 in altitude.



Magneto-ionic effects need to be taken into account


- Assuming a certain ionospheric density profile, and using the differential phase method we account for all the different regimes of magneto-ionic propagation effects.
- This effects cause the beam pattern to change in altitude.



Strategy for getting Temperatures

- From the differential phase method we calculate the electron densities.[Kudeki et al. 2003]
- So fixing the density, we fit the data to this spectral model in order to get one of the temperatures.
- Using the North South interferometer we were expecting to estimate Te/Ti, but our first attempts are showing us that the dependence of Te/Ti is weak.

Conclusions and Future Work

- We have a spectral model that fits the data for reasonable temperatures.
- Need to include magneto-ionic effects to improve the forward model.
- Improving sensitivity on Te/Ti could be achieved by modifying the radar configuration. This would allow us to improve the Te/Ti sensitivity without loosing the accuracy of the ExB drifts estimation.

Thank you!