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Motivation
» Objective of this project:
- Estimate T, and T, of the ionosphere using the ISR

techniqgue while pointing the Jicamarca radar beam
perpendicular to the Earth’s magnetic field.
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* Experiment Setup and Data
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Experiment Setup 1 "ISCOD" = (DGC) ——
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"ISCOD" = (DGC) Tx / Rx Configuration
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Reference to Ochs Original Manual
This configuration is relative new, first used

by Dr. R. Woodman, 10/06/1996
Know by Jicamarca staff as "CP=2"
Perpendicualr to "B"
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Experimental Setup 2

Transmit linear pol.

Receive using 2 quarters 2-Way Directivity : 81.61dB
N - S, and both pol. '

Meridional and zonal
components are
synthesized.

Coherently detected data
IS acquired in a pulse to
pulse basis using
matched filter receivers.

IPP=6.666ms(1000km)

Tx=15km

Oversampling =5km

Range 0-1000km 0508 ~0.06 ~0.04 -0.02 . (gad) 0.02 0.04 0.06

X
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Sample of coherence Data
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We calculate self 2004-11-10 11:35:00
spectra and cross IS O
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* Forward Model
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To built the Forward model for the self- and cross-
spectra we use:

Theoretical ISR Library ®(x,w,N_,T,,T;,B,,0%).

"“m?

Beam pattern of the antenna G(6,,6,)

IGRF model to get “ a “ in each direction (6,,0,)
within the beam pattern.

Geometry of the Interferometer (N-S Antennas
baseline = 34.65 A)

Experiment parameters (IPP=1000km = 6.666ms,
NFFT=128)
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. e B\
IS model Antenna

library for Beam

50Mhz, O+ Pattern
- J

Forward Model
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Forward Model 3: IS Spectral Library

IS Specfra vs. Aspect Angle, SOMhz radar, Ne=1 0oe+1z2m* Ti=1000K, TefTi=18
e a

- Milla and Kudeki PR T 5
[2008] extended the o SRR S T
previous work to all
a, building a library
based on 3-D
random walk Monte
Carlo simulations for
specific a,B, N, T,
and T,, f, (50MHz),
ion composition (O%)
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Beam-weighted IS spectra received by each antenna:

Sw) = [[ d9b(a,2)G(0..6,)

After discretizing the beam we obtain :

=22 Awéy =G (2,y)P(A(z,y),w)
V-2t -y

Where A(x,y) is the distribution of a for every direction inside the
beam. The IGRF model was used to obtain B:

AxA
Z Z - y_ G(wm Yn) '5d,A(mn,yn)

Tn Yn y

Using this “weighting-function” we compute the self-spectra with:

=) A@)®(d,w




" Forward Model 5: Modeling Cross-Spectra

Normalized Beam-weighted IS cross-spectra from N and S antennas:

Cns(w //dQ(D a,w)e! DRG0, 6,)

1

where, D =I[D|-J5(=#+9) and the wave vector k = 27f

After discretizing the beam we obtain :

— =

Az o
CNS Z Z ) - 2 G(x’“ y")eJD . (I)(A(l’: y)a w)

Tn Yn — T —Yn

Now we will have a complex weighting-function:

Aa?Ay ) BT
ANS Z Z ) 5 G(;Bnr. y-n)o(d-—/-l(:cn,yn)e]D K

Tn  Un ‘n — Yn

Final our model for computing coherence'

Cns(w ZANS a) P
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Forward Model 6: Beam Weighting Functions

IGRF Antenna Beam
Pattern

2-Way Directivity : 81.61dB

fixed Beam
Weighting functions.

-0.08
-0.08 -0.06 -0.04 -0.02 0 002 0.04 0.06
Dx(rad)

Collapsing the beam pattern in one dimension, so that
we have a one dimensional weighting function as a
function of aspect angle.




[ECE tinos [41]

~ Forward

Model 5: Modeling Spectra

Beam weighting function for Beam weighting function for
computing self-spectrum: computing cross-spectrum:

A(o)/max(A(c)) IA g (@/max(IA (o)1)

|~ 250km N - [ 250Kkm
‘| ——350km 8r : ; : T N | ——350km |7
.| ——450km| | 6l é : : S .| ——450km
: : : : N . | —— 550km

-1
Magnetic Aspect Angle (o)

-2 -1 0 1 2
Magnetic Aspect Angle (o)

Magnetic Aspect Angle (o)

The Next step is:
- Make the weighting of the IS for a certain ionosphere with the A(a) and Ayg ()
« Consider the effect of sampling (IPP=1000km)

« Consider the effect of windowing (NFFT=128)
And we obtain ...
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Forward Model 6: Some Examples

Coherence Spectrum for Coherence Spectrum for
Jicamarca on November Jicamarca on November
10,2004 10,2004,

Ti=1000 K Constant Te/Ti

Coherence for Beam Weighted IS Cross-Spc )

Constant Ti=1000°K Constant Ti=1000°K Coherence Te/Ti=1 Beam Meighted 1S Cross-Spe
- ' — Ne=5.0e+11m™> H=350.0km ; ; ; s Ne=5.0e11m-2 H=350.0k

——Te=1000 Te/Ti=1.00 , , . . ——Ti=800 Te/Ti=1.00 e=o.Ue+11m = H=5o0.Ukm
~| ——Te=1400 Te/Ti=1.40}; : : : : 9| ——Ti=1200 Te/Ti=1.00{ ! = ! !
——Te=1800 Te/Ti=1.80 : : : : ——Ti=1600 Te/Ti=1.00
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——Te=2600 Te/Ti=2.60 i ) : ! : : : :
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o
\‘

o
2]

<
'S

Phase (Deg)

Phase (Deg)
Normalized cross—-spectrum

o
w

£
3
=
Q
0]
o
?
1]
2]
205
o
@
g
©
£
b
o
=z

o
N

i ] ] ] i i ; ; 0 1 1 1 | 1 ] | |
50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200
Doppler Shift (m/s) Doppler Shift (m/s) Doppler Shift (m/s) Doppler Shift (m/s)




Outline

* Preliminary results
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Comparisons between the Data and

Good agreement
with the data.

Temperatures are
comparable with
IRl model.

Starting at 225km
we don’t get
contamination of
the coherent

echoes from
150km
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time: 11:35am LT
doy:315

‘date: 10 sep 2004
height : 225 km
Ne=3e+11m™3
Ti=860 K
Te/Ti=2.03

‘ExB drift=18.7 m/s
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Comparisons between the Data and
Model and some Conclusions

® GOOd ag ree me nt ICNS((’J)IZonaI Polarization
. 2004-11-10 11:35:00 Zonal Polarization
in the lower . . . . : . ,
altitudes.

Phase only
matches at lower
altitudes

Different regimes
of magneto-ionic
propagation effects
cause the beam
pattern to change
in altitude.
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Magneto-ioic effects need to be taken
into account

Meridional Beam
Height = 5.0 km

Polarization Vector (RX)
Height = 5.0 km

Zonal Beam
Height = 5.0 km

0 0.01
&

X

Assuming a certain ionospheric density profile, and using the

differential phase method we account for all the different regimes of
magneto-ionic propagation effects.

This effects cause the beam pattern to change in altitude.
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Strategy for getting Temperatures

Cross Spectrum Normalized by the power, NSzonaI

* From the differential phase 002 model

method we calculate the electron 15! o data
densities.[Kudeki et al. 2003]

So fixing the density, we fit the
data to this spectral model in
order to get one of the
temperatures. o0

Using the North - South Doppler Shift (m/s)
interferometer we were expecting
to estimate Te/Ti, but our first
attempts are showing us that the
dependence of Te/Ti is weak.

phase (rad)

-2

-200 -100 0 100
Doppler Shift (m/s)




. . DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
ECE Illinois EHI

Conclusions and Future Work

We have a spectral model that fits the data for
reasonable temperatures.

Need to include magneto-ionic effects to improve
the forward model.

Improving sensitivity on Te/Ti could be achieved by
modifying the radar configuration. This would allow
us to improve the Te/Ti sensitivity without loosing
the accuracy of the ExB drifts estimation.
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Thank youl!




